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The first thing: expanders

An (n, d, c)-expander is a finite graph G(V,E) on n vertices, degrees
bounded by d, and |∂S|/|S| > c > 0 for all |S| 6 |V |/2.

Not like a torus, not like a finite tree. Random d-regular graph is good.
Non-random examples used to be hard: Margulis ‘73 from Kazhdan groups.

Formulation using simple random walk: take Markov operator Pf(x) :=
E[ f(X1) | X0 = x ]. Self-adjoint w.r.t. (f, g)π :=

∑
x∈V f(x)g(x)π(x),

where π is the stationary measure. Then the condition:

(P1S,1S)π 6 (1− c)(1S,1S)π. More generally, for π(suppf) 6 1− ǫ,

(Pf, f) 6 (1− δ1)(f, f) and (Pf, Pf) 6 (1− δ2)(f, f) .

Equivalently, spectral gap g := 1− λ2 > 0, where

λ2 := sup
f⊥1

(Pf, f)

(f, f)
= sup

f⊥1

(Pf, Pf)1/2

(f, f)1/2
.
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Theorem (Ajtai, Komlós & Szemerédi 1987). Let (Xi)
∞
i=0 be a

stationary reversible chain with P and π and λ2 < 1, and let π(A) 6 β < 1.
Then there exists γ(λ2, β) > 0 with

P
[
Xi ∈ A for all i = 0, 1, . . . , t

]
6 C(1− γ)t .

My proof. Consider the projection Q : f 7→ f1A. Then,

P
[
Xi ∈ A for i = 0, 1, . . . , 2t + 1

]
=

(
Q(PQ)2t+1

1,1
)

=
(
P (QP )tQ1, (QP )tQ1

)
, by self-adjointness of P and Q

6 (1− δ1)
(
(QP )tQ1, (QP )tQ1

)
, by π(supp(Qg)) 6 β

6 (1− δ1)
(
P (QP )t−1Q1, P (QP )t−1Q1

)
, by Q being a projection

6 (1− δ1) (1− δ2)
(
(QP )t−1Q1, (QP )t−1Q1

)
, by π(supp(Qg)) 6 β

6 (1− δ1) (1− δ2)
t
(
Q1, Q1

)
, by iterating previous step

6 (1− δ1) (1− δ2)
t β ,

and done for odd times. For even times, use monotonicity in t.

2



The second thing: bus paradox

Poisson point process of buses, mean 1 exponential waiting times between.

X1 X2 X3 X4 X5
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The second thing: bus paradox

Poisson point process of buses, mean 1 exponential waiting times between.

X1 X2 X3 X4 X5

When we arrive at the bus stop, although middle of a waiting time, still
mean 1 exponential time to go.

X ′
4 X ′

3 X ′
2 X ′

1 X1 X2 X3

Our waiting period is doubled! The bus we are waiting for is always late.

Size biasing: longer waiting periods are more likely to contain a given point.
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The third thing: Holley’s proof of FKG inequality

Bond percolation on a graph G(V, E): each edge in E is chosen open with
probability p, closed with 1− p, independently. Gives random ω ⊂ E.

An event A is increasing if ω ∈ A, ω ⊂ ω′ =⇒ ω′ ∈ A.

For instance, G = Kn complete graph, ω is Erdős-Rényi G(n, p).
A = {ω has Hamilton cycle} and B = {ω is non-planar} are increasing.

Harris-FKG: increasing events positively correlated, P[A∩B] > P[A]P[B].
Same for decreasing; increasing and decreasing are negatively correlated.

Dynamical coupling proof. Let ω0 = ∅ and ω̂0 =
(
V
2

)
. Note that ω̂0 ∈ A.

Each edge has Poisson clock; when rings, open with p, close with 1− p, in
both configurations, except that in ω̂t keep it open if closing killed A.

Get ωt ⊂ ω̂t for all t > 0. If ωt ∈ B, then also ω̂t ∈ B.

But ωt
d
−→ P[ · ] and ω̂t

d
−→ P[ · | A], hence P[B] 6 P[B |A], and done.
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Bernoulli(p) bond and site percolation on planar lattices

Each site (or bond) is chosen open with probability p, closed with 1 − p,
independently. Consider open connected clusters. θ(p) := Pp[0←→∞].
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Bernoulli(p) bond and site percolation on planar lattices

Each site (or bond) is chosen open with probability p, closed with 1 − p,
independently. Consider open connected clusters. θ(p) := Pp[0←→∞].
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Bernoulli(p) bond and site percolation on planar lattices

Each site (or bond) is chosen open with probability p, closed with 1 − p,
independently. Consider open connected clusters. θ(p) := Pp[0←→∞].

Theorem (Harris 1960 and Kesten 1980).

pc(Z
2, bond) = pc(∆, site) = 1/2, and θ(1/2) = 0.

For p > 1/2, there is a.s. a unique infinite cluster.
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Dynamical percolation

Each variable is resampled according to an independent Poisson(1) clock,
keeping Ppc stationary. This is a Markov process {ω(t) : t ∈ (−∞,∞)}.

An exceptional time for percolation is a (random) t at which there is an
infinite cluster in ω(t); that is, where this almost sure static property fails.

Toy example: Brownian motion on circle
hitting 0 vs. a uniform random point.

Exceptional times form a random Cantor set,
of Lebesgue measure zero (because of Fubini)
and Hausdorff-dimension 1/2.

If the static event is (A) not extremely unlikely, and (B) has fast decorrelation
in time (very sensitive to noise), then we might see exceptional times.
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Dynamical percolation results

Theorem (Häggström, Peres & Steif 1997).

• No exceptional times when p 6= pc.

• No exceptional times at pc for bond percolation on Tk and Z
d, d > 19.

The latter is essentially due to Hara-Slade ‘90, proving that high d behaves
like a tree: the off-critical exponent in θ(pc + ǫ) = ǫβ+o(1) is β = 1:

Zd

p

pθ    (  )
The transition into the supercritical world
is too smooth, not enough driving force
into exceptional behavior.
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Theorem (Schramm & Steif 2005).

• There are exceptional times (a.s.) for critical site percolation on the
triangular lattice.

• They have Hausdorff dimension in [1/6, 31/36].

Just like before, upper bound 31/36 comes from β = 5/36 (conformal
invariance and SLE6 critical exponents, Smirnov, Schramm, Lawler, Werner
2000-01 + Kesten’s scaling relation 1987)

Theorem (Garban, P & Schramm 2008).

• There are exceptional times also on Z
2.

• On the triangular grid they have Hausdorff dimension 31/36.

• On the triangular grid, there are exceptional times with an infinite white
and an infinite black cluster simultaneously. (1/9 6 dim6 2/3)
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Lower bounds on the exceptional set

(A) Likeliness of static event: one-arm probability α1(R) := P[ 0←→ R ]
(= R−5/48+o(1) on ∆, by Lawler-Schramm-Werner 2001)

(B) Decorrelation of crossing events:

A site (or bond) is pivotal in ω, if flipping it changes
the existence of a left-right crossing. Equivalent
to an alternating four-arm event.

In a piecewise smooth conformal rectangle
(a quad) Q and lattice of mesh 1/n,

E|PivQ,n| ≍Q n2 α4(n)
(= n3/4+o(1) on ∆, by Smirnov-Werner 2001)

Dynamics certainly needs long enough time to flip pivotals in order to start
making changes. But it is not obvious that hitting many pivotals is enough
for full decorrelation. This needs discrete Fourier analysis, as started by
Benjamini-Kalai-Schramm 1998.
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Two natural questions on the exceptional set

How do exceptional infinite clusters look like? The first one? A typical one?

There is an “infinite critical cluster” in the static world, Kesten’s Incipient
Infinite Cluster measure (1986): for H ⊂ ∆ and ωH configuration in H,
the limit IIC(ωH) = limR→∞ P[ ωH | 0↔ R ] exists. Many other natural
definitions give the same measure (Járai 2003).

13



Two natural questions on the exceptional set

How do exceptional infinite clusters look like? The first one? A typical one?

There is an “infinite critical cluster” in the static world, Kesten’s Incipient
Infinite Cluster measure (1986): for H ⊂ ∆ and ωH configuration in H,
the limit IIC(ωH) = limR→∞ P[ ωH | 0↔ R ] exists. Manyl other natural
definitions give the same measure (Járai 2003).

What is the hitting time tail P
[
E ∩ [0, t] = ∅

]
?

To answer the first question, we needed to answer the second one:

Theorem (Hammond, Mossel & P. 2011). The hitting time tail is
exponentially small.

Theorem (Hammond, P & Schramm 2012). Configuration at a “typical”
exceptional time has the law of IIC, but the First Exceptional Time Infinite
Cluster (FETIC) is thinner.
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Proof of exponential tail for First Exc Time

Dynamical percolation in BR is just continuous time random walk on the
hypercube {0, 1}BR, with rate 1 clocks on the edges. On {0, 1}n, discrete
time random walk has spectral gap 1/n, but in continuous time, the gap is
uniformly positive, so could try to use the Ajtai-Komlós-Szemerédi lemma.

However, P[ 0←→ R ] is tiny, so we don’t want to hit that set. But
P[ ER ∩ [0, 1] 6= ∅ ] is uniformly positive!

So, first idea: Markov chain {ω[2t, 2t + 1] : t = 0, 1, 2} on a huge state
space. This again has a uniform spectral gap. However, it’s not reversible!

Instead, use dynamic → static projection, g(ω) := E[ f(ω[0, 1]) | ω0 = ω ]
inside a suitable proof of AKSz ‘87.

Exponential lower bound: P
[
E ∩ [0, t] = ∅

]
> P[ E ∩ [0, 1] = ∅ ]

t
, by

dynamical FKG inequality. Esoteric proof by dynamics on dynamical
percolation configurations, a second time coordinate... But proved earlier
by Liggett using infinitesimal generators.
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Local time measure for exceptional times

Want measure on exceptional set E . Simplest possible idea:

Mr(ωs) :=
1{0↔ r}

P[ 0↔ r ]
, µr[a, b] :=

∫ b

a

Mr(ωs) ds, µ[a, b] := lim
r→∞

µr[a, b].

Although Mr(ω) is a martingale, µr[a, b] is NOT, and we couldn’t prove
convergence. A bit more complicated idea:

MH(ω) := lim
R→∞

P[ 0↔ R |ωH ]

P[ 0↔ R ]
= lim

R→∞

P[ ωH | 0↔ R ]

P[ ωH ]
=

IIC(ωH)

P[ ωH ]
.

Mr(ωs) := MBr(ωs), µr[a, b] :=

∫ b

a

Mr(ωs) ds, µ[a, b] := lim
r→∞

µr[a, b].

Now µr[a, b] is a MG. The limit µ[a, b] exists a.s. and in L2, supported
inside E .

16



Theorem (Hammond, P & Schramm 2012). At a µ-typical time
(quenched or annealed), the configuration has the distribution of IIC.

r s

(ω  )sM

(ω  )sMr

R

M
time

(ω  )

The two sequences are closely related; if L2-limit µ exists, it is µ.

Question: Does the L2-limit µ exist?

Question: Is supp (µ) = E ? Is µ the 31/36-dimensional Minkowski content
of E ?
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FETIC versus IIC

Mutual singularity should hold, but we only show that there is some ωBr

such that limR→∞ FETICR(ωBr) 6= limR→∞ IICR(ωBr).

The configuration at a typical switch time for {0 ←→ R} is size-biased by
the number of pivotals. Because of the many pivotals far from the origin,
inside Br this bias becomes negligible as R→∞, so we still have IIC.

The configuration at FETR is further size-biased by the length of the
non-connection interval ending at the switch time.
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FETIC versus IIC

Mutual singularity should hold, but we only show that there is some ωBr

such that limR→∞ FETICR(ωBr) 6= limR→∞ IICR(ωBr).

The configuration at a typical switch time for {0 ←→ R} is size-biased by
the number of pivotals. Because of the many pivotals far from the origin,
inside Br this bias becomes negligible as R→∞, so we still have IIC.

The configuration at FETR is further size-biased by the length of the
non-connection interval ending at the switch time.

Reversing time, expected reconnection time from
THINR is much larger than from FULLR. Their
probabilities under IICR are the same, hence under

FETICR are different. But, these configurations are not visible in the limit.

So, need thinning only in bounded neighbourhood of origin. But then:
typical reconnection time is tiny for large R, so will difference in reconnection
time be detectable?
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FETIC versus IIC

Mutual singularity should hold, but we only show that there is some ωBr

such that limR→∞ FETICR(ωBr) 6= limR→∞ IICR(ωBr).

The configuration at a typical switch time for {0 ←→ R} is size-biased by
the number of pivotals. Because of the many pivotals far from the origin,
inside Br this bias becomes negligible as R→∞, so we still have IIC.

The configuration at FETR is further size-biased by the length of the
non-connection interval ending at the switch time.

For any ω = ωBR satisfying {0 ←→ R}, get
THINr(ω) by thinning inside Br.

Want to show that the reconnection time
T = Tr,R started from THINr(ω

BR) is larger
in expectation than N = Nr,R, the one started
from the normal ωBR, uniformly as R → ∞.
(While both are very small.)
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Because of the thinning, there is some ǫ(r)→ 0 and g(r)→∞ with

P
[
T > g(r)

∣∣ T > ǫ(r)
]

> c1 . (1)

Also, from stochastic domination, P[T > ǫ(r) ] > P[ N > ǫ(r) ] . (2)

(1) would be hard, so our thinning is different, hence (2) doesn’t quite hold.

Write Xǫ = X 1{X>ǫ(r)}. Note that size-biased N̂ times Unif[0, 1] is FET.

A size-biasing lemma: P
[
N̂ > ǫ(r)

]
= E[ Nǫ ]

E[ N ] > c2 and E
[
N̂

]
< C1 imply

E
[
N

∣∣ N > ǫ(r)
]

< C2 . (3)
From these three,

E[ T ǫ ] > c1 g(r)P[ N > ǫ(r) ] > c1 g(r)
E[N ǫ ]

C2
,

hence
ET > E[T ǫ ] ≫r E[ N ǫ ] > c2 EN .
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What about the tail of left-right connection?

GPS ’08: E
[
fQ,n(ω0) fQ,n(ωtn−3/4+o(1))

]
−E[ fQ,n ]2 ≍Q t−2/3 as t→∞,

uniformly in n, hence natural to rescale time like this.

In fact, there exists a scaling limit of dynamical percolation [Garban, P. &
Schramm 2013], so one can either talk about the rescaled finite chains,
“uniformly in n”, or about the scaling limit process.

Another theorem of HMP gives P
[
fQ(ωs) = 1 ∀ s ∈ [0, t]

]
6 t−2/3+o(1).

In fact, by cutting Q vertically into L slabs: 6 t−2L/3+o(1) for any L,
superpolynomial decay.

Exponential lower bound is easy from dynamical FKG inequality.

Conjecture. P
[
fQ(ωs) = 1 for all s ∈ [0, t]

]
= exp(−t2/3+o(1)).

Supported by a very non-rigorous renormalization argument. Especially the
upper bound is questionable.
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