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A basic question

Pairwise independence is weaker than full independence. E.g., can have
X1, Xo,..., X, on (2,P), with values in some V', and a subset A C V,
S.t.

e the events {X; € A} are pairwise independent, P| X; € A] =1/2,
e but the joint probability is large: P[ X4,..., X,, € A] =1/n.

Namely, let 0;, i = 1,...,k be independent uniform £1 bits, n = 2*, and
vs = |],cq0i € {—1,1}, forall S C [k]. Then xg and 7 are independent
for ST, butPlzg=1VSC[k]|=Ploy,=1Vieclk]]=2"%=1/n.

Can this happen for stationary reversible Markov processes? l.e.,

e a fast pairwise decorrelation P[ Xy, X; € A] — P[ X, € A]°,
e but a fat exit tail P[ X, € Aforall 0 < s <¢t]7?

Say, can the first one be exponential but the second one only polynomial?



A famous example: random walk on expanders

Degree < d finite graph G(V, E) is (n, d, ¢)-expander if |0S|/|S| = ¢ for all
S| < ¥l =2 wWith random walks: P[X; ¢ S | X, ~ Unif(S)] > c.

With functional analysis: Markov operator Pf(z) := E[ f(X1) | Xo = x|,
self-adjoint on L*(V,w), where 7 is the stationary measure.  Then
(Pls,15) < (1 —¢)(1g,1g). More generally, if m(suppf) < 1 — ¢, then

(Pfaf)<(1_51>(f7f) and (Pfapf)<(1_52)(f7f)

Equivalently, spectral gap g := 1 — Ay > 0, where

(PI.f) _ (PLPDV?

A9 1= sup = sup

rin (f ) s (F, ))Y2

Spectral gap is not enough for exponential decay of correlations, but absolute
spectral gap g, := 1 —sup {|A| : A € Spec(P)\ {1}} (non-bipartiteness) is:
For any E.[f] = 0, we have E[ f(Xo)f(X¢)] < (1 — g.)" Ex[f?].




Theorem ( 1987). Let (X;)2, be a
stationary reversible chain with P and 7w and Ay < 1, and let 7(A4) < 8 < 1.
Then there exists y(\2, 3) > 0 with

P[Xi e A for all i:O,l,...,t} < O(1—7).
Proof. Consider the projection () : f +— f14. Then,

P(X;€Afori=0,1,...,2t+ 1] = (Q(PQ)*"'1,1)
= (P(QP)'Q1,(QP)'Q1), by self-adjointness of P and Q

A\

<(1=01)(1-62)" B,

and done for odd times. For even times, use monotonicity in . 0

< (1-461) ((QP)'Q1,(QP)'Q1), by m(supp(Qg)) < 3

< (1 —0q) ( (QP)"'Q1,P (QP)t_lQl) , by ) being a projection
< (1—-61)(1-32) ((QP)Q1,(QP)"'Q1), by m(supp(Qg))

< (1—67) (1= 6,) (Ql Ql) , by iterating previous step

< B



A general result

Stationary Markov process wy, operator T;. Let 7(C) = P[wo - C] = p,
and let f = 1¢. The decay of correlations of f can be quantified by

P[wo,wt C C} — Plwg € C]2 = (f,Tif) — (Ef)2 < d(t) Var[f]
or Var[T,f] = (T.f, Tof) — (Ef)? < d(2t) Var[f] .

These two are the same for reversible Markov processes.

Theorem (Hammond, Mossel & P 2011). Under the second condition,

p—ato(1) if d(t) _ t—a—l—o(l)’

Plw,eCVse |0t < o .
{w s €| ]} {exp(tHa*O(”) if d(t) = exp(—toFol).

Sharp in the regime of polynomial decay. Open in the exponential case.



Proof of Correlation decay — exit time tail

Let p < A < 1. Consider H, := {w €S :PlwselClwy=w]> )\}, the
set of very good hiding places.

Fix large k, let 7 =t/k. Check ws € C at s = j7, for j =0,... k.
P|w, €CVsc(0,1]| <P[¥j:iwy; € HENC] +P[Fj :wjr € H-NC]

k
<N+ AEEEOVOP € H, |

£=0
2 — A\

<N +=—ZP[H.].
T | H; ]|

On the other hand, if s is large, then the pairwise decorrelation suggests
that P[HS} has to be small. Indeed,



AP[H.] < B[f(w.) | H.]P[H.] = B[1,,7.]

=E[14,p] + E| 1, (T.f ~ Ef)

Rearranging and using Cauchy-Schwarz,
A=p)P[H,] < B| 1y, (Tf ~Bf) | < |12 |Tof ~ Ef|2,

hence (A —p)P[H,|"? <||T.f — Ef|s = Var[T,f]1/2

Thus

p — p?
PH, ] < = dCH/E).

and can optimize the sum of two terms over k.



Exceptional times in dynamical percolation

Lower bound on Hausdorff dimension needs decay of correlations:

1. B[ fon(wo) fon(w,smem) | —El fon]* =g t72/% ast — oo, uniformly
in mesh 7, for the indicator of left-right crossing in the quad O.

2. E[ fr(wo) fR(th)}/E[JER(W)]2 = ¢~@/B)&+ol) 35 ¢ — 0, for the
indicator of the one-arm event to radius R.

Now, Mass Dlstrlbutlon Principle for the measure Tip[a, b] = f 1{0<_>R} dt
on &g = {t : 0+ R} and some compactness: if
SUP/ / fR(ws)] dtds < oo,
]|t = sp

then dim(&) > v a.s. Hence dim(&) > 1 — ¢,



Two natural questions on the exceptional set

How do exceptional infinite clusters look like? The first one? A typical one?

There is an “infinite critical cluster” in the static world, Kesten's Incipient
Infinite Cluster measure (1986): for H C A and w® configuration in H,
the limit 1IC(w??) = limp_.o P[w!? |0 <> R] exists.

All other natural definitions give the same measure (Jarai 2003).
What is the hitting time tail P[ &N [0,t] =0]7?
To answer the first question, we needed to answer the second one:

Theorem (Hammond, Mossel & P. 2011). The hitting time tail is
exponentially small.

Theorem (Hammond, P. & Schramm 2012). The configuration at a
“typical” exceptional time has the law of [IC, but the First Exceptional
Time Infinite Cluster (FETIC) is thinner.



Proof of exponential tail for FET

Dynamical percolation in Bg is just continuous time random walk on the
hypercube {0, 1}P~, with rate 1 clocks on the edges. On {0,1}", discrete
time random walk has spectral gap 1/n, but in continuous time, the gap is
uniformly positive, so could try to use | '87].

Of course, P[0 «— R] is tiny, so we don't want to hit that set. But
P[&r N 1[0,1] # 0] is uniformly positive!

So, first idea: Markov chain {w[2t,2t + 1] : ¢ = 0,1,2} on a huge state
space. This again has a uniform spectral gap. However, it's not reversible!

So, another trick: L?(Q2,P) is the space of trajectories {w; : t € R},
on it the event A; := {&r N [t,t + 1] = 0} for any t € R, then the
projection () f := f1 4, is still self-adjoint and P|supp(Q:g)| < § < 1 for
any g. On the other hand, for g;(w) := E| f;(w[0,1]) | wg = w], we have
E| f1(w[0,1]) fa(w[t,t + ])} = E.[g1 T}92], hence the spectral gap of T;
can be used.



Local time measure for exceptional times

r b
M, (w,) = ;ft% = r}]’ ,.|a, b] ::/a M, (ws)ds, fila,b]:= lim 7,.|a,b].

r—00

This M ,(w) is a martingale w.r.t. the filtration .%,. of the percolation space
generated by the variables 1{0 < r}. Moreover, Efi.[a,b] = b — a, and, by
the correlation decay, sup, E|7,[a,b]* | < Cy. So lim, exists.

. P0=R|Ww] . Plw?|0- R] IC(w?)
Mpy(w) = lim Pl0—R] A% Pof] Plof]

MT’(WS) = MBr(ws)a Mr[av b] ::/ Mr(ws) ds, :u[avb] ;= lim ,LLT[CL, b]

T — 00

Now M,.(w) is a MG w.r.t. the full filtration .7, generated by w(B,), again
Eula,b] = b—a, and M,.(w) < Cy M ,.(w) because of quasi-multiplicativity:



P[0 — R|w"] P[0« R|w"r]
P[0~ R] ~ P[0~ r]|P[r— R]
- Plr < R|wPr|1{0 < r} _ 1{0 < r}
= P[0~ r]|P[r < R] P[0 < r]

Hence, both local time measures exist, and are clearly supported inside & .

/\ WIR(Q)S)

b

Vs

M, , for fixed r and R — 0.

time

_— P[0~ R|Z.] a.s.
E[MRIQQZT}: P[OHR] oo

Theorem ( 2012). @ = i a.s. At a p-typical
time, the configuration has the distribution of |IC.

Question: is it true that supp (u) = &7



FETIC versus IIC

Mutual singularity should hold, but let's just show that there is some w®"

such that limp_ o FETICr(w?r) # limp_ oo HCr(w?r).

The configuration at a typical switch time for {0 «— R} is size-biased by
the number of pivotals. Because of the many pivotals far from the origin,
inside B, this bias becomes negligible as R — o0, so we still have IIC.

The configuration at FET R is further size-biased by the length of the
non-connection interval ending at the switch time.

For any w = wPBr satisfying {0 «— R}, get
THIN,.(w) by thinning inside B,..

Want to show that the reconnection time
V = V, r started from THIN,.(wPR) is larger
in expectation than NV = N, g, the one started
from the normal wPr, uniformly as R — oo.
(While both are very small.)



Because of the thinning, there is some €(r) — 0 and g(r) — oo with
PV >gr)|V>er)] > a. (1)

Also, from stochastic domination, P[V > ¢(r)] > P[N > €(r)]. (2)
(1) would be hard, so our thinning is different, and (2) doesn’t quite hold.
Write X = X 1;xs¢(r)}- Note that size-biased N times Unif|0, 1] is FET.

A size-biasing lemma: P[N > e(r)} = EE}J[[N ]] > co and E[ ] < C7 imply

E[N|N>er)] < Cs. (3)
From these three,
E[N¢]
Cy

E[V] > cg(r)P[N>e€r)] = cg(r)

hence
EV > E[V¢] >, E[N°| > cEN.
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What about the tail of left-right connection?

As mentioned before, E| fo ,(wo) fQ’n(wtn3/4_|_O(1))] — E[me]2 =g t72/3

as t — o0, uniformly in mesh 7, hence natural to rescale time like this.

In fact, there exists a scaling limit of dynamical percolation [Garban, P. &
Schramm 2012], so one can either talk about the rescaled finite chains,
“uniformly in ", or about the scaling limit process.

Earlier theorem [HIVIP11] gives P[ fo(ws) =1 Vs € [0,¢]] < t72/3+0(1),

In fact, by cutting Q vertically into L slabs: < ¢=2L/3+°(1) for any L,
superpolynomial decay.

Exponential lower bound is easy from dynamical FKG inequality.
Conjecture. P[ fo(ws) =1 for all s € [0,t] | = exp(—¢t2/3To),

Supported by a very non-rigorous renormalization argument.
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