Averages along the squares and related topics

Zoltán Buczolich
Department of Analysis, Eötvös Loránd
University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
email: buczo@cs.elte.hu
www.cs.elte.hu/~buczo

Abstract

After discussing some earlier results we turn to the answer to a question raised by J-P. Conze. We show that for any $x, \alpha \in \mathbb{T}, \alpha \notin \mathbb{Q}$ there exist $f \in L^{1}(\mathbb{T}), f \geq 0$ such that the averages (*) $\quad \frac{1}{N} \sum_{n=1}^{N} f\left(y+n x+n^{2} \alpha\right)$ diverge for a.e. y. By Birkhoff's Ergodic Theorem applied on \mathbb{T}^{2} for the transformation $(x, y) \mapsto(x+\alpha, y+2 x+\alpha)$ for almost every $x \in \mathbb{T}$ the averages (\star) converge for a.e. y. We show that given $\alpha \notin \mathbb{Q}$ one can find $f \in L^{1}(\mathbb{T})$ for which the set $D_{\alpha, f} \stackrel{\text { def }}{=}\{x \in \mathbb{T}:(\star)$ diverges for a.e. y as $N \rightarrow \infty\}$ is of Hausdorff dimension one. We also show that for a polynomial $p(n)$ of degree two with integer coefficients the sequence $p(n)$ is universally L^{1}-bad.

