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A basic question

Pairwise independence is weaker than full independence. E.g., can have
X1, X2, . . . , Xn on (Ω,P), with values in some V , and a subset A ⊂ V ,
s.t.

• the events {Xi ∈ A} are pairwise independent, P[ Xi ∈ A ] = 1/2,

• but the joint probability is large: P[ X1, . . . , Xn ∈ A ] = 1/n.

Namely, let σi, i = 1, . . . , k be independent uniform ±1 bits, n = 2k, and
xS :=

∏
i∈S σi ∈ {−1, 1}, for all S ⊆ [k]. Then xS and xT are independent

for S 6= T , but P
[
xS = 1 ∀S ⊆ [k]

]
= P

[
σi = 1 ∀ i ∈ [k]

]
= 2−k = 1/n.

Can this happen for stationary reversible Markov processes? I.e.,

• a fast pairwise decorrelation P[ X0, Xt ∈ A ]−P[ X0 ∈ A ]
2
,

• but a fat exit tail P[ Xs ∈ A for all 0 6 s 6 t ] ?

Say, can the first one be exponential but the second one only polynomial?
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A famous example: random walk on expanders

Degree 6 d finite graph G(V, E) is (n, d, c)-expander if |∂S|/|S| > c for all

|S| 6 |V |
2 = n

2 . With random walks: P[ X1 6∈ S | X0 ∼ Unif(S) ] > c.

With functional analysis: Markov operator Pf(x) := E[ f(X1) | X0 = x ],
self-adjoint on L2(V, π), where π is the stationary measure. Then
(P1S,1S) 6 (1− c)(1S,1S). More generally, if π(suppf) 6 1− ǫ, then

(Pf, f) 6 (1− δ1)(f, f) and (Pf, Pf) 6 (1− δ2)(f, f) .

Equivalently, spectral gap g := 1− λ2 > 0, where

λ2 := sup
f⊥1

(Pf, f)

(f, f)
= sup

f⊥1

(Pf, Pf)1/2

(f, f)1/2
.

Spectral gap is not enough for exponential decay of correlations, but absolute
spectral gap g∗ := 1− sup

{
|λ| : λ ∈ Spec(P ) \ {1}

}
(non-bipartiteness) is:

For any Eπ[f ] = 0, we have E[ f(X0)f(Xt) ] 6 (1− g∗)
t
Eπ[f2].
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Theorem (Ajtai, Komlós & Szemerédi 1987). Let (Xi)
∞
i=0 be a

stationary reversible chain with P and π and λ2 < 1, and let π(A) 6 β < 1.
Then there exists γ(λ2, β) > 0 with

P
[
Xi ∈ A for all i = 0, 1, . . . , t

]
6 C(1− γ)t .

Proof. Consider the projection Q : f 7→ f1A. Then,

P
[
Xi ∈ A for i = 0, 1, . . . , 2t + 1

]
=

(
Q(PQ)2t+1

1,1
)

=
(
P (QP )tQ1, (QP )tQ1

)
, by self-adjointness of P and Q

6 (1− δ1)
(
(QP )tQ1, (QP )tQ1

)
, by π(supp(Qg)) 6 β

6 (1− δ1)
(
P (QP )t−1Q1, P (QP )t−1Q1

)
, by Q being a projection

6 (1− δ1) (1− δ2)
(
(QP )t−1Q1, (QP )t−1Q1

)
, by π(supp(Qg)) 6 β

6 (1− δ1) (1− δ2)
t
(
Q1, Q1

)
, by iterating previous step

6 (1− δ1) (1− δ2)
t β ,

and done for odd times. For even times, use monotonicity in t.
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A general result

Stationary Markov process ωt, operator Tt. Let π(C) = P
[
ω0 ∈ C

]
= p,

and let f = 1C. The decay of correlations of f can be quantified by

P
[
ω0, ωt ∈ C

]
−P[ω0 ∈ C ]

2
= (f, Ttf)− (Ef)2 6 d(t) Var[f ]

or Var[Ttf ] = (Ttf, Ttf)− (Ef)2 6 d(2t) Var[f ] .

These two are the same for reversible Markov processes.

Theorem (Hammond, Mossel & P 2011). Under the second condition,

P

[
ωs ∈ C ∀s ∈ [0, t]

]
6

{
t−α+o(1) if d(t) = t−α+o(1),

exp
(
− t

α
1+α+o(1)

)
if d(t) = exp(−tα+o(1)) .

Sharp in the regime of polynomial decay. Open in the exponential case.
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Proof of Correlation decay =⇒ exit time tail

Let p < λ < 1. Consider Hs :=
{

ω ∈ S : P[ ωs ∈ C | ω0 = ω ] > λ
}

, the

set of very good hiding places.

Fix large k, let τ = t/k. Check ωs ∈ C at s = jτ , for j = 0, . . . , k.

P

[
ωs ∈ C ∀s ∈ [0, t]

]
6 P

[
∀j : ωjτ ∈ Hc

τ ∩ C
]
+ P

[
∃j : ωjτ ∈ Hτ ∩ C

]

6 λk +
k∑

ℓ=0

λ(k−ℓ−1)∨0
P

[
ωℓτ ∈ Hτ

]

6 λk +
2− λ

1− λ
P[ Hτ ] .

On the other hand, if s is large, then the pairwise decorrelation suggests
that P

[
Hs

]
has to be small. Indeed,
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λP
[
Hs

]
6 E

[
f(ωs)

∣∣ Hs

]
P

[
Hs

]
= E

[
1Hs Tsf

]

= E
[
1Hsp

]
+ E

[
1Hs (Tsf −Ef)

]
.

Rearranging and using Cauchy-Schwarz,

(λ− p)P
[
Hs

]
6 E

[
1Hs (Tsf −Ef)

]
6 ‖1Hs‖2 ‖Tsf −Ef‖2 ,

hence (λ− p)P
[
Hs

]1/2
6 ‖Tsf −Ef‖2 = Var[Tsf ]1/2 .

Thus

P
[
Hτ

]
6

p− p2

(λ− p)2
d(2t/k) ,

and can optimize the sum of two terms over k.
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Exceptional times in dynamical percolation

Lower bound on Hausdorff dimension needs decay of correlations:

1. E
[
fQ,η(ω0) fQ,η(ωtη3/4+o(1))

]
−E[ fQ,η ]2 ≍Q t−2/3 as t→∞, uniformly

in mesh η, for the indicator of left-right crossing in the quad Q.

2. E
[
fR(ω0) fR(ωt)

]
/E

[
fR(ω)

]2
≍ t−(4/3) ξ1 +o(1), as t → 0, for the

indicator of the one-arm event to radius R.

Now, Mass Distribution Principle for the measure µR[a, b] =
∫ b

a
1{0

ωt←→R}
P[ 0←→R ] dt

on ER = {t : 0
ωt←→R} and some compactness: if

sup
R

∫ 1

0

∫ 1

0

E
[
fR(ωt) fR(ωs)

]

E
[
fR(ω)

]2
|t− s|γ

dt ds <∞ ,

then dim(E ) > γ a.s. Hence dim(E ) > 1− 4
3ξ1.
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Two natural questions on the exceptional set

How do exceptional infinite clusters look like? The first one? A typical one?

There is an “infinite critical cluster” in the static world, Kesten’s Incipient
Infinite Cluster measure (1986): for H ⊂ ∆ and ωH configuration in H,
the limit IIC(ωH) = limR→∞P[ωH | 0↔ R ] exists.

All other natural definitions give the same measure (Járai 2003).

What is the hitting time tail P
[
E ∩ [0, t] = ∅

]
?

To answer the first question, we needed to answer the second one:

Theorem (Hammond, Mossel & P. 2011). The hitting time tail is
exponentially small.

Theorem (Hammond, P. & Schramm 2012). The configuration at a
“typical” exceptional time has the law of IIC, but the First Exceptional
Time Infinite Cluster (FETIC) is thinner.
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Proof of exponential tail for FET

Dynamical percolation in BR is just continuous time random walk on the
hypercube {0, 1}BR, with rate 1 clocks on the edges. On {0, 1}n, discrete
time random walk has spectral gap 1/n, but in continuous time, the gap is
uniformly positive, so could try to use [AKSz‘87].

Of course, P[ 0←→ R ] is tiny, so we don’t want to hit that set. But
P[ ER ∩ [0, 1] 6= ∅ ] is uniformly positive!

So, first idea: Markov chain {ω[2t, 2t + 1] : t = 0, 1, 2} on a huge state
space. This again has a uniform spectral gap. However, it’s not reversible!

So, another trick: L2(Ω,P) is the space of trajectories {ωt : t ∈ R},
on it the event At := {ER ∩ [t, t + 1] = ∅} for any t ∈ R, then the
projection Qtf := f1At is still self-adjoint and P[ supp(Qtg) ] 6 β < 1 for
any g. On the other hand, for gi(ω) := E[ fi(ω[0, 1]) | ω0 = ω ], we have
E

[
f1(ω[0, 1]) f2(ω[t, t + 1])

]
= Eπ[g1 Ttg2], hence the spectral gap of Tt

can be used.
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Local time measure for exceptional times

Mr(ωs) :=
1{0↔ r}

P[ 0↔ r ]
, µr[a, b] :=

∫ b

a

Mr(ωs) ds, µ[a, b] := lim
r→∞

µr[a, b].

This Mr(ω) is a martingale w.r.t. the filtration F r of the percolation space
generated by the variables 1{0↔ r}. Moreover, Eµr[a, b] = b− a, and, by
the correlation decay, supr E

[
µr[a, b]2

]
< C1. So limr exists.

MH(ω) := lim
R→∞

P[ 0↔ R |ωH ]

P[ 0↔ R ]
= lim

R→∞

P[ ωH | 0↔ R ]

P[ ωH ]
=

IIC(ωH)

P[ ωH ]
.

Mr(ωs) := MBr(ωs), µr[a, b] :=

∫ b

a

Mr(ωs) ds, µ[a, b] := lim
r→∞

µr[a, b].

Now Mr(ω) is a MG w.r.t. the full filtration Fr generated by ω(Br), again
Eµr[a, b] = b−a, and Mr(ω) 6 C2 Mr(ω) because of quasi-multiplicativity:
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P[ 0↔ R |ωBr ]

P[ 0↔ R ]
≍

P[ 0↔ R |ωBr ]

P[ 0↔ r ]P[ r ↔ R ]

6
P[ r ↔ R |ωBr ]1{0↔ r}

P[ 0↔ r ]P[ r ↔ R ]
=

1{0↔ r}

P[ 0↔ r ]
.

Hence, both local time measures exist, and are clearly supported inside E .

r s

(ω  )sM

(ω  )sMr

R

M
time

(ω  )

E
[
MR

∣∣ Fr

]
=

P[ 0↔ R |Fr ]

P[ 0↔ R ]

a.s.
−−−→

L∞
Mr , for fixed r and R→∞ .

Theorem (Hammond, P & Schramm 2012). µ = µ a.s. At a µ-typical
time, the configuration has the distribution of IIC.

Question: is it true that supp (µ) = E ?
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FETIC versus IIC

Mutual singularity should hold, but let’s just show that there is some ωBr

such that limR→∞ FETICR(ωBr) 6= limR→∞ IICR(ωBr).

The configuration at a typical switch time for {0 ←→ R} is size-biased by
the number of pivotals. Because of the many pivotals far from the origin,
inside Br this bias becomes negligible as R→∞, so we still have IIC.

The configuration at FETR is further size-biased by the length of the
non-connection interval ending at the switch time.

For any ω = ωBR satisfying {0 ←→ R}, get
THINr(ω) by thinning inside Br.

Want to show that the reconnection time
V = Vr,R started from THINr(ω

BR) is larger
in expectation than N = Nr,R, the one started
from the normal ωBR, uniformly as R → ∞.
(While both are very small.)
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Because of the thinning, there is some ǫ(r)→ 0 and g(r)→∞ with

P
[
V > g(r)

∣∣ V > ǫ(r)
]

> c1 . (1)

Also, from stochastic domination, P[ V > ǫ(r) ] > P[ N > ǫ(r) ] . (2)

(1) would be hard, so our thinning is different, and (2) doesn’t quite hold.

Write Xǫ = X 1{X>ǫ(r)}. Note that size-biased N̂ times Unif[0, 1] is FET.

A size-biasing lemma: P
[
N̂ > ǫ(r)

]
= E[ Nǫ ]

E[ N ] > c2 and E
[
N̂

]
< C1 imply

E
[
N

∣∣ N > ǫ(r)
]

< C2 . (3)
From these three,

E[V ǫ ] > c1 g(r)P[ N > ǫ(r) ] > c1 g(r)
E[ N ǫ ]

C2
,

hence
EV > E[V ǫ ] ≫r E[N ǫ ] > c2 EN .
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What about the tail of left-right connection?

As mentioned before, E
[
fQ,η(ω0) fQ,η(ωtη3/4+o(1))

]
− E[ fQ,η ]2 ≍Q t−2/3

as t→∞, uniformly in mesh η, hence natural to rescale time like this.

In fact, there exists a scaling limit of dynamical percolation [Garban, P. &
Schramm 2012], so one can either talk about the rescaled finite chains,
“uniformly in η”, or about the scaling limit process.

Earlier theorem [HMP‘11] gives P
[
fQ(ωs) = 1 ∀ s ∈ [0, t]

]
6 t−2/3+o(1).

In fact, by cutting Q vertically into L slabs: 6 t−2L/3+o(1) for any L,
superpolynomial decay.

Exponential lower bound is easy from dynamical FKG inequality.

Conjecture. P
[
fQ(ωs) = 1 for all s ∈ [0, t]

]
= exp(−t2/3+o(1)).

Supported by a very non-rigorous renormalization argument.
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