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Bernoulli(p) bond and site percolation

Given an (infinite) graph G = (V,E) and p ∈ [0, 1]. Each site (or bond)
is chosen open with probability p, closed with 1− p, independently of each
other. Consider the open connected clusters. θ(p) := Pp[0←→∞].

Theorem (Harris 1960 and Kesten 1980).
pc(Z

2, bond) = pc(∆, site) = 1/2, and θ(1/2) = 0.
For p > 1/2, there is a.s. one infinite cluster.
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Crossing probabilities and criticality

p ≈ 0.8 p ≈ 0.55 p = 0.5 p ≈ 0.45

Theorem (Russo 1978 and Seymour-Welsh 1978). In critical percolation
on almost any planar lattice, for L, n > 0,

0 < aL < P[ left-right crossing in n× Ln ] < bL < 1.

Same holds for annulus-crossings.

By repeating this on all scales, and gluing the pieces by FKG:

(r/R)α < P[ ∂Br ←→ ∂BR ] < (r/R)β.
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Moreover, for the (polychromatic) ℓ-arm probabilities

αℓ(r, R) := P[ ∂Br
ℓ←→ ∂BR ],

again have quasi-multiplicativity: αℓ(r,R) ≍ αℓ(r, ρ)αℓ(ρ, R), and thus
cℓ (r/R)Cℓ < αℓ(r,R) < Cℓ (r/R)cℓ.

But these are non-monotone events, so cannot use just FKG to prove this
q-multiplicativity. Need Separation Lemma: conditioned on having ℓ arms
from ∂Br to ∂BR, the collection of interfaces both in BR \ BR/2 and
B2r \Br are well-separated. Then we can glue.
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Bernoulli(1/2) bond and site percolation
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Conformal invariance on ∆

Theorem (Smirnov 2001). For p = 1/2 site percolation on ∆η, and
Q ⊂ C a piecewise smooth quad (simply connected domain with four
boundary points {a, b, c, d}),

lim
η→0

P

[
ab←→ cd inside Q, in percolation on ∆η

]

exists, is strictly between 0 and 1, and conformally invariant.

c

d

a

b

Φ1−−→ Φ2−−→

Calls for a continuum scaling limit, encoding macroscopic connectivity,
cluster boundaries, etc. Aizenman ‘95, Schramm ‘00, Camia-Newman ‘06,
Sheffield ‘09, Schramm-Smirnov ‘10. In physics, correlation functions.
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SLE6 exponents

Given the conformal invariance, the
exploration path converges to the
Stochastic Loewner Evolution with
κ = 6 (Schramm 2000).

Using the SLE6 curve, several critical exponents can be computed (Lawler-
Schramm-Werner, Smirnov-Werner 2001, plus Kesten 1987), e.g.:

α4(r, R) := P




R

r


 = (r/R)5/4+o(1),

α1(r,R) = (r/R)5/48+o(1), and θ(pc + ǫ) := Ppc+ǫ[0←→∞] = ǫ5/36+o(1).

Here β = 5/36 = 5/48
2−5/4 = ξ1

2−ξ4
. (Will explain this numerology tomorrow.)
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Percolation and noise

Take an ω critical percolation configuration. Let ωǫ be a new configuration,
where each site (or bond) is resampled with probability ǫ, independently.
(The ǫ-noised version of ω.)

For how large an ǫ can we still predict from ω whether there is a left-right
crossing in ωǫ?
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Naive idea: how many pivotals are there?

A site (or bond) is pivotal in ω, if flipping it
changes the existence of a left-right crossing.
E|Pivn| ≍ n2 α4(n) (= n3/4+o(1)).

Furthermore, E[ |Pivn|2 ] 6 C (E|Pivn|)2.
So, P

[
|Pivn| > λE|Pivn|

]
< C/λ2, any λ.

And not only ∃ǫ P
[
|Pivn| > ǫE|Pivn|

]
> ǫ,

but P
[
0 < |Pivn| < ǫE|Pivn|

]
≍ ǫ11/9+o(1),

as ǫ→ 0 (exponent only for ∆).

Cannot have many pivotals =⇒ If ǫnE[ |Pivn| ] → 0, then we don’t hit
any pivotals (even in expectation) =⇒ Asymptotically full correlation.

Cannot have few pivotals (if there’s any) =⇒ If ǫnE[ |Pivn| ] → ∞, hit
many pivotals (at least in expectation). But 6=⇒ asymptotic independence!
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Noise sensitivity of percolation

All results use Fourier analysis of Boolean functions:

Theorem (Benjamini, Kalai & Schramm 1998). If ǫ > 0 is fixed, and
fn is the indicator function for a left-right percolation crossing in an n× n
square, then as n→∞

E
[
fn(ω) fn(ωǫ)

]
−E

[
fn(ω)

]2 → 0.

This holds for all ǫ = ǫn > c/ log n.

Theorem (Schramm & Steif 2005). Same if ǫn > n−a for some positive
a > 0. If triangular lattice, may take any a < 1/8.

Theorem (Garban, P & Schramm 2008). Same holds if and only
if ǫn E

[
|pivotals|

]
→ ∞. For triangular lattice, this threshold is ǫn =

n−3/4+o(1).
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Dynamical percolation

Each variable is resampled according to an independent Poisson(1) clock.
This is a Markov process {ω(t) : t ∈ [0,∞)}, in which ω(t + s) is an
ǫ-noised version of ω(t), with ǫ = 1− exp(−s).

An exceptional time is such a (random) t, at which an almost sure property
of the static process fails for ω(t).

Main example: (Non-)existence of an infinite cluster in percolation.

Toy example: Brownian motion on the circle does sometimes hit a given
point, as opposed to its static version: a uniform random point.

In this toy example, the set of exceptional times is a random Cantor set of
Lebesgue measure zero (because of Fubini) and Hausdorff-dimension 1/2.

If the static event is not extremely unlikely, and it is very sensitive to noise,
then we may have some chance to see an exceptional time.
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Dynamical percolation results

Theorem (Häggström, Peres & Steif 1997).

• No exceptional times when p 6= pc.

• No exceptional times when p = pc for bond percolation on Z
d, d > 19.

The latter is essentially due to Hara-Slade ‘90 on the off-critical exponent
β = 1:

Zd

p

pθ    (  )
θ(pc + ǫ) < Cǫ, hence, even switching
asymmetrically, E

[
number of ǫ-subintervals

of [0, 1] with 0 ←→ ∞
]

6 C. But this
exceptional set is closed without isolated
points, so this number should blow up, if
non-zero.
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Theorem (Schramm & Steif 2005).

• There are exceptional times (a.s.) for critical site percolation on the
triangular lattice.

• They have Hausdorff dimension in [1/6, 31/36].

Theorem (Garban, P & Schramm 2008).

• There are exceptional times also on Z
2.

• On the triangular grid they have Hausdorff dimension 31/36.

• On the triangular grid, there are exceptional times with an infinite white
and an infinite black cluster simultaneously. (1/9 6 dim6 2/3)
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What is the Fourier spectrum and why is it useful?

fn : {±1}Vn −→ {±1} indicator of left-right crossing, V = Vn vertices.

(Nǫf)(ω) := E[ f(ωǫ) | ω ] is the noise operator, acting on the space
L2(Ω, µ), where Ω = {±1}V , µ uniform measure, inner product E[ fg ].

Correlation: E[ f(ωǫ)f(ω) ] − E[ f(ω) ]E[ f(ωǫ) ] = E[ f(ω)Nǫf(ω) ] −
E[ f(ω) ]

2
. So, we would like to diagonalize the noise operator Nǫ.

Let χi be the function χi(ω) = ω(i), ω ∈ Ω.

For S ⊂ V , let χS :=
∏

i∈S
χi, the parity inside S. Then

Nǫχi = (1− ǫ) χi ; NǫχS = (1− ǫ)|S| χS.

Moreover, the family {χS, S ⊆ V } is an orthonormal basis of L2(Ω, µ).
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Any function f ∈ L2(Ω, µ) in this basis (Fourier-Walsh series):

f̂(S) := E[ fχS ] ; f =
∑

S⊆V

f̂(S)χS .

The correlation:

E[ fNǫf ]−E[ f ]
2

=
∑

S

∑

S′
f̂(S) f̂(S′)E

[
χS NǫχS′

]
−E[ fχ∅ ]

2

=
∑

∅6=S⊆V

f̂(S)2 (1− ǫ)|S| =

|Vn|∑

k=1

(1− ǫ)k
∑

|S|=k

f̂(S)2.

By Parseval,
∑

S f̂(S)2 = E[ f2 ] = 1. So can define probability measure

P
[
Sf = S

]
:= f̂(S)2/E[ f2 ], the spectral sample Sf ⊆ V .

If, for some functions fn and numbers kn, we have P
[
0 < |Sn| < tkn

]
→ 0

as t → 0, uniformly in n, then (1 − ǫ)k ∼ exp(−ǫk) implies that for
ǫn ≫ 1/kn we have asymptotic independence. Maybe with kn = E|Sn|?

15



Pivotals versus spectral sample

∇if(ω) := f(σi(ω))− f(ω) ∈ {−2, 0,+2} gradient.

∇if(ω) =
∑

S f̂(S)[χS(σi(ω))− χS(ω)], hence ∇̂if(S) = −2f̂(S)1i∈S.

P[ i ∈ Pivf ] = 1
4‖∇if‖22 = 1

4

∑
S ∇̂if(S)2 =

∑
S∋i f̂(S)2 = P[ i ∈ Sf ].

Thus, E|Sf | = E|Pivf |. So, the pivotal upper bound for noise sensitivity
is sharp if there is tightness around E|S |.

Will see P[ i, j ∈ Pivf ] = P[ i, j ∈ Sf ], hence E|Sf |2 = E|Pivf |2.

Not for more points and higher moments!
Both random subsets measure the “influence” or
“relevance” of bits, but in different ways.

For percolation, E[ |Pivn|2 ] 6 C (E|Pivn|)2,
hence ∃c > 0 s.t. P

[
|Sn| > cE|Sn|

]
> c.

That’s why one hopes for tightness around mean.
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Three very simple examples

Dictatorn(x1, . . . , xn) := x1 .
Here Cov

[
Dicn(x), Dicn(xǫ)

]
= 1− ǫ, so noise-stable.

And P
[
Sn = {x1}

]
= 1.

Majorityn(x1, . . . , xn) := sgn (x1 + · · ·+ xn) ≈ 1√
n
(x1 + · · ·+ xn) .

Here Cov
[
Majn(x), Majn(xǫ)

]
= 1−O(ǫ), so noise-stable.

And P
[
Sn = {xi}

]
≍ 1/n, most of the weight is on singletons.

On the other hand, E|Sn| = E|Pivn| ≍ 1√
n

n ≍ √n.

Parityn(x1, . . . , xn) := x1 · · ·xn

Here Cov
[
Parn(x), Parn(xǫ)

]
= (1− ǫ)n, the most sensitive to noise.

And P
[
Sn = {x1, . . . , xn}

]
= 1.
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Benjamini, Kalai & Schramm 1998

Theorem. A sequence fn of monotone Boolean functions is noise sensitive,
i.e., for any fixed ǫ > 0,

E
[
fn(ω) fn(ωǫ)

]
−E

[
fn(ω)

]2 → 0

as n→∞, iff it is asymptotically uncorrelated with all weighted majorities
Majw(x1, . . . , xn) = sign

∑n
i=1 xiwi . Also, not very slow decorrelation with

all subset-majorities is enough for sensitivity.

Theorem. The left-right percolation crossing in an n × n square is noise
sensitive, even with ǫ = ǫn > c/ log n.
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Schramm & Steif 2005

Theorem. If f : Ω −→ R can be computed with a randomized algorithm
with revealment δ (each bit is read only with probability 6 δ), then

∑

S:|S|=k

f̂(S)2 6 δ k ‖f‖22 .

For left-right crossing in n × n box on the hexagonal lattice, exploration
interface with random starting point gives revealment n−1/4+o(1) (it has
length n7/4+o(1), given by 2-arm exponent), while

∑
k6m k ≍ m2, thus:

Theorem. Left-right crossing on the triangular lattice is noise sensitive
under ǫn > n−a, with any a < 1/8. Even on square lattice, can take some
positive a > 0.

The revealment is at least n−1/2+o(1) for any algorithm computing the
crossing, hence this method can give only n−1/4+o(1)-sensitivity, far from
the conjectured ǫn = n−3/4+o(1).
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The GPS approach, 2008

Although goal is to understand size, Gil Kalai suggested trying to understand
entire distribution of Sf . A strange random set of bits.

Effective sampling? If f is an effectively computable Boolean function, then
there is an effective quantum algorithm for Sf [Bernstein-Vazirani 1993].

For SQ,n (left-right crossing in a conformal rectangle Q, mesh 1/n),
[Smirnov ‘01] + [Tsirelson ‘04] + [Schramm-Smirnov ‘11] implies that it
has a conformally invariant scaling limit.

How to prove tightness for the size of strange random fractal-like sets?
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Basic properties of the spectral sample

For A ⊆ V : E
[
χS

∣∣ FA

]
=

{
χS S ⊆ A ,

0 otherwise .

Therefore, E
[
f

∣∣ FA

]
=

∑
S⊆A f̂(S)χS , a nice projection.

Also, for T ⊆ A: E
[
f χT

∣∣ FAc

]
=

∑
S⊆Ac f̂(T ∪ S)χS , hence

E

[
E

[
f χT

∣∣ FAc

]2 ]
=

∑

S⊆Ac

f̂(T ∪ S)2 = P
[
S ∩A = T

]
.

This is the Random Restriction Lemma of Linial-Mansour-Nisan ‘93. E.g.,

P
[
i, j ∈ Sf

]
= E

[
E

[
fχ{i,j}

∣∣ F{i,j}c

]2 ]

=
1

4
P

[
ω
∣∣
{i,j}c is such that i, j each may be pivotal

]

= P
[
i, j ∈ Pivf

]
.
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How does
[
Sn ∩B

∣∣Sn ∩B 6= ∅
]

look like?

B as set has to be pivotal.

Strong Separation Lemma. For d(B, ∂Q) > diam(B), conditioned on the
4 interfaces to reach ∂B, with arbitrary starting points, with a uniformly
positive conditional probability the interfaces are well-separated around ∂B.
Very bad separation is very unlikely. [Simple proof by Damron-Sapozhnikov
‘09, following Kesten ‘87. Also explained in Appendix to GPS ‘11.]

Corollary 1. P

[
Sn ∩Br 6= ∅

]
≍ α4(r, n) .

Corollary 2. E

[
|Sn ∩Br|

∣∣∣ Sn ∩Br 6= ∅
]
≍ r2 α4(1, r) ≍ E|Sr| .
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Self-similarity for left-right crossing of n× n square

E|Sn| = E|Pivn| ≍ n2 α4(1, n)
∆≍ n3/4+o(1) ,

E|Sn(r)| := E

[
#

{
r-boxes Sn ∩Br 6= ∅

} ]
≍ n2

r2
α4(r, n) ≍ E|Sn/r| ,

E

[
|Sn ∩Br|

∣∣∣ Sn ∩Br 6= ∅
]
≍ r2 α4(1, r) ≍ E|Sr| .

Of course, r2 α4(1, r) · n2

r2 α4(r, n) ≍ n2 α4(1, n), by quasi-multiplicativity.

23



Self-similarity for left-right crossing of n× n square

E|Sn| = E|Pivn| ≍ n2 α4(1, n)
∆≍ n3/4+o(1) ,

E|Sn(r)| := E

[
#

{
r-boxes Sn ∩Br 6= ∅

} ]
≍ n2

r2
α4(r, n) ≍ E|Sn/r| ,

E

[
|Sn ∩Br|

∣∣∣ Sn ∩Br 6= ∅
]
≍ r2 α4(1, r) ≍ E|Sr| .

Of course, r2 α4(1, r) · n2
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Similar to the zero-set of simple random walk: E|Zn| ≍ nn−1/2 = n1/2,

E|Zn(r)| := E

[
#

{
r-intervals Zn ∩ Ir 6= ∅

} ]
≍ n

r
(n/r)−1/2 ≍ E|Zn/r| ,

E

[
|Zn ∩ Ir|

∣∣∣ Zn ∩ Ir 6= ∅
]
≍ r r−1/2 ≍ E|Zr| .

These results are related to the existence of scaling limits.
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What concentration can we expect?

Sn is very different from uniform set of similar density:
i.i.d. P[ x ∈ Un ] = n−5/4. Hence E|Un| = n3/4.

For large r (≫ n5/8), this Un intersects every r-box;
for small r, if it intersects one, there is just one point there.

Concentration of size: roughly within
√

E|Un| = n3/8.

A bit more similar: for i = 1, . . . , (n/r)2, i.i.d. P
[
Xi = r3/4

]
= (n/r)−5/4,

Xi = 0 otherwise. Then Sn,r :=
∑

i Xi. Hence E|Sn,r| = n3/4.

For r = nγ, size |Sn,r| is concentrated within n3/8(1+γ), still o(E|Sn,r|).

For self-similar sets, we expect only tightness around the mean:
P

[
0 < |Sn| < λE|Sn|

]
→ 0 as λ→ 0, uniformly in n.
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Proving tightness with a lot of independence

Assume we have the following ingredients, true for the zeroes:

(1) P

[
|Zn ∩ Ir| > cE|Zr|

∣∣∣ Zn ∩ Ir 6= ∅, F[n]\Ir

]
> c > 0.

(2) P
[
|Zn(r)| = k

]
6 g(k)P

[
|Zn(r)| = 1

]
, with sub-exponential g(k):

when the r-intervals intersected are scattered, have to pay k times to get
to and leave them, and this cost is not balanced by combinatorial entropy.
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P
[
0 < |Zn| < cE|Zr|

]
=

∑

k>1

P

[
0 < |Zn| < cE|Zr| , |Zn(r)| = k

]

by (1): 6
∑

k>1

(1− c)k
P

[
|Zn(r)| = k

]

by (2): 6 O(1)P
[
|Zn(r)| = 1

]
≍ (n/r)1−3/2,

which, using λ = c E|Zr|
E|Zn| ≍ (r/n)1/2, reads as P

[
0 < |Zn| < λE|Zn|

]
≍ λ.
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But we know much less independence for Sn

(1’) P

[
|Sn ∩Br/3| > cE|Sr|

∣∣∣ Sn ∩Br 6= ∅ = Sn ∩W
]

> c > 0,

for any W that is not too close to Br.

Why only this negative conditioning? Inclusion formula:

P
[
Sf ⊂ U

]
=

∑

S⊂U

f̂(S)2 = E

[ (∑

S⊂U

f̂(S)χS

)2 ]
= E

[
E

[
f

∣∣ FU

]2 ]
.

From this, for disjoint subsets A and B,

P
[
Sf ∩B 6= ∅ = Sf ∩ A

]
= P

[
Sf ⊆ Ac

]
−P

[
Sf ⊆ (A ∪B)c

]

= E

[
E[ f | FAc ]

2 −E[ f | F(A∪B)c ]
2
]

= E

[ (
E[ f | FAc ]−E[ f | F(A∪B)c ]

)2
]
.
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So, what are we going to do?

With quite a lot of work for both items,

(1’) P

[
|Sn ∩Br/3| > cE|Sr|

∣∣∣ Sn ∩Br 6= ∅ = Sn ∩W
]

> c > 0.

(2) P
[
|Sn(r)| = k

]
6 g(k)P

[
|Sn(r)| = 1

]
, with sub-exponential g(k).

We could repeat (1’) for many r-boxes only if “not enough points in one
box” meant “we found nothing in that box”.

So, take an independent random dilute sample: P[ x ∈ R ] = 1/E|Sr| i.i.d.
Then, |Sn ∩Br/3| is small =⇒ R∩Sn ∩Br/3 = ∅ is likely,
and |Sn ∩Br/3| is large =⇒ R∩Sn ∩Br/3 6= ∅ is likely.
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But P

[
Sn 6= ∅ = R∩Sn

∣∣∣ |Sn(r)| = k
]

is still problematic conditioning.

A strange large deviations lemma solves the issue.
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The strange large deviation lemma

Suppose Xi, Yi ∈ {0, 1}, i = 1, . . . , n, and that ∀J ⊂ [n] and ∀i ∈ [n] \ J

P
[
Yi = 1

∣∣ ∀j∈JYj = 0
]

> cP
[
Xi = 1

∣∣ ∀j∈JYj = 0
]
.

Then
P

[
∀iYi = 0

]
6 c−1

E

[
exp

(
−(c/e)

∑

i

Xi

) ]
.

We use this with Xj := 1{S∩Bj 6=∅} and Yj := 1{S∩Bj∩R6=∅}.

Proof: Instead of sequential scan, average everything together.
Choose J ⊂ [n] randomly, Bernoulli(1−p). Get E

[
Y pY

]
> cE

[
X pY +1

]
.

So, E[Z ] > 0, where Z := (Y − c p X) pY . Choose p := e−1. Maximize
Z over Y , and get the bound Z 6 exp(−1 − cX/e). Altogether,
c e−1

P
[
Y = 0 < X

]
6 E

[
1X>0 exp(−1− cX/e)

]
, and done.
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Final result for the spectral sample

If r ∈ [1, n], then
{
|Sn| < E|Sr|

}
is basically equivalent to being contained

inside some r × r sub-square:

P
[
0 < |Sn| < E|Sr|

]
≍ α4(r, n)2

(n

r

)2

.

In particular, on the triangular lattice ∆,

P
[
0 < |Sn| < λE|Sn|

]
≍ λ2/3.

The scaling limit of Sn is a conformally invariant Cantor-set with Hausdorff-
dimension 3/4.

GPS (2010-12) proves that the scaling limit of dynamical percolation exists
as a Markov process; for mesh 1/n the time-scale is tn−3/4+o(1). The above
implies that this process is ergodic, with correlations decaying as t−2/3.
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Question 1: Can one build similar proofs for other Boolean functions?

Question 2: Self-similarity of Pivn and Sn is a lot of restriction on these
random sets. And it’s not only because of conformal invariance: Gil Kalai
noticed that the spectral sample of recursive 3-wise majority is the leaves
of a GW-tree! This phenomenon might be somehow general:

Influence-Entropy conjecture [Friedgut-Kalai 1996]: For some universal
constant C, for any Boolean function f ,

SpecEnt(f) :=
∑

S⊂[n]

f̂(S)2 log
1

f̂(S)2
6 C ×

× Influence(f) := E|Sf | = E|Pivf | =
∑

S⊂[n]

f̂(S)2|S| .

I.e., there is no log factor in the entropy as it would be in uniform.

I think I can do it for Pivn, but not enough independence is known in Sn.
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