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The critical window of percolation

Standard coupling: to each site x ∈ ∆η, assign V (x) i.i.d. Unif[0, 1], and
let x be open at level p if V (x) 6 p.

In Q ∩ ∆η, when raising p from pc, when does it become well-connected?

A site is pivotal in ω if flipping it changes the
existence of a left-right crossing. Equivalent to
having alternating 4 arms. For nice quads, there are
not many pivotals close to ∂Q, hence

E|Pivη| ≍ η−2 α4(η, 1) = η−3/4+o(1) on ∆η.

If p− pc ≫ η3/4+o(1), we have opened many critical pivotals, hence already
supercritical. But maybe new pivotals appeared on the way, hence the
change was actually faster?

Stability by Kesten (1987): multi-arm probabilities stay comparable inside
this regime, hence this is the critical window. And θ(pc + ǫ) = ǫ5/36+o(1).
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Kesten’s proof of stability and β = ξ1
2−ξ4

= 5/36

For p > 1/2, let Lδ(p) := min{n : Pp

[

LR(n)
]

> 1−δ}, correlation length.

For small enough δ, there is a dense infinite cluster above this scale L(p).
In particular, Pp

[

0 ↔ L(p)
]

≍ Pp

[

0 ↔ ∞
]

.

Russo’s inequality: d
dpPp

[

A
]

=
∑

x∈Q
Pp

[

x is pivotal for A
]

.

d
dpPp

[

LR(n)
]

≍ n2
Pp

[

A4(n)
]

and
∣

∣

∣

d
dpPp

[

A4(n)
]

∣

∣

∣
6 O(1) n2

Pp

[

A4(n)
]2

,

thus
∣

∣

∣

d
dp log Pp

[

A4(n)
]

∣

∣

∣
6 O(1) d

dpPp

[

LR(n)
]

.

Let p0 > 1/2, n = L(p0). Integrate from 1/2 to p0. Here Pp

[

LR(L(p0))
]

is almost a constant. Hence P1/2

[

A4(L(p0))
]

≍ Pp0

[

A4(L(p0))
]

.
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From this we also get
d

dp
Pp

[

LR(L(p0))
]

≍ L(p0)
2
Pp

[

A4(L(p0))
]

≍ L(p0)
2
P1/2

[

A4(L(p0))
]

,

and integrating from 1/2 to p0 now gives

1 ≍ (p0 − 1/2) L(p0)
2
P1/2

[

A4(L(p0))
]

.

From the 4-arm exponent 5/4, get L(p) = (p − 1/2)−4/3+o(1).

As above, also get P1/2

[

0 ↔ L(p)
]

≍ Pp

[

0 ↔ L(p)
]

, hence

Pp

[

0 ↔ ∞
]

≍ Pp

[

0 ↔ L(p)
]

≍ P1/2

[

0 ↔ L(p)
]

≍
(

(p − 1/2)−4/3+o(1)
)−5/48+o(1)

= (p − 1/2)5/36+o(1).

Later, more precise finite-size scaling results by Borgs-Chayes-Kesten-
Spencer (2001). The system looks critical below the scale L(p); e.g.,
the sized of largest clusters are not concentrated.
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Taking the scaling limit

So, take p = 1/2 + λ r(η), with r(η) := η2α4(η, 1)−1 ∆
= η3/4+o(1) and

λ ∈ (−∞,∞). The standard coupling in this range is the near-critical
ensemble. Might hope to get interesting scaling limit as η → 0.

Nolin-Werner (2008): Subsequential limits of the near-critical interface
exist, and are singular w.r.t. the critical interface SLE6.

What about similar limit in dynamical percolation? As we saw, if each clock
has a rate r(η) (as opposed to RW → BM, need to slow down time!), then
the expected number of pivotal switches for LRQ,η in unit time is ΘQ(1).
So, again hope for nice scaling limit. Moreover, [GPS‘08]:

E
[

LRQ,η(ω0) LRQ,η(ωtr(η))
]

− E[ fQ,η ]
2 ≍Q t−2/3 as t → ∞.

Relation between NCE and DP: whenever a clock rings, open it. At time
t, each site is open with probability ∼ 1/2 + t r(η). May also take t < 0.

What kind of limit? One interface is not enough for a Markovian DPSL.
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What kind of limit?

A good definition: a configuration in the scaling limit is the collection of all
pw-smooth quads that are crossed.

A much better one by Schramm, with Smirnov:

The set of crossed quads is closed and hereditary.

The collection S of all closed hereditary sets
of quads is a compact Hausdorff space in an
appropriate topology. “Dedekind cuts” in a poset.

For each mesh η, percolation is a probability measure on S. Take
convergence in law (weak convergence).

Other definitions: all open paths Aizenman (1995); all interface loops
Camia-Newman (2006); exploration trees Sheffield (2009).

Uniqueness first proved for and by Camia-Newman. Uniqueness in quad-
crossing topology follows.
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The results

Theorem (GPS 2010-12). On ∆η, with rate r(η) clocks,
∗ ∃ DPSL
∗ ∃ NCESL
∗ both are Markov
∗ both are conformally covariant: if the domain is changed by φ(z), then
time is scaled locally by |φ′(z)|3/4

∗ DPSL is ergodic (by GPS 2008)

In either case, the process is a random map γη : R 7→ S. Not continuous.
For the scaling limit, we take Skorohod topology of càdlàg functions.

DPSL question was asked by Schramm, ICM lecture (2006).
Results were conjectured by Camia-Newman-Fontes (2006).
NCESL results refine Bo-Ch-Ke-Sp (2001) and Nolin-Werner (2008).

Near-critical interface (the “massive SLE6”) should have a driving process
involving a self-interacting drift term: dWt =

√
6 dBt + c λ |dγt|3/4 dt1/2.

But is this useful? Near-critical Cardy?
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The first main ingredient

Pivotal switches govern the dynamics. If we know the number of pivotal
sites for each quad at any given moment, then know the rates at which
pivotal switches occur. However, no pivotal sites in scaling limit any more!

Quantity of microscopic pivotals can be seen from macroscopic information:

Theorem 1 (Measurability). For any pw-smooth quad Q, let µQ
η be the

number of Q-pivotal sites normalized by η−2α4(η, 1). Then there is a limit
of the joint law (µQ

η , ωη) → (µQ, ω), where µQ is a function of ω.
Similar statement for µρ

η, the normalized number of ρ-important sites.

A similar proof almost gives natural time-parametrizations for SLE6 and
SLE8/3: questions studied for general κ by Lawler, Sheffield, Alberts, Zhou.

So, can hope that scaling limit of dynamics is given by ωt=0 plus a “filtered”
Poisson point process (Pρ)ρ>0 of flips from µρ(domain) × Lebesgue(time).
This was suggested by Camia-Fontes-Newman.
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The second main ingredient

But if we follow all these changes, will we know later what quads are
crossed? During the dynamics, no new macroscopic information appears:

Theorem 2 (Stability). Quad Q. Set of sites switched in [0, t] is Xt.
The probability that a configuration ω can be changed on Xt into ω′, ω′′

such that they agree on any site that is at least ǫ-important in ω, but Q is
crossed by ω′ while not crossed by ω′′, is small if ǫ is small.

x, λ1

y, λ2

x, t2

y, t1

Such scenarios
of “cascade of
importance” do
not happen.

Strengthening and simplifying Kesten (1987), saying that in the near-critical
window the 4-arm probabilities remain comparable.
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Measure on pivotals is measurable in scaling limit

X = Xρ
η is the number of ρ-important sites in Ω, with mesh η.

Intermediate scale: Y = Y ρ,ǫ
η is number of ρ-important ǫ-boxes in a lattice.

β = βρ,ǫ
η := E

[

ρ-important sites in ǫ-box B
∣

∣ B is ρ-important
]

.

Hence E[ X ] ∼ β E[ Y ].

Want that limη→0
Xρ

η

η−2α4(η,1)
exists, and the limit can be read off from

macroscopic information (measurable w.r.t. the percolation scaling limit).

This will follow from E
[

(X − β Y )2
]

= o(1)E
[

X2
]

as ǫ and η/ǫ → 0.
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Second moment control

Xi := #ρ-important sites in Bi , Yi := 1{Bi is ρ-important}.

E

[

(

X − βY
)2

]

=
∑

i,j E
[

(Xi − β Yi)(Xj − β Yj)
]

Near-diagonal terms are insignificant.

For i, j corresponding to boxes that at distance at least
√

ǫ apart:

Fi: σ-field generated by exterior of the
√

ǫ-box Ci around Bi.

E
[

(Xi − β Yi)(Xj − β Yj)
∣

∣ Fi, Yi = Yj = 1, connection in Ci

]

= (Xj − β)E
[

Xi − β
∣

∣ Fi, Yi = Yj = 1, connection in Ci

]

6 (Xj + β)
∣

∣

∣
E

[

Xi − β
∣

∣ Fi, Yi = Yj = 1, connection in Ci

]

∣

∣

∣
.

Now: Loss of information when zooming in to smaller scales, proved by a
coupling argument.
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Strong Separation Lemma and the coupling argument

Strong Separation Lemma. For d(B, ∂Q) > diam(B), conditioned on the
4 interfaces to reach ∂B, with arbitrary starting points, with a uniformly
positive conditional probability the interfaces are well-separated around ∂B.

[Simple proof by Damron-Sapozhnikov (2009), following Kesten (1987).
See also GPS Pivotal measure (2010) Appendix.]

And given two well-separated 4-tuples of interfaces, using RSW, there is a
uniformly positive probability that they couple.

So, going down from the
√

ǫ-box Ci to the ǫ-box Bi, on each scale we have
a uniformly positive probability that the coupling has happened.
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Where is the +o(1) from the covariance exponent?

Ratio limit result: limη→0
α

η
4(η,r)

α
η
4(η,1)

= limǫ→0
α4(ǫ,r)
α4(ǫ,1)

= r−5/4.

The limits ℓη and ℓǫ exist by coupling interfaces started from different
positions.

Then, given limn→∞
log α4(r

n,1)
n = log(r5/4), let us write α4(r

n, 1) as:

α4(r
n, 1) =

α4(r
n, 1)

α4(rn, r)

α4(r
n−1, 1)

α4(rn−1, r)
. . .

α4(r, 1)

1
.

log α4(r
n, 1)

n
=

1

n

n
∑

j=1

log
α4(r

j, 1)

α4(rj, r)
.

By the convergence of the Cesàro mean, the right hand side converges to
log 1

ℓǫ, and we are done.
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Stability: important points suffice

Fix 0 < η < 1. Static configuration ω.

X = Xt: i.i.d. set of bits each chosen with probability t r(η).

Ω(X,ω): set of ω′ that are equal to ω off of X .

Wz(r, r
′): the event A4(z, r, r′) holds for some ω′ ∈ Ω(X, ω).

Key Lemma: For 0 < i < j with rj := 2j η < 1,

P
[

Wz(ri, rj)
]

6 Ct α4(ri, rj).
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Proof

Assume
{

ω /∈ A4(z, ri+1, rj−1)
}

∩Wz(ri, rj).

Then ∃x ∈ X ∩ A(z, ri+1, rj−1)
such that Wx(η, ρx) holds. x

ρ

z

Hence recursion for bj
i := P

[

Wz(ri, rj)
]

:

bj
i 6 α4(ri+1, rj−1) +

j−2
∑

n=i+1

∑

x∈A(z,rn,rn+1)

t r(η) bn−1
i bn−1

0 bj
n+2

Completed with double induction.
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Note that we could have switched the sites in the random set X in any way,
say, always to open, hence it’s a strengthening of Kesten’s stability.

Second lemma. Let Zω(z) := importance of z in ω and ZX
ω (z) :=

max{Zω′(z) : ω′ ∈ Ω(ω, X)}. For η < ǫ < 4 ǫ < r < 1:

P

[

Zω(z) < ǫ < r < ZX
ω (z)

]

6 Ct
ǫ2 α4(η, ǫ)

α4(r, 1)
.

Therefore,

P

[

∃z∈[0,1]2∩X Zω(z) < ǫ < r < ZX
ω (z)

]

6 Ct α4(r, 1)
−1 ǫ2 α4(ǫ, 1)

−1 .

This goes to 0 as ǫ → 0, uniformly in η.
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Minimal spanning tree

See 6 page ICMP lecture at [arXiv:0909.3138 math.PR].
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Minimal spanning tree

For each edge of a finite graph, say e ∈
E(Z2

n), let U(e) be i.i.d. Unif[0, 1]. The
Minimal Spanning Tree is the tree T for
which

∑

e∈T U(e) is minimal.

Same as deleting from each cycle the edge
with highest U . Or the collection of lowest
level paths between all pairs of vertices.

Version adapted to site percolation on ∆:
replace each edge by two in series, and for
each such edge e, let U(e) := V (e∗), the old
vertex endpoint.
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MST coupled with NCE

Connection to NCE: macroscopic structure is determined by the cluster tree
T>λ between the level λ clusters, p = 1/2 + λ r(η), as λ → −∞.

And the collection of cluster trees T>λ is determined by the collection of
λ-clusters over all λ ∈ (−∞,∞).

Also, T is the union of the invasion trees of Invasion Percolation.
Alexander 1995, Aizenman-Burchard-Newman-Wilson 1999, Häggström-
Peres-Schonmann 1999, Lyons-Peres-Schramm 2006.
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Theorem GPS. Scaling limit of MST exists, and is rotationally and scaling
invariant.

We do not expect conformal invariance, because the conformal covariance
of the NCESL suggests that MST will feel that |φ(z)| is changing. For
example, simulations by D. Wilson (2002).
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