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Non-degenerate Hilbert Cubes in Random Sets

par CSABA SANDOR

RESUME. Une légeére modification de la démonstration du lemme des cubes de Szemerédi
donne le résultat plus précis suivant: si une partie S de {1,...,n} vérifie |[S| > %, alors S
contient un cube de Hilbert non dégénéré de dimension |log, log, n—3|. Dans cet article
nous montrons que dans un ensemble aléatoire avec les probabilités Pr{s € S} = 1/2
indépendantes pour 1 < s < n, la plus grande dimension d’un cube de Hilbert non
dégénéré est proche de log, logs n+log, log, log, n presque siirement et nous déterminons
la fonction seuil pour avoir un k-cube non dégénéré.

ABSTRACT. A slight modification of the proof of Szemerédi’s cube lemma gives that if
a set S C [1,n] satisfies |S| > %, then S must contain a non-degenerate Hilbert cube of
dimension |log, logy n — 3]. In this paper we prove that in a random set S determined
by Pr{s € S} =  for 1 < s < n, the maximal dimension of non-degenerate Hilbert
cubes is a.e. nearly log, log, n + log, log, logy n and determine the threshold function
for a non-degenerate k-cube.

1. Introduction

Throughout this paper we use the following notations: let [1,n] denote the first n positive
integers. The coordinates of the vector A1) = (ag,ai,...,ax) are selected from the positive

integers such that Zf:o ai < n. The vectors B, Ai(k’n) are interpreted similarly. The set

Sy, is a subset of [1,n]. The notations f(n) = o(g(n)) means lim,, % = 0. An arithmetic

progression of length & is denoted by AP,. The rank of a matrix A over the field F is denoted
by rr(A). Let R denote the set of real numbers and Fy for the finite field of order 2.

Let n be a positive integer, 0 < p, < 1. The random set S(n,p,) is the random variable
taking its values in the set of subsets of [1,n] with the law determined by the independence
of the events {k € S(n,pn)}, 1 < k < n with the probability Pr{k € S(n,p,)} = p,. This
model is often used for proving the existence of certain sequences. Given any combinatorial
number theoretic property P, there is a probability that S(n,p,) satisfies P, which we write
Pr{S(n,pn) E P}. The function r(n) is called a threshold function for a combinatorial number
theoretic property P if

(i) When p,, = o(r(n)), lim,— e Pr{S(n,p,) = P} =0,
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(ii) When r(n) = o(p(n)), lim,—oc Pr{S(n,p,) = P} =1,

or visa versa. It is clear that threshold functions are not unique. However, threshold functions
are unique within factors m(n), 0 < liminf,_,. m(n) < limsup,,_,., m(n) < oo, that is if p, is
a threshold function for P then p/, is also a threshold function iff p, = O(p),) and p), = O(py,).
In this sense we can speak of the threshold function of a property.

We call H C [1,n] a Hilbert cube of dimension k or, simply, a k-cube if there is a vector
A1) guch that

k
H=Hjun = {ao + Zeiai 1€ € {0, 1}}

i=1
The positive integers a1, ...,ar are called the generating elements of the Hilbert cube. The
k-cube is non-degenerate if |[H| = 2* i.e. the vertices of the cube are distinct, otherwise it is
called degenerate. The maximal dimension of a non-degenerate Hilbert cube in S, is denoted
by Hpmaz(Sn), i.6. Hpaz(Sp) is the largest integer [ such that there exists a vector AN for
which the non-degenerate Hilbert cube Hy 0y C Sy,.

Hilbert originally proved that if the positive integers are colored with finitely many colors
then one color class contains a k-cube. The density version of theorem was proved by Szemerédi
and has since become known as ”Szemerédi’s cube lemma”. The best known result is due to
Gunderson and Rédl (see [3]):

Theorem 1.1 (Szemerédi). For every d > 3 there exists ng < (2% —2/1n2)? so that, for every
1
n > ng, if A C [1,n] satisfies |A| > on! e , then A contains a d-cube.

A direct consequence is the following:

Corollary 1.2. Every subset Sy, such that |S,| > § contains a [logy logy n]-cube.

A slight modification of the proof gives that the above set S,, must contain a non-degenerate
|log, logy n — 3]-cube.

Obviously, a sequence S has the Sidon property (that is the sums s; + 55, s; < 55, 84,55 € S
are distinct) iff S contains no 2-cube. Godbole, Janson, Locantore and Rapoport studied the
threshold function for the Sidon property and gave the exact probability distribution in 1999
(see [2]):

Theorem 1.3 (Godbole, Janson, Locantore and Rapoport). Let ¢ > 0 be arbitrary. Let P
denote the Sidon property. Then with p, = en =3/,

4

lim Pr{S(n,pp) = P} = e 12.

Clearly, a subset H C [1,n] is a degenerate 2-cube iff it is an AP;. Moreover, an easy
argument gives that the threshold function for the event ” APs-free” is p, = n~%/3. Hence

Corollary 1.4. Let ¢ > 0 be arbitrary. Then with p, = cn=3/4,

[N

c

lim Pr{S(n,p,) contains no non-degenerate 2-cube} = e 12.
n—oo
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In Theorem 1.5 we extend the previous Corollary.

k41
Theorem 1.5. For any real number ¢ > 0 and any integer k > 2, if p, = cn 25 then
CQk

lim Pr{S(n,p,) contains no non-degenerate k-cube} = e T

n—oo

In the following we shall find bounds on the maximal dimension of non-degenerate Hilbert
cubes in the random subset S(n, 3). Let

(1 — €)log, logy logy n
log 2log, logy n

Dy (€) = |logy logy n + log, logy logy o +

and
(1 + €) logy logy logs n
log 2log, logs 1 '

Er(€) = [logy logy n + logy log, logy o +

The next theorem implies that for almost all n, Hypee(S(n, 3)) concentrates on a single value
because for every € > 0, Dy (¢) = E,(€) except for a sequence of zero density.

Theorem 1.6. For every e >0

lim Pr{Dp(€) < Hyaw(S(n, 2)) < En(€)} = 1.

n—oo 2

2. Proofs

In order to prove the theorems we need some lemmas.

Lemma 2.1. For k, = o(log)ign) the number of non-degenerate ky-cubes in [1,n]| is (1 +
1

0(1))(%11)1@7!7 as n — oo.

Proof. All vectors Aknn) are in 1-1 correspondence with all vectors (vo,v1,...,vk,) with

1< <wv < <y, <nin RFnt1 according to the formulas (ag,a,...,ag,) —

(vo,v1,...,vk,) = (ap,a0+ai,...,ap+a1+---+ag,); and (vo,v1,...,vg,) — (ao,ai,...,ax,) =

(vo,v1 — Vo, ..., Vv, — VU, —1). Consequently,

(k T_Li_ 1) = [{AUFnm) H j (1,.n) is non-degenerate}| + [{A*™) : H , 1, .») is degenerate}|.
n

By the definition of a non-degenerate cube we have
[{A%=™) H , (1, is non-degenerate}| = k,!|{non-degenerate k,-cubes in [1,7]}|,

because permutations of a1, ..., ag give the same k,-cube. It remains to verify that the number
of vectors A*¥»7) which generate degenerate k,-cubes is 0((kn73rl)). Let A7) be a vector for
which H 4 (x,,») is a degenerate k,-cube. Then there exist integers 1 < uy <u2 < ... < us < ky,
1< <wve <...<v <k, such that

ap+Qy, +...+ay, =ap+ ay, +...4 Ay,
where we may assume that the indices are distinct, therefore s +t < k,. Then the equation

T1+xo+ .. FTs—Tsp1 — ... — Tsyt =10
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can be solved over the set {aj,az...,ay,}. The above equation has at most ns**=1 < nhn—1
solutions over [1,7]. Since we have at most k2 possibilities for (s,t) and at most n possibilities
for ag, therefore the number of vectors A" for which H Alknny 18 degenerate is at most

kpn® = o((;,"1))- O

In the remaining part of this section the Hilbert cubes are non-degenerate.

The proofs of Theorem 1.5 and 1.6 will be based on the following definition. For two in-
tersecting k-cubes H (k.n), Hgkm) let Hpywn) N Hgen = {c1,...,en} with ¢; < ... < ¢,
where

k k
Cq = ag + Zad’lal =bg + Zﬂd,lblv aq, By € {0,1} forl1<d<mand1l<I<k.
=1 =1

The rank of the intersection of two k-cubes H, ), Hgk.n is defined as follows: we say
that r(Hp k), Hgeny))=(s,t) if for the matrices A = (g i)mxk, B = (Bdi)mxk we have
rr(A) = s and rg(B) = t. The matrices A and B are called matrices of the common ver-
tices of H k,n), Hgk.n) -

Lemma 2.2. The condition 7(Hpx.n), Hgwn) = (s,t) implies that |Hpxn N Hgen| <
gmin{s,t}

Proof. We may assume that s < t. The inequality |Hx.» N Hgun| < 2° is obviously true
for s = k. Let us suppose that s < k and the number of common vertices is greater than 2°.
Then the corresponding (0 — 1)-matrices A and B have more than 2° different rows, therefore
rr,(A) > s, but we know from elementary linear algebra that for an arbitrary (0 — 1)-matrix
M we have rg, (M) > rg(M), which is a contradiction. O

Lemma 2.3. Let us suppose that the sequences A*%™ and B* ™) generate non-degenerate
k-cubes. Then

2(n —maxrys
(1) HA®D BED) : r(H o, Hgem ) = (5,1)}] < 228 (1) )phtimmesist)
for all0 < s,t <k;
(2) H(A(k’n)a B(k’n)) tr(Hp g Hgem) = (r,7), [Hagn NHpem | =27} < 2% (kil)nk_r

for all 0 <r < k;

(3) [{(A"™) BED) o (Hp o), Hgm) = (b, k), [ g o Hpeem | > 2671} < 226742k (ht1)-

Proof. (1): We may assume that s < t. In this case we have to prove that the number of
corresponding pairs (A% BF")) is at most (kil)ZQank“‘l_t. We have already seen in the
proof of Lemma 1 that the number of vectors A*™) is at most (kil) Fix a vector A% and
count the suitable vectors B*) . Then the matrix B has ¢ linearly independent rows, namely

TR((Ba;,1)exk) = t, for some 1 < dy < --- < dy < m, where

k k
ap + Zadi,lal =bo + Zﬁdi,lblv ad, 1, B4, € {0,1}  for 1 <i <t
=1 =1
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The number of possible bgs is at most n. For fixed by, g, 1, 84,1 let us study the system of
equations

k k
ao+ Y aaa =bo+ Y Bax,  @qBan €{0,1} for1<i<t.
=1 =1

The assumption 7g(3q,1)ixx = t implies that the number of solutions over [1,n| is at most
n*~t. Finally, we have at most 2¥ possibilities on the left-hand side for o, s and, similarly, we
have at most 2 possibilities on the right-hand side for Bd; 18 , therefore the number of possible
systems of equations is at most 92k?

(2): The number of vectors A% ig (kil) as in Part 1. Fix a vector A®™) and count the

suitable vectors B(:™). Tt follows from the assumptions r(H g x.n, Hgon) = (7,7), [Hago N
Hgao| = 27 that the vectors (ag1,...,aqr), d = 1,...,2" and the vectors (8Bq1,--.,0B4k),
d=1,...,2", respectively form r-dimensional subspaces of F5. Considering the zero vectors of
these subspaces we get ag = bg. The integers by, ..., by are solutions of the system of equations

k k
ap + Zad,lal =by + Zﬁd,ll'l ad,laﬂd,l € {0, 1} for 1 <d<27.
=1 =1

Similarly to the previous part this system of equation has at most n*~" solutions over [1,n] and
the number of choices for the r linearly independent rows is at most 92k*

(3): Fix a vector A% Let us suppose that for a vector B(*) we have r(Hawm, Hgemn)) =
(k,k) and |H t,0y N Hgeny| > 2871, Let the common vertices be

k k
ap + Zad,zaz =bo + Zﬁd,lbz, aqr, Bag € {0,1}  for1 <d<m,
=1 =1

where we may assume that the rows di, ..., d; are linearly independent, i.e. the matrix By =
(Bd; 1) kxk is regular. Write the rows d, ..., dj in matrix form as
(1) a = byl + Byb,

with vectors a = (ag + Zle ad; 101)kx1; L = (1)gx1 and b = (b;)gx1. It follows from (1) that

b= B, '(a—bl)= B la—byB; 'L

Let B,;ll = (dj)kx1 and B,;lg = (¢i)kx1- Obviously, the number of subsets {i1,...4} C
{1,...,k} for which d;, +...+d;, # 11is at least 2k=1 therefore there exist 1 < uj < ... < ugs < k
and 1 <v; < ... < < ksuchthat ap+ay, +...+ay, = bo+by, +...+by,, and dy, +. . .+d,, # 1.
Hence

ap+ Gy, + ...+ ay, =bg+ by, +...+by, =bot+cy + ...+, —bo(dy, + ...+ dy,)

b ap+ay, +...+ 0y, —Cy; — ... — Cy,
0 =
1—(dy, +...+dy,)
To conclude the proof we note that the number of sets {uj,...,us} and {vy,..., v} is at most

22k and there are at most 2% choices for By and a, respectively. Finally, for given By, a, by,

1<ui<...<us<kand1l<wv <...<wv <k, the vector B(*:n) is determined uniquely. O

In order to prove the theorems we need two lemmas from probability theory (see e.g. [1] p.
41, 95-98.). Let X; be the indicator function of the event A; and S,, = X1+...4+Xy. For indices
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i,j write ¢ ~ j if i # j and the events A;, A; are depandant. We set I' = )
(the sum over ordered pairs).

PI‘{AZ N AJ}

i~J

Lemma 2.4. If E(S,) — 0o and I = o(E(Sy)?), then S, > 0 a.e.

In many instances, we would like to bound the probability that none of the bad events B;,
i € I, occur. If the events are mutually independent, then Pr{N;e;B;} = [[,c; Pr{B;}. When
the B; are "mostly” independent, the Janson’s inequality allows us, sometimes, to say that
these two quantities are "nearly” equal. Let 2 be a finite set and R be a random subset of Q2
given by Pr{r € R} = p,, these events being mutually independent over r € Q. Let E;, i € I be
subsets of 2, where I a finite index set. Let B; be the event F; C R. Let X; be the indicator
random variable for B; and X = Zz’e ; X; be the number of E;s contained in R. The event
NierB; and X = 0 are then identical. For 4,5 € I, we write i ~ j if i # j and E; N E; # (. We
define A =37, . Pr{B; N B;}, here the sum is over ordered pairs. We set M =[], Pr{B;}.
Lemma 2.5 (Janson’s inequality). Let ¢ €]0,1], let B;,i € I, A, M be as above and assume
that Pr{B;) < ¢ for all i. Then

1

M < PT‘{ﬂiGIE) < Met-=

vl

Proof of Theorem 1.5. Let H . ’HA('“’") be the distinct non-degenerate k-cubes in [1,n].
N

A(lk,n), ..
k

Am C S(n,cn_%). Then Pr{B;} = ¢Z'n~¢++1) = o(1) and N =

(1+ 0(1))(#&0%. It is enough to prove

A=) "Pr{BinB;} =o(1)

i~J

Let B; be the event H

since then Janson’s inequality implies

Pr{S(n,cn g does not contain any k-cubes} = Pr{n¥B;} =
=1
=L = CQk
(I+0(1))(1 = (en— i )Qk)(lﬂ’(l))(k%)% = (1 + o(1))e” D,

It remains to verify that ). . Pr{B; N B;} = o(1). We split this sum according to the ranks in

the following way

k
> Pr{B;NB;} =)

i~vg

] =

> Pr{B; N B;} =

i~ s=0 t=0 i~]
T(HA(k,n) 7HA§1€,77,) ):(57t)
i J
k s—1
S Y nmonye
s=1t=0 i~j

T(HAl(k,n) :HAék,n) ):(s»t)

k—1 k—1
> > Pr{B;NB;} + ) > Pr{B; N B;}+
r=0 i~vj r=1 i~j

T(HAgk,n) H | (kny)=(17) T(HAi(k,n) H | (kn))= (1)

i i
|HAi(k,n)mHA;k,n)|:2T |HAi(k,n)ﬂHAJgk,n)|<2T
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> Pr{B; N B;} + > Pr{B; N B;}.

i~vj i~vj
T(HAi(k:,n) 7HA§k,n) ):(kvk) T(HAi(k,n) 7HA§k,n) ):(kvk)
|HAi(k',n) OHAjgk,n) |<2k-t |HAi(k',n) ﬂHAJgk,m |>2k-1

The first sum can be estimated by Lemmas 2.2 and 2.3 (3)

kE s—1 ko os—1 n . 2.2k 2t
2 —
> > Pr{BinB} <) > 2% (k n 1>”k+1 ) (m) =
s=1t=0 inj s=1 t=0 n 2k

T(HAgk,n) 7HA§k,n) ):(57t)

s—1k+1
2 ktl_q

k
n 2k k1 k1 _
nWy " = nWnF T e ) = o(1),
s=1 n
since the sequence as = 25*1%

— s is decreasing for 1 < s < k—logy(k+ 1)+ 1 and increasing
for k —logy(k+1)+1<s<k.

To estimate the second sum we apply Lemma 2.3 (2)
k

—_

— k—1
=0 ad} r=0 n
T(HAEk,’n) 7HA§k,n) ):(7',’!")

<

ok

J
—OT
IHAi(k,n) ﬂHAJgk,n) |=2

k—1 nQT% k41 k1
e N E o = M (e ) = o(1),

r=

The third sum can be bounded using Lemma 2.3 (1)

k—1 k—1
2 n _ & ok _or
)R DR TS B P e
r=1 i~j r=1 n 2
T(HAi(k‘,n) ,HAJgk,n)):(TW)
‘HAi(k,n)mHAgk,n)‘<2T
k—1 orktl
_ k41 n 2 _ k41 k+1 k+1
n° =5k = n°M=5x (n* 28 Ptz D) = o(1).
n?”
r=1

Similarly, for the fourth sum we apply Lemma 2.3 (1)

o C 159k
E Pr{B;NB;} <n (1)nk+2(k721)1 22 = o(1).
inj n 2

T(HAfk,n) 7HA§k,n) ):(k»k)

k—1
‘HAl(k,n) mHA‘gk,n) ‘SZ
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To estimate the fifth sum we note that |HA(k,n) U HA(k,m\ > 2k 4 1. Tt follows from Lemma
i j
3.3 that

K242k k+1,_ € \2F41
> Pr{B; N B;} < 22K Fphtl )2+l = (1),
i~ n 2k
T(HAEk,n)vHAjk,n)):(kvk)
k—1
‘HAi(k,n)mHA;k,n)‘>2
which completes the proof. O

Proof of Theorem 1.6. Let € > 0 and for simplicity let D,, = Dy(¢) and E,, = E,(¢). In the
proof we use the estimations

(1—¢)logg logg logg n

logg logg n+logg logg logg n+
logZlogzlogyn — nlog2 logy n+(1—e+o0(1)) log, logs logy n

(2) 227" <22

and

(14€) logg logg logg n

logg logo n+logg logy logo n+
logZlogzlogy . _ n10g2 logy n+(1+€+0(1)) log, logs logy n

(3) 22" > 92

In order to verify Theorem 2 we have to show that

1

(4) lim Pr{S(n, =) contains a D,-cube} =1

n—oo 2
and

1
(5) lim Pr{S(n, 5) contains an (E, + 1)-cube} = 0.
n—oo
To prove the limit in (4) let H, 0um; s Hyonm be the different non-degenerate D,,-cubes
1 N

in [1,n], B; be the event H, .n C S(n, %), X; be the indicator random variable for B; and
X = X1+ ...+ Xy be the number of H (p,.n) C S(n, %) The linearity of expectation gives

i

by Lemma 1 and inequality (2)

E(X)=NE(X:) = (1+0(1)) (Dn”+ 1) Dln!22D" >
plogz logy n(1+0(1) 1og; logy logy n,, — logy logy n—(1—e+o(1)) logz loga loga ., (e-+0(1)) logy logy logy
therefore F(X) — oo, as n — co. By Lemma 2.4 it remains to prove that
Y Pr{B;N B;} = o(E(X)?)
inj
where i ~ j means that the events B;, B; are not independent i.e. the cubes HA§D7L,7L> , HA@",n)
i j

have common vertices. We split this sum according to the ranks

> Pr{B;N B;} :ii > Pr{B;N B;) <

inj 5=0 t=0 i~
T(HAi(Dn ,n) 7HA§Dn ,n) ):(S,t)

D, s
(6) > Pr{B;NB;)+2) > > Pr{B; N B;}.

i~vj s=1 t=0 i~vj
T(HAi(Dn,n) 7HA§Dn,n) ):(070) T(HAi(Dn,n) ’HA§Dn’n) )Z(S,t)
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The condition T(HAED”’H)’HAJgD"‘")) = (O’ 0) 1mphes that |HAi(D”’") U HAJD" n)| — 9Dn+1 _ 1,
thus by Lemma 3.2

) . 2D2 n Dpo—2PN+141

g 4 Pr{BlﬂBJ}§2 (Dn+1>n 2 -
i~j

T(HAi(Dn,n) 7HA(Dn,n) ):(070)

0 (((Dn”+ 1) Dln!2—2D”>2> = o(E(X)?).

In the light of Lemmas 2.2 and 2.3 (1) the second term in (6) can be estimated as

D, s
2D} nPrtl- —2.2Dn 4ot
> > Pr{BmB}<zz(D ") > _
s=1 t=0 1~ s=1 t=0
T(HAgDnyn)’HAgDn,n)):(Svt)

n 1 _2Dn 2 % 5 22t n 1 _2Dn 1)2228
Dy +1 D' - \\D, +1 D'

s=1 t=0
Finally, the function f(z) = 77 " decreases on (—o00,logy logn — 2logy log 2] and increases on
[logy logn — 2logy log 2, 00), therefore by (2)
D, s Dnp,
> 2 A 2 e
—~ n’ n  nbn ’

which proves the limit in (4).

In order to prove the limit in (5) let Hzu+1m)s ., Hma+1n) be the distinct (B, +1)-cubes
1 K
in [1,n] and let F; be the event HCi(En+1,n) C S(n,3). By (3) we have
K
Pr{S, contains an (E, 4 1)-cube} = Pr{UX F;} < ZPr{E} <
i=1
n oBn+1 nlogs logy n+(140(1)) log, log, logy n
<En + 2) = log; log, nt+ (1+eto(1)) log, logy logy o(1),

which completes the proof. O

3. Concluding remarks

The aim of this paper is to study non-degenerate Hilbert cubes in a random sequence. A
natural problem would be to give analogous theorems for Hilbert cubes, where degenerate cubes
are allowed. In this situation the dominant terms may come from arithmetic progressions. An
APy11 forms a k-cube. One can prove by the Janson inequality (see Lemma 2.5) that for a
fixed k > 2

: _2 : _tt
lim Pr{S(n,cn” ¥+1) contains no AP} =€ 2 .
n—oo

An easy argument shows (using Janson’s inequality again) that for all ¢ > 0, with p,, = en=%/°

ot

c

lim Pr{S(n,p,) contains no 4-cubes} = e~ 5.

n—oo
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Conjecture 3.1. For k >4

. _ 2 , _ct
lim Pr{S(n,cn” #1) contains no k-cubes} = e~ 2% .
n—oo

A simple calculation implies that in the random subset S(n,1/2) the length of the longest
arithmetic progression is a.e. nearly 2log, n, therefore it contains a Hilbert cube of dimension
(2 —¢)logy n.

Conjecture 3.2. For every e > 0
lim Pr{the mazimal dimension of Hilbert cubes in S(n, %) is < (2+ ¢)logan} = 1.

n—oo

N. Hegyvéri (see [5]) studied the special case where the generating elements of Hilbert cubes
are distinct. He proved that in this situation the maximal dimension of Hilbert cubes is a.e.
between c; logn and co lognloglogn. In this problem the lower bound seems to be the correct
magnitude.
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