An upper bound for Hilbert cubes

Csaba Sándor ${ }^{1}$
Department of Stochastics, Budapest University of Technology and Economics, Hungary
csandor@math.bme.hu

Abstract

In this note we give a new upper bound for the largest size of subset of $\{1,2, \ldots, n\}$ not containing a k-cube.

1. Introduction

We call a set H a Hilbert cube of dimension k or simply a k-cube if there are positive integers $a_{0}, a_{1}, \ldots, a_{k}$ such that

$$
H=\left\{a_{0}+\sum_{i=1}^{k} \epsilon_{i} a_{i}: \epsilon_{i} \in\{0,1\}\right\}
$$

The positive integer k is the dimension of the Hilbert cube. Hilbert originally proved that if the positive integers are colored with finitely many colors then one color class contains a k-cube. The density version of theorem was proved by Szemerédi and has since become known as "Szemerédi's cube lemma" (see e.g. [3]):

Theorem. Let $k \geq 2$ be a positive integer. If the sequence S_{n} satisfies $\left|S_{n}\right| \geq(4 n)^{1-\frac{1}{2^{k-1}}}$ then S_{n} contains a k-cube.

Denote by $H_{k}(n)$ be the largest size of subset of $\{1,2, \ldots, n\}$ not containing a k-cube. Gunderson and Rödl improved the above result to $H_{k}(n)<2^{1-\frac{1}{2^{k-1}}}(\sqrt{n}+1)^{2-\frac{1}{2^{k-2}}}$ (see [2]).

A sequence S is called Sidon sequence if the sums $s_{1}+s_{2}, s_{1}, s_{2} \in S, s_{1} \leq s_{2}$ are distinct. Obviously a sequence is Sidon if and only if it does not contain any 2 -cubes. It is well known that the maximal size of Sidon sequences can be selected from $\{1,2, \ldots, n\}$ is at most $n^{1 / 2}+O\left(n^{1 / 4}\right)$ (see [1]), that is $H_{2}(n)<n^{1 / 2}+O\left(n^{1 / 4}\right)$. A very short proof of this fact was given by Lindström (see [4]). Using his method we get the following result

[^0]Theorem For every $k \geq 3$ we have $H_{k}(n)<n^{1-\frac{1}{2^{k-1}}}+O\left(n^{1-\frac{1}{2^{k-2}}}\right)$, where the constant depends on k.

2. Proof

We will argue by induction. Let us suppose that either $k=3$ or $k>3$ and we have verified the statement for $k-1$, that is $H_{k-1}(n)<n^{1-\frac{1}{2^{k-2}}}+O\left(n^{1-\frac{1}{2^{k-3}}}\right)$ and we prove the theorem for k. Let us suppose that the sequence $1 \leq a_{1}<a_{2}<\ldots<a_{s} \leq n$ does not contain any k-cubes. We have to prove that $s<n^{1-\frac{1}{2^{k-1}}}+O\left(n^{1-\frac{1}{2^{k-2}}}\right)$. Let $r=H_{k-1}(n)$. We will give lower and upper bound for the sum

$$
K=\sum_{1 \leq i-j \leq r} a_{i}-a_{j} .
$$

First we give a lower bound for K. Since the above sequence does not contain any k cubes, therefore a difference d occurs at most r-times in this sum. This sum contains $r s-\frac{r(r+1)}{2}=r w\left(w=s-\frac{r+1}{2}\right)$ terms, hence K is at least r-times of the sum of the first $\left[\frac{r w}{r}\right]=[w]$ positive integers. Hence

$$
K \geq r \frac{[w]([w]+1)}{2} \geq r \frac{w^{2}-0.25}{2}
$$

In the following we give an upper bound for K. The differences in the sum K can be arranged in sequences of type

$$
\left(a_{u+t}-a_{t}\right)+\left(a_{2 u+t}-a_{u+t}\right)+\cdots+\left(a_{\left[\frac{n-t}{u}\right] u+t}-a_{\left(\left[\frac{n-t}{u}\right]-1\right) u+t}\right) \leq n,
$$

where $1 \leq u \leq r, 1 \leq t \leq u$. Hence

$$
K \leq n \frac{r(r+1)}{2}
$$

Compering the bounds we have $r \frac{w^{2}-0.25}{2} \leq n \frac{r(r+1)}{2}$, that is $w^{2} \leq n r+n+0.25$. Hence

$$
s=w+\frac{r+1}{2} \leq \sqrt{n r+n+0.25}+\frac{r+1}{2}
$$

For $k=3$ we have $r<n^{1 / 2}+O\left(n^{1 / 4}\right)$ which implies

$$
s<n^{0.75}+O\left(n^{0.5}\right) .
$$

For $k>3$ we have $r<n^{1-\frac{1}{2^{k-2}}}+O\left(n^{1-\frac{1}{2^{k-3}}}\right)$, thus

$$
s \leq \sqrt{n^{2-\frac{1}{2^{k-2}}}+O\left(n^{2-\frac{1}{2^{k-3}}}\right)}+O\left(n^{1-\frac{1}{2^{k-2}}}\right)=n^{1-\frac{1}{2^{k-1}}}+O\left(n^{1-\frac{1}{2^{k-2}}}\right)
$$

which proves the theorem.

References

[1] Erdős, P. and Turán, P., On a problem of Sidon in additive number theory and some related problems, J. London Math. Soc. 16 (1941), 212-215
[2] Gunderson, D. S. and Rödl, V., Extremal problems for affine cubes of integers, Combin. Probab. and Comput. 7 (1998), 65-79.
[3] Graham, R. L., Rothchild, B. L. and Spences, J. Ramsey Theory, Wiley-Interscience Ser. in Discrete Math., New York, 1990.
[4] Lidström, B., An inequality for B_{2} sequences, J. Combin. Theory A 6 (1969), 211-212.

[^0]: ${ }^{1}$ Supported by Hungarian National Foundation for scientific Research, Gant No T 38396 and 049693

