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The Ising and q-Potts models

Spin configuration σ : V −→ {1, . . . , q}. For q = 2, usually {−1, +1}.

Hamiltonian: H(σ) :=
∑

(x,y)∈E(G) 11{σ(x) 6=σ(y)}.

For β = 1/T > 0 inverse temperature, Gibbs measure on configurations
agreeing with some given boundary configuration ξ on ∂V ⊂ V :

P
ξ
β[σ] :=

exp(−βH(σ))

Zξ
β

, where Zξ
β :=

∑

σ:σ|∂V =ξ

exp(−βH(σ)) .

This Zβ is called the partition function.

Sometimes external field, favoring one kind of spin.

But it’s more interesting to vary β: decay of correlations? Effect of ξ?
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The critical temperature of Ising

β = 0.881374 β = 0.9

Theorem (Onsager 1944, Aizenman-Barsky-Fernández 1987, Beffara-
Duminil-Copin 2010). βc(Z

2) = ln(1 +
√

2) ≈ 0.881374.

Onsager also showed that E
ξ
βc

[σ(0)] = n−1/8+o(1) for ξ = +1∂Bn(0).
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The random cluster model FK(p, q)

Fortuin-Kasteleyn (1969): for ω ∈ {0, 1}E(G) and ξ ∈ {0, 1}∂E(G) for
∂E(G) ⊂ E(G),

P
ξ
FK(p,q)[ω] =

p|ω| (1− p)|E(G)\ω| q|clusters(ω)|

Zξ
FK(p,q)

.

q = 1: Bernoulli(p) bond percolation. q → 0, then p→ 0: UST

For q ∈ {2, 3, . . . }, Edwards-Sokal coupling: color each cluster
independently with one of q colors, then forget ω: get q-Potts, with
β = β(p) = − ln(1− p). Partition functions are equal: ZFK(p,q) = Zβ(p),q.

Therefore, Correlξβ,q[σ(x), σ(y)] = P
ξ
FK(p,q)[x←→ y]!

If q > 1, then increasing events are positively correlated: FKG-inequality.

For q < 1, there should be negative correlations, proved only for UST,
which is a determinantal process.
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Critical spin-Ising and FK-Ising on Z
2

Fermonic observables, conformal invariance, convergence to SLE3, SLE16/3:
Smirnov ‘06, ‘10, Chelkak-Smirnov ‘10, Kemppainen-Smirnov ‘11, etc.

FK-Ising RSW estimates for rectangles by Duminil-Copin-Hongler-Nolin ‘10.

Separation of interfaces, quasi-multiplicativity of arm probabilities, pivotal
exponents by Duminil-Copin & Garban ‘12?:

α
FK(2)
4 (n) = n−35/24+o(1) and αIsing

4 (n) = n−21/8+o(1).
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The FK(p, q) heat-bath dynamics

I.i.d. Poisson clocks on edges. Not quite local stationary dynamics:

P
G
p,q

[

e is on
∣

∣ ω on G \ {e}
]

=

{

p if {x ω←→ y} in G \ {e}
p

p+(1−p)q otherwise.

Open problem. Does this make sense on infinite Z
2? (Information

leaking from infinity?) Limits of dynamics on finite boxes do exist (using
monotonicity, Grimmett 1995), but they are non-Fellerian processes. Are
they given by these local transition rules?
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The near-critical ensemble in FK(p, q)

Want a monotone coupling as p varies, i.e., random Z ∈ [0, 1]E(G) labeling
such that Z6p ⊂ E(G) is FK(p, q), preferably Markov in p. Asymmetric
heat-bath is not good. Instead, Grimmett ‘95: define a Markov chain Zt on
labelings with the right stationary measure.

Set Te(Z) := inf
{

p : endpoints of e are connected in Z6p \ {e}
}

.

If e rings at time t, then, to get the right conditional distribution on e in
Z6p, need

P[Zt(e) 6 p] =

{

p if p > Te(Zt−)
p

p+(1−p)q if p < Te(Zt−).

We can get this simultaneously for all p by defining this update rule for
Zt(e). Makes sense if q > 1. Note Dirac point mass at Te(Zt−).

First difference from asymmetric heat-bath: from specific heat (variance of
energy) computation on Z

2, density of edges in Z6pc+ǫ \ Z6pc is not ≍ ǫ,
but ǫ log(1/ǫ) for q = 2, and polynomial blowup for q > 2.
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Onsager vs pivotals

From Onsager ‘44 magnetization results: P
Z

2

pc(2),2

[

0←→ R
]

= R−1/8+o(1)

and P
Z

2

pc(2)+ǫ,2

[

0←→∞
]

= ǫ1/8+o(1). This gives a correlation length

ǫ1+o(1). But DC & G computed 1/(2− ξ4) = 24/13, which is much larger!

Hence, correlation length is not given by amount of pivotals at criticality.
Stability in near-critical window fails, the changes are faster. How come?

Conclusion: Any monotone coupling is very different from asymmetric heat
bath. When raising p in the monotone coupling, open bonds do not arrive
in a uniform, Poissonian way, but with self-organization, to create more
pivotals and build long connections. Would contradict Markov property in
p, unless there are clouds of open bonds appearing together.

We don’t understand geometry of clouds, but at least can see directly that
they are happening, due to the Dirac mass in the update rule. Intuitively:
good to open many edges together, without lowering number of clusters.
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Computing the correlation length

Smirnov’s fermonic observable F = Fp for any medial edge e ∈ E⋄:

F (e) := E
G,a,b
p,2

(

e
i
2Wγ(e,eb)1e∈γ

)

,

where γ is the exploration interface from a to b, and Wγ is the winding.
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Relation to connectivity: if u ∈ G is a site next to the free arc, and e is the
appropriate medial edge next to it, then |F (e)| = P

G,a,b
p,2 (u↔ wired arc).

Massive harmonicity (Beffara-Duminil-Copin): if X has four neighbors in
G \ ∂G, then ∆pF (eX) = 0, where the operator ∆p is

∆pg(eX) :=
cos[2α]

4

(

∑

Y ∼X

g(eY )

)

− g(eX),

with some α = α(p), equalling 0 iff p = pc.

Complicated boundary conditions. But, at pc, H(e+)−H(e−) := |F (e)|2,
this H approximately solves a discrete Dirichlet boundary problem, hence
P

G,a,b
pc,2

(u ↔ wired arc) ≃ (harmonic measure of wired arc seen from u)1/2,
and can compute that crossing probabilities are between 0 and 1.

At p 6= pc, need harmonic measure w.r.t. massive random walk, killing
particle at each step with probability depending on cos(2α), roughly |p−pc|2.
|p − pc| < c

n: during the roughly n2 steps to boundary, particles dies with
probability bounded away from 1, so everything is roughly the same.
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