
A note on a conjecture of Erdős-Turán
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Abstract

Let {an}∞n=1 be a strictly increasing sequence of nonnegative integers. In this note we
prove that for s(x) =

∑∞
n=1 xan and s2(x) =

∑∞
n=0 bnxn the condition lim supn→∞ bn = A

for some positive integer A implis that lim infn→∞ bn ≤ A− 2
√

A + 1.

1. Introduction

Suppose that {an}∞n=1 is a strictly increasing sequence of nonnegative integers. Let

s(x) =
∞∑

n=1

xan

and

s(x)2 =
∞∑

n=0

bnx
n.

The sequence {an}∞n=1 is called additive basis of order two if bn > 0 for every nonnegative
integer n and asymptotic additive basis of order two if bn > 0 for every sufficiently large
n. The Erdős-Turán conjecture says that for any additive basis of order two {an}∞n=1 the
sequence {bn}∞n=0 is unbounded. This conjecture can be rephrased in number theoretic
language: Let {an}∞n=1 be a strictly increasing sequence of integers. Denote by R(n) the
number of solution n = ai + aj i.e.

R(n) = #{(i, j) : n = ai + aj}.

Using this representation function the original Erdős-Turán conjecture can be stated as
follows,

Conjecture 1 (Erdős-Turán conjecture for bases of order two) Suppose that {an}∞n=1

is a strictly increasing sequence of nonnegative integers such that R(n) > 0 for every non-
negative integer n. Then the sequence {R(n)}∞n=0 is unbounded.
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Grekos, Haddad, Helou and Pihko [3] proved that lim supn→∞ R(n) ≥ 6 for every
basis {an}. Later Borwein, Choi and Chu [1] improved it to lim supn→∞ R(n) ≥ 8. The
above conjecture is equivalent to

Conjecture 2 (Erdős-Turán conjecture for asymptotic bases of order two) Suppose
that {an}∞n=1 is a strictly increasing sequence of nonnegative integers such that R(n) > 0
for every n ≥ n0. Then the sequence {R(n)}∞n=0 is unbounded.

The second version can be formulated as

Conjecture 3 (Erdős-Turán conjecture for bounded representation function)
Suppose that {an}∞n=1 is a strictly increasing sequence of nonnegative integers and

lim sup
n→∞

R(n) = A

for some positive integer A. Then we have

lim inf
n→∞

R(n) = 0.

In this note we give a non-trivial upper bound for lim infn→∞ R(n) if the sequence
{R(n)}∞n=0 is bounded.

Theorem 1 Suppose that {an}∞n=1 is a strictly increasing sequence of nonnegative inte-
gers and

lim sup
n→∞

R(n) = A

for some positive integer A. Then we have

lim inf
n→∞

R(n) ≤ A− 2
√

A + 1.

2. Proof

If an > n2 for infinitely many integer n, then R(n) = 0 for infinitely many integer n.
Hence lim infn→∞ R(n) = 0 ≤ A − 2

√
A + 1, which proves the theorem. Therefore we

may assume that
an ≤ n2 for n ≥ n1. (1)

Let us suppose that there exists a strictly increasing sequence of nonnegative integers
{an}∞n=1 such that lim supn→∞ R(n) = A but lim inf R(n) > A − 2

√
A + 1. Then there

exist an integer n2 and 0 < ε <
√

A for which A− 2
√

A + 1 + ε ≤ R(n) ≤ A for n ≥ n2.

Set C = A − √
A + ε. By elementary calculus we have f(x) = (x−C)2

x
< 1 for every

x ∈ [A− 2
√

A + 1 + ε, A], therefore there exists a δ > 0 such that

(R(n)− C)2 ≤ (1− δ)2R(n) for n ≥ n2. (2)
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Let

F (z) =
∞∑

n=1

zan .

Then

F 2(z) =
∞∑

n=0

R(n)zn.

Let

z = (1− 1

N
)e2πiα = re2πiα,

where N is a large integer. We give an upper an lower bound for the integral

∫ 1

0

|F 2(z)−
∞∑

n=0

Czn|dα (3)

to reach a contradiction. We get an upper bound for (3) by Cauchy’s inequality, Parseval’s
formula and (2)

∫ 1

0

|F 2(z)−
∞∑

n=0

Czn|dα =

∫ 1

0

|
∞∑

n=0

(R(n)− C)zn|dα ≤
(∫ 1

0

|
∞∑

n=0

(R(n)− C)zn|2
)1/2

=

( ∞∑
n=0

(R(n)− C)2r2n

)1/2

≤
(

c1 + (1− δ)2(
∞∑

n=0

R(n)r2n)

)1/2

≤ c2 + (1− δ)F (r2) (4)

Now the lower bound for (3). Obviously,

∫ 1

0

|F 2(z)−
∞∑

n=0

Czn|dα ≥
∫ 1

0

|F 2(z)|dα−
∫ 1

0

|
∞∑

n=0

Czn|dα, (5)

where by Parseval’s formula

∫ 1

0

|F 2(z)|dα =
∞∑

n=1

r2an = F (r2). (6)

Moreover ∫ 1

0

|
∞∑

n=0

Czn|dα = C

∫ 1

0

1

|1− z|dα = 2C

∫ 1/2

0

1

|1− z|dα.

Since

|1−z|2 = (1−r cos 2πα)2+(r sin 2πα)2 = (1−r)2+2r(1−cos 2πα) = (1−r)2+2r sin2 πα,

therefore |1− z| ≥ max{ 1
N

, α} for every 0 < α < 1
2
. Hence

∫ 1

0

|
∞∑

n=0

Czn|dα ≤ 2C(

∫ 1/N

0

Ndα) +

∫ 1/2

1/N

1

α
dα) ≤ c3 log N (7)
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for some c3 > 0. By (4), (6) and (7) we have

F (r2)− c3 log N ≤
∫ 1

0

|F 2(z)−
∞∑

n=0

Czn|dα ≤ (1− δ)F (r2) + c2,

therefore
δF (r2) < c2 + c3 log N,

but in view of (1)

F (r2) =
∞∑

n=1

r2an ≥
√

N∑
n=n1

(1− 1

N
)2an > c4

√
N

for some positive c4, which is a contradiction to (8) if N is large enough. ¥
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