A note on a conjecture of Erdős-Turán

Csaba Sándor¹

Department of Stochastics, Budapest University of Technology and Economics, Hungary csandor@math.bme.hu

Abstract

Let $\{a_n\}_{n=1}^{\infty}$ be a strictly increasing sequence of nonnegative integers. In this note we prove that for $s(x) = \sum_{n=1}^{\infty} x^{a_n}$ and $s^2(x) = \sum_{n=0}^{\infty} b_n x^n$ the condition $\limsup_{n\to\infty} b_n = A$ for some positive integer A implies that $\liminf_{n\to\infty} b_n \leq A - 2\sqrt{A} + 1$.

1. Introduction

Suppose that $\{a_n\}_{n=1}^{\infty}$ is a strictly increasing sequence of nonnegative integers. Let

$$s(x) = \sum_{n=1}^{\infty} x^{a_n}$$

and

$$s(x)^2 = \sum_{n=0}^{\infty} b_n x^n.$$

The sequence $\{a_n\}_{n=1}^{\infty}$ is called additive basis of order two if $b_n > 0$ for every nonnegative integer n and asymptotic additive basis of order two if $b_n > 0$ for every sufficiently large n. The Erdős-Turán conjecture says that for any additive basis of order two $\{a_n\}_{n=1}^{\infty}$ the sequence $\{b_n\}_{n=0}^{\infty}$ is unbounded. This conjecture can be rephrased in number theoretic language: Let $\{a_n\}_{n=1}^{\infty}$ be a strictly increasing sequence of integers. Denote by R(n) the number of solution $n = a_i + a_j$ i.e.

$$R(n) = \#\{(i,j) : n = a_i + a_j\}.$$

Using this representation function the original Erdős-Turán conjecture can be stated as follows,

Conjecture 1 (Erdős-Turán conjecture for bases of order two) Suppose that $\{a_n\}_{n=1}^{\infty}$ is a strictly increasing sequence of nonnegative integers such that R(n) > 0 for every nonnegative integer n. Then the sequence $\{R(n)\}_{n=0}^{\infty}$ is unbounded.

¹Supported by Hungarian National Foundation for Scientific Research, Grant No T 49693 and 61908 AMS Mathematics Subject Classification: 11B83

Key words and phrases: Representation function, Erdős-Turán conjecture.

Grekos, Haddad, Helou and Pihko [3] proved that $\limsup_{n\to\infty} R(n) \geq 6$ for every basis $\{a_n\}$. Later Borwein, Choi and Chu [1] improved it to $\limsup_{n\to\infty} R(n) \geq 8$. The above conjecture is equivalent to

Conjecture 2 (Erdős-Turán conjecture for asymptotic bases of order two) Suppose that $\{a_n\}_{n=1}^{\infty}$ is a strictly increasing sequence of nonnegative integers such that R(n) > 0 for every $n \ge n_0$. Then the sequence $\{R(n)\}_{n=0}^{\infty}$ is unbounded.

The second version can be formulated as

Conjecture 3 (Erdős-Turán conjecture for bounded representation function) Suppose that $\{a_n\}_{n=1}^{\infty}$ is a strictly increasing sequence of nonnegative integers and

$$\limsup_{n \to \infty} R(n) = A$$

for some positive integer A. Then we have

$$\liminf_{n \to \infty} R(n) = 0.$$

In this note we give a non-trivial upper bound for $\liminf_{n\to\infty} R(n)$ if the sequence $\{R(n)\}_{n=0}^{\infty}$ is bounded.

Theorem 1 Suppose that $\{a_n\}_{n=1}^{\infty}$ is a strictly increasing sequence of nonnegative integers and

$$\lim_{n \to \infty} \sup R(n) = A$$

for some positive integer A. Then we have

$$\liminf_{n \to \infty} R(n) \le A - 2\sqrt{A} + 1.$$

2. Proof

If $a_n > n^2$ for infinitely many integer n, then R(n) = 0 for infinitely many integer n. Hence $\liminf_{n\to\infty} R(n) = 0 \le A - 2\sqrt{A} + 1$, which proves the theorem. Therefore we may assume that

$$a_n \le n^2 \qquad \text{for } n \ge n_1.$$
 (1)

Let us suppose that there exists a strictly increasing sequence of nonnegative integers $\{a_n\}_{n=1}^{\infty}$ such that $\limsup_{n\to\infty} R(n) = A$ but $\liminf R(n) > A - 2\sqrt{A} + 1$. Then there exist an integer n_2 and $0 < \epsilon < \sqrt{A}$ for which $A - 2\sqrt{A} + 1 + \epsilon \le R(n) \le A$ for $n \ge n_2$. Set $C = A - \sqrt{A} + \epsilon$. By elementary calculus we have $f(x) = \frac{(x-C)^2}{x} < 1$ for every $x \in [A - 2\sqrt{A} + 1 + \epsilon, A]$, therefore there exists a $\delta > 0$ such that

$$(R(n) - C)^2 \le (1 - \delta)^2 R(n)$$
 for $n \ge n_2$. (2)

Let

$$F(z) = \sum_{n=1}^{\infty} z^{a_n}.$$

Then

$$F^2(z) = \sum_{n=0}^{\infty} R(n)z^n.$$

Let

$$z = (1 - \frac{1}{N})e^{2\pi i\alpha} = re^{2\pi i\alpha},$$

where N is a large integer. We give an upper an lower bound for the integral

$$\int_0^1 |F^2(z) - \sum_{n=0}^\infty Cz^n| d\alpha \tag{3}$$

to reach a contradiction. We get an upper bound for (3) by Cauchy's inequality, Parseval's formula and (2)

$$\int_0^1 |F^2(z) - \sum_{n=0}^\infty Cz^n| d\alpha = \int_0^1 |\sum_{n=0}^\infty (R(n) - C)z^n| d\alpha \le \left(\int_0^1 |\sum_{n=0}^\infty (R(n) - C)z^n|^2\right)^{1/2} = C(1) + C(1) +$$

$$\left(\sum_{n=0}^{\infty} (R(n) - C)^2 r^{2n}\right)^{1/2} \le \left(c_1 + (1 - \delta)^2 \left(\sum_{n=0}^{\infty} R(n) r^{2n}\right)\right)^{1/2} \le c_2 + (1 - \delta) F(r^2) \quad (4)$$

Now the lower bound for (3). Obviously,

$$\int_{0}^{1} |F^{2}(z) - \sum_{n=0}^{\infty} Cz^{n}|d\alpha \ge \int_{0}^{1} |F^{2}(z)|d\alpha - \int_{0}^{1} |\sum_{n=0}^{\infty} Cz^{n}|d\alpha, \tag{5}$$

where by Parseval's formula

$$\int_0^1 |F^2(z)| d\alpha = \sum_{n=1}^\infty r^{2a_n} = F(r^2).$$
 (6)

Moreover

$$\int_0^1 |\sum_{n=0}^\infty Cz^n| d\alpha = C \int_0^1 \frac{1}{|1-z|} d\alpha = 2C \int_0^{1/2} \frac{1}{|1-z|} d\alpha.$$

Since

$$|1-z|^2 = (1-r\cos 2\pi\alpha)^2 + (r\sin 2\pi\alpha)^2 = (1-r)^2 + 2r(1-\cos 2\pi\alpha) = (1-r)^2 + 2r\sin^2 \pi\alpha,$$

therefore $|1-z| \geq \max\{\frac{1}{N}, \alpha\}$ for every $0 < \alpha < \frac{1}{2}$. Hence

$$\int_{0}^{1} |\sum_{n=0}^{\infty} Cz^{n}| d\alpha \le 2C(\int_{0}^{1/N} Nd\alpha) + \int_{1/N}^{1/2} \frac{1}{\alpha} d\alpha) \le c_{3} \log N$$
 (7)

for some $c_3 > 0$. By (4), (6) and (7) we have

$$F(r^2) - c_3 \log N \le \int_0^1 |F^2(z) - \sum_{n=0}^\infty Cz^n| d\alpha \le (1-\delta)F(r^2) + c_2,$$

therefore

$$\delta F(r^2) < c_2 + c_3 \log N,$$

but in view of (1)

$$F(r^2) = \sum_{n=1}^{\infty} r^{2a_n} \ge \sum_{n=n_1}^{\sqrt{N}} (1 - \frac{1}{N})^{2a_n} > c_4 \sqrt{N}$$

for some positive c_4 , which is a contradiction to (8) if N is large enough.

References

- [1] P. Borwein, S. Choi and F. Chen, An old conjecture of Erdős-Turán on additive bases, Math. Comp.
- [2] P. Erdős and P. Turán, On a problem of Sidon in additive number theory and some related problems, J. London Math. Soc., 16:212–215, 1941.
- [3] G. Grekos, L. Haddad, C. Helou and J. Pihko, On the Erdős-Turán conjecture, J. Number Theory, 102(2): 339–352, 2003.