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1. Introduction
The paper consists of two parts. In Section 2 we study the decompositions of a (bounded linear) operator

similar to a normal operator in Hilbert space into the orthogonal sum of a normal (self-adjoint, unitary)
part and of a part completely free of the given property, respectively. The first results of this type for a
general Hilbert space operator were obtained apparently by Livsic [18] and Brodskii [4] for the self-adjoint,
and by Apostol [1] for the normal and unitary parts (see also Durszt [9]), respectively.

For a contraction in Hilbert space the basic decomposition result into unitary and completely non-unitary
(c.n.u.) parts is due to Sz.-Nagy and Foias [22], see also Langer [16]. It is well known that this result has
played a very important role in subsequent investigations. It may be interesting to note that further studies
of different general decompositions of this type were undertaken, e.g., by the papers [19],[24],[12],[11] and
[5].

The case of an operator similar to a normal can and will be studied here with the help of a general
result on bounded Boolean algebras of idempotents in Hilbert space, one of the standard proofs of which is
based on an elegant result by B. Sz.-Nagy [21] (see also Dixmier [6], Dunford and Schwartz [8] and Dowson
[7]).

In Section 3 we study in a finite dimensional Hilbert space the minimal unitary power dilations (till the
exponent k) of a contraction. Dilations of this type were studied first by Egervary [10], see also Riesz and
Sz.-Nagy [20]. We determine the general form of such a dilation by using results of Arsene and Gheondea
[2], Thompson and Kuo [25] and Benhida, Gorkin and Timotin [3]. Since two such dilations of a contraction
are, in general, not isomorphic, we study their spectra, the multiplicity functions, and the question of their
isomorphy. The first step of the study in this part is also the decomposition of the contraction into unitary
and completely non-unitary parts.

Terminology and notation will be standard or explained in the text. Norm in the Hilbert space or
operator norm will be denoted by | · |, adjoint by ∗. When an equivalent scalar product is introduced (with
the help of an operator B), then the corresponding notation will be | · |B for the norms, and TB for the
B-adjoint of the operator T . Note that a resolution of the identity will be, in general, a spectral measure
the values of which are bounded idempotents. Normal (equivalently, self-adjoint) idempotents will be called
projections. L(H) will denote the algebra of bounded linear operators in the Hilbert space H. If H is finite
dimensional, we shall often identify an operator T with its matrix in a suitably fixed orthonormal basis.
C,D,N,R,T denote the sets of all complex, in modulus less than 1, positive integer, real, and in modulus
equal to 1 numbers, respectively.

2. Parts of an operator similar to a normal
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Let T be a bounded linear operator in the complex Hilbert space H. It is well known that for a number
of properties the operator is a uniquely determined orthogonal sum of two parts, T = T0 ⊕ T1, where T0 has
the property, and T1 is completely free of that property.

A systematic study of such decompositions was initiated by Szymanski [24], see also Fujii, Kajiwara,
Kato and Kubo [12], Ernest [11], and Brown, Fong and Hadwin [5]. They studied as important examples,
e.g., the properties of being a normal, self-adjoint or unitary operator, respectively.

One of the most important and consistently applied classical examples is the situation when T is a
contraction in the complex Hilbert space H. Sz.-Nagy and Foias [22] (see also Langer [16]) showed that there
is then an orthogonal decomposition as above such that the part T0 is unitary, and the part T1 is completely
nonunitary. This decomposition is unique: the subspace H0 of T0 consists of those vectors h ∈ H for which

|Tnh| = |h| = |T ∗nh| (n ∈ N),

and T = T0 ⊕ T1 is called the canonical decomposition (with respect to being unitary) of T . It is clear that
the subspace H0(T ) is characterized as the maximal T -invariant subspace of H onto which the restriction of
T is a unitary operator (see, e.g., Gokhberg and Krein [14, pp.288-290]).

Recall that for any operator T ∈ L(H) the linear subspace

A(T ) := {h ∈ H : Tnh = T ∗nh for every n ∈ N}

is the maximal linear subspace on which T and T ∗ coincide, and which is invariant with respect to both (i.e.
T -reducing). Clearly, A(T ) = A(T ∗), and the following holds (cf. [14, pp.275-276]):

For every operator T ∈ L(H) there is a unique orthogonal sum decomposition

H = K0(T )⊕K1(T )

such that the subspaces are orthogonally T -reducing, the operators T, T ∗ coincide on K0 ≡ K0(T ), and
the restriction T |K1 is completely non-selfadjoint or, equivalently, simple in the sense that the restrictions
of T and T ∗ to any jointly invariant subspace K ⊂ K1 do not coincide. For this (uniquely determined)
decomposition K0(T ) = A(T ).

Note that there are two further equivalent descriptions of the subspace A(T ) in the case T ∈ L(H):
1. it is the maximal subspace M ≡ M(T ) orthogonally reducing T on which the restriction T |M is

self-adjoint,
2. it is the T -invariant (closed) subspace generated by all the vectors

{h ∈ H : Th = T ∗h}.

We shall here prove only that A(T ) = M(T ). It is clear that A(T ) ⊂ M(T ). Interestingly, the converse
direction is proved in ([14, pp.276-277]) only under the assumption that T ∈ L(H) is dissipative (which we
shall not suppose).

Let TI denote the imaginary part of T , i.e., TI := (T −T ∗)/2i. If h ∈M(T ), then (TIh, h) = =(Th, h) =
0. Hence the numerical range of the bounded operator TI |M(T ) is the singleton {0}. The spectrum of a
bounded operator is contained in the closure of the numerical range (see, e.g., Kato [15, V.3.3]), hence
σ(TI |M(T )) = {0}. Since TI |M(T ) is self-adjoint, it is the zero operator. Hence Th = T ∗h for every
h ∈M(T ). By the equivalent description 2. above, M(T ) ⊂ A(T ), as stated.

Assume now that S is a (bounded linear) operator similar to a normal operator or, equivalently, a
spectral operator of scalar type in the sense of Dunford [8], and has resolution of the identity E(·):

S =

∫
σ(S)

λE(dλ).

By [21], [6], [8], [7], there is then a (strictly) positive self-adjoint operator B in H such that the operator
N := BSB−1 is normal and, equivalently, its resolution of the identity

P (·) = BE(·)B−1
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consists of self-adjoint projections. We clearly have then σ(N) = σ(S). If S is, in addition, a contraction,
then

σ(N) = σ(S) ⊂ D = D ∪T.

Defining (for a general S)

N0 :=

∫
T

λP (dλ), N1 :=

∫
C\T

λP (dλ),

we see that the self-adjoint projections P (T), P (C \ T) satisfy P (T)P (C \ T) = 0, hence N = N0 ⊕ N1,
N0 is unitary and N1 is completely nonunitary. Hence: if S is a contraction, then N is also. Further: the
decomposition described above is the canonical one for any normal contraction N .

The operator B from the preceding paragraph determines on H a new scalar product defined by

(h, k)B := (Bh,Bk) (h, k ∈ H).

This induces the B-norm |h|B = (h, h)
1/2
B , which is equivalent to the old one and, together with the original

Hilbert space [H, (, )], we can also consider the new HB := [H, (, )B ]. Any linear operator T is everywhere
defined and bounded in H, in sign T ∈ L(H), exactly when T ∈ L(HB). Further, the adjoints T ∗ ∈ L(H)
and TB ∈ L(HB) are connected as follows: for any x, y ∈ H we have

(BTBB
−1Bx,By) = (BTBx,By) = (TBx, y)B = (x, Ty)B = (Bx,BTy) = (Bx,BTB−1By).

Thus we obtain
BTBB

−1 = [BTB−1]∗, hence TB = B−2T ∗B2.

Since S = B−1NB, we have

SSB = B−1NBB−2S∗B2 = B−1NN∗B = B−1N∗NB = B−2S∗BBSB−1B = SBS.

This means that the operator S is normal with respect to the B-scalar product. Further, if S is a contraction
in [H, (, )], then S is a contraction in HB , i.e., with respect to the B-scalar product. Indeed, since BS = NB,
and N is also a contraction, we obtain

|S|2B = sup
|h|B=1

|Sh|2B = sup(Sh, Sh)B = sup(BSh,BSh) = sup
|Bh|=1

|BSh|2 = sup
|Bh|=1

|NBh|2 ≤ |N |2 ≤ 1.

Since S ∈ L(HB) is a normal contraction, the preceding paragraph yields its canonical decomposition
(orthogonal in the B-scalar product).

Now we want to obtain the canonical decompositions for the spectral operator of scalar type S ∈ L(H)
with respect to the original scalar product. Apply the preceding notation, and consider the following three
”good properties” of a part: 1) normal, 2) self-adjoint, 3) unitary.

Let Yk ≡ H0(S; k) denote the subspace of the part of S for the property k) above (k = 1, 2, 3). Since
Yk is the maximal subspace of H on which S|Yk has property k), σ(S|Yk) ⊂ σ(S) is contained in C,R,T,
respectively.

For any Borel subset b ⊂ C consider the subspace A[E(b)] defined above. The idempotent property
implies that

A[E(b)] = {h ∈ H : E(b)h = E(b)∗h}.

Further, define
K(E) := ∩b⊂CA[E(b)].

Theorem 1. Assume that the operator S is spectral of scalar type with resolution of the identity E,
and apply the preceding notation. Then

H0(S; 1) = K(E),

(i.e., loosely speaking, the ”maximal normal” subspace for S is identical with the maximal subspace on which
all the relevant idempotents E(b) are orthogonal).
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Proof. If Y1 is the maximal reducing subspace for S as above, we have σ(S|Y1) ⊂ σ(S). Further, by
[7, Theorem 12.2], for every Borel set b ⊂ C we have E(b)Y1 ⊂ Y1, and the resolution of the identity F
for S|Y1 satisfies F (b) = E(b)|Y1 . The resolution of the identity for the normal operator S|Y1 (is uniquely
determined and) consists of orthogonal projections, hence each E(b)|Y1 is self-adjoint. By the paragraph
preceding the Theorem, we obtain H0(S; 1) ⊂ K(E).

Denote the subspace K(E) by Z. For each Borel set c ⊂ C the idempotent E(c) leaves Z invariant.
Indeed, if h ∈ Z, then E(c)h = E(c)∗h. Hence, for every Borel set b ⊂ C we have

E(b)E(c)h = E(b ∩ c)h = E(b ∩ c)∗h = E(b)∗E(c)∗h = E(b)∗E(c)h,

thus E(c)h ∈ Z. It follows that the restrictions {E(c)|Z : c ⊂ C} form a Boolean σ-algebra of idempotents
on the subspace Z, and each E(c)|Z is self-adjoint. It is clear that

S|Z =

∫
C

λE(dλ)|Z.

Hence the restriction S|Z has property 1) with adjoint (S|Z)∗ =
∫
C
λE(dλ)|Z. Thus K(E) ⊂ H0(S; 1). 4

Corollary. The maximal subspaces Yk ≡ H0(S; k) (k = 2, 3) are obtained with the help of the maximal
normal operator S|Z in the well-known way:

H0(S; 2) = E(R)Z, H0(S; 3) = E(T)Z.

4
Finally, we want to record the connection between the maximal self-adjoint (≡ normal) subspaces Z for

the spectral measure E in the original topology and W for the spectral measure P in the B-topology.
Proposition. Apply the preceding notation. The subspace Z is the maximal self-adjoint subspace for

the spectral measure E in the original topology if and only if W := B−1Z is the maximal self-adjoint subspace
for the spectral measure P in the B-topology.

Proof. Fix any Borel set b ∈ C, and write E := E(b), P := P (b), etc. until the end of this proof. Since
E∗ = E on the subspace Z, and BE = PB, we have

BPB−1z = BP ∗B−1z = E∗z = Ez = B−1PBz (z ∈ Z).

Let w := B−1z, hence B2w = Bz. We obtain then

Pw = B−2PB2w = B−2P ∗B2w = PBw (w ∈W ).

Hence the maximal B-self-adjoint subspace for the spectral measure P contains W . Since the steps above
are reversible, it is equal to W . 4

3. Minimal unitary power dilations of a contraction till the exponent k in finite dimension

It is well known that for any contraction A in the Hilbert space H and k ∈ N there is a unitary operator
U in a Hilbert space K ⊃ H such that An is a projection of Un for n = 0, 1, . . . , k. For the space K we may
take the orthogonal sum ⊕kj=0H, and such a U is called a unitary power dilation of A till the exponent k.

Levy and Shalit [17] called a unitary power dilation till the exponent k minimal, if K = span{U jh : h ∈
H, j = 0, 1, . . . , k}. They showed ([17, Theorem 1.3]) that in an n-dimensional Hilbert space (where n ∈ N)
for every k ∈ N each contraction A has a minimal unitary power dilation till the exponent k on a space K
of dimension n+ kdA. Here, as usual, we apply the notation

DA := (I −A∗A)1/2, dA := dim[ran(DA)] ≡ rank(DA),

where ran denotes range. We also apply the similar notation DA∗ , dA∗ for the adjoint contraction A∗. As we
shall see in the proof of the next theorem, the minimality of the dimension n+ kdA was established already
in [25, Theorem 2]. Note that the unitary power dilation till the exponent k constructed by Egervary is,
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in general, not minimal ([17, p.3]). We shall show that the Egervary dilation is minimal for any completely
non-unitary contraction.

Recall that two power dilations M and M ′ acting in the Hilbert spaces K,K ′ ⊃ H, respectively, of the
contraction A in the Hilbert space H are called (see, e.g., [23, I.4]) isomorphic, if there is a unitary map U of
K ′ onto K which is the identity on H and satisfies M ′ = U∗MU . Note that [25, p.349] calls such a relation
a unitary similarity preserving A. It is well known that minimal unitary power dilations (for all nonnegative
integers) of a given contraction A are isomorphic. In a finite dimensional Hilbert space for minimal unitary
power dilations of A till the exponent k the situation is different (cf. [17, p.3]).

It is well known that in a finite dimensional Hilbert space two normal operators are unitarily equivalent
if and only if their spectral lists are the same: the latter means the list of the eigenvalues taking into account
their multiplicities (in other words: the multiplicity function).

Theorem 2. Assume that A is a contraction in a finite dimensional Hilbert space with unitary part Au
and c.n.u. part Ac, and let dA denote its defect number. Then

A = Au ⊕Ac, dA = dAc
.

Let k ∈ N. If M is any unitary power dilation of Ac till the exponent k, then M(A) := Au⊕M is a unitary
power dilation of A till the exponent k, and every unitary power dilation of A till the exponent k has this
form with M being a unitary power dilation till the exponent k of Ac. M is minimal (for Ac) if and only if
M(A) is minimal (for A).

The general form of (the matrix of) M of a c.n.u. contraction A in a suitable orthonormal basis is
given by

M =



A DA∗V2 0 0 . . . 0
0 0 U1 0 . . . 0
0 0 0 U2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . Uk−1

V1DA −V1A∗V2 0 0 . . . 0

 ,

where, with the notation d := dA, each block is d× d, and the operators V1, V2, U1, U2, . . . , Uk−1 : Cd → Cd

are unitaries. Define the operator

W ≡Wk := V ∗1 (V2U1U2 · · ·Uk−1)∗.

Then the spectral list of the minimal unitary dilation M till the exponent k is determined by W , and is given
by the list of the solutions z ∈ T (with multiplicities) of the equation

det[ΘA(z)−1 − zkW ] = 0, (sp)

where
ΘA(z) := −A+ zDA∗(I − zA∗)−1DA : Cd → Cd

is the characteristic function of the operator A. In the converse direction: any possible list of the eigen-
values (with multiplicities) of a minimal unitary dilation M till the exponent k of a completely non-unitary
contraction A is determined by a unitary (d× d matrix) W and the equation (sp) above.

Proof. The first part of the proof is based on a result of Thompson and Kuo [25, Theorem 2]. Let A be
an arbitrary contraction in a finite dimensional Hilbert space. Let n ∈ N denote the dimension of the space
in which the contraction A acts, and let d ≡ d(A) denote its unitary deficiency defined as the number (with
multiplicity) of the singular values of (the matrix of) A (strictly) less than 1. It is clear that d is the rank
of I − A∗A or, equivalently, the rank of I − AA∗. In operator terms, d is the common value of the defect
numbers dA = dA∗ , and is 0 if and only if the operator A is unitary.

The contraction A is the orthogonal sum of its unitary part and of its completely non-unitary (c.n.u.)
part Ac, and for the defect numbers we have d(A) = d(Ac). Invoking [25, Theorem 2], we see that any
contraction matrix A has a unitary power dilation M till the exponent k, with M having m rows more than
A, if and only if m ≥ kd (this is the cited result in [17, Theorem 1.3]).
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If M(A) is a unitary power dilation of A till the exponent k, then we have in a suitable orthonormal
basis for j = 0, 1, . . . , k

M(A)j =

(
Aj ∗
∗ ∗

)
=

(
Aju ⊕Ajc ∗
∗ ∗

)
=

Aju 0 0
0 Ajc ∗
0 ∗ ∗

 .

It follows that
M(A) = M(Au ⊕Ac) = Au ⊕M(Ac).

Hence the general form of the minimal dilation of the (general) contraction A will be the orthogonal sum of
the minimal dilation of the c.n.u. part Ac plus the unitary part Au of the original contraction.

Denote in this paragraph the dimension of the space of any operator T by dimT . By [25, Theorem 2], for
a minimal dilation M(A) we obtain dimM(A)− dimA = kd(A). Taking into account dimA = dimH = n,
and d(A) = dA = dA∗ = d, this gives dimM(A) = n+ kdA, which is exactly [17, Theorem 1.3]. Further, we
clearly have from above dimM(A) = dimAu+dimM(Ac), where M(Ac) denotes a minimal dilation of Ac. If
we start with a c.n.u. contraction Ac, then its space has dimAc = dimH = n, and rank(I −A∗cAc) ≡ d(Ac)
is also equal to n. Hence dimM(Ac) = d(Ac) + kd(Ac) = (k + 1)d. On the other hand, if we start with a
general contraction A ∈ L(H) such that dimH > d(A), and apply Egervary’s original construction [10] of a
unitary power dilation of A till the exponent k (see also [20]), then we do not obtain a minimal dilation of
A till the exponent k.

Therefore we may and will assume that the operator (matrix) A is c.n.u., that is d = d(A) = n, and
apply [25, Lemma 5]. We obtain that there is an orthonormal basis in which the matrix M of the minimal
unitary power dilation till the exponent k has the following partitioned form. Since the number of the new
rows is m = kd = kn, we have blocks

{Mij : 0 ≤ i, j ≤ k} = M

such that
(a) M00 = A and the other diagonal blocks are square,
(b) each block is the zero matrix except perhaps for the subscripts

{00, 01, 11, k0, k1, and (i, i+ 1) for 1 ≤ i < k},

(c) the blocks with subscripts (j − 1, j) (3 ≤ j ≤ k) are each unitary and d× d,
(d) block M12 has d columns and at least d rows; block Mk0 has d rows forming a linearly independent

system.
Specifying to our situation, we can establish additionally that: since n = d, by (d) we obtain that M12

has d rows and d columns. Since the latter are the only nonzero parts of the corresponding columns of the
big unitary matrix M , they form an orthonormal basis in Cd, hence the block M12 is a unitary matrix. It
follows that the matrix M11 is d× d and, since the rows of the block M12 also form an orthonormal system
in Cd, and the (long) rows in the block matrix M1∗ must form an orthonormal system in C(k+1)d, that
M11 = 0.

So we have obtained the following block matrix decomposition of M :

M =



A M01 0 0 . . . 0
0 0 U1 0 . . . 0
0 0 0 U2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . Uk−1

Mk0 Mk1 0 0 . . . 0

 .

Here all the blocks are d× d, and we have written Uj := Mj,j+1, referring to the fact that they are unitaries
for j = 1, . . . , k − 1. Introduce now the notation

V :=

(
A M01

Mk0 Mk1

)
.
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This block submatrix of M is, in view of the structure of M , itself unitary. Since in our case rank(DA) =
rank(DA∗) = d, and V is a unitary dilation (till the exponent 1) of A, we can apply the ”folklore” Proposition
3.1 of [3] by Benhida, Gorkin and Timotin proving, with the help of a result of Arsene and Gheondea [2],
that there are two d× d unitary matrices V1, V2 such that

V =

(
I 0
0 V1

)(
A DA∗

DA −A∗
)(

I 0
0 V2

)
.

It follows that we have

M =



I 0 0 0 . . . 0
0 U1 0 0 . . . 0
0 0 U2 0 . . . 0
...

...
...

...
. . .

...
0 0 0 . . . Uk−1 0
0 0 0 0 . . . V1





A DA∗ 0 0 . . . 0
0 0 I 0 . . . 0
0 0 0 I . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . I
DA −A∗ 0 0 . . . 0





I 0 0 0 . . . 0
0 V2 0 0 . . . 0
0 0 I 0 . . . 0
...

...
...

...
. . .

...
0 0 0 . . . I 0
0 0 0 0 . . . I

 .

From this we see that, in general, the dilation M is not isomorphic to the middle factor, (which we can call
the Egervary dilation).

In order to study the spectrum of the dilation M , let z ∈ C and consider the matrix

M − zI(k+1)d =



A− zId DA∗V2 0 0 . . . 0
0 −zId U1 0 . . . 0
0 0 −zId U2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . Uk−1

V1DA −V1A∗V2 0 0 . . . −zId

 .

(Here and in what follows Ip denotes the identity operator in Cp.) We shall index the block rows and
columns above by 0, 1, . . . , d. The number z ∈ T is in the spectrum of the unitary dilation M if and only if
det(M − zI(k+1)d) = 0.

Let z ∈ T. Since A is completely nonunitary, we have z /∈ σ(A). In order to establish the value of
det(M − zI(k+1)d), as the first step, add the 0th block row of M − zI(k+1)d multiplied from the left by
−V1DA(A− zId)−1 to the last block row. The latter will then be modified to the block row

( 0 V1[−A∗ −DA(A− zId)−1DA∗ ]V2 0 0 . . . −zId ) .

Multiply now the first block row of M − zI(k+1)d from the left by V1[−A∗ −DA(A− zId)−1DA∗ ]V2/z, and
add it to the (modified) last block row. The latter will then be modified to

( 0 0 V1[−A∗ −DA(A− zId)−1DA∗ ]V2U1/z 0 . . . −zId ) .

Multiply now the second block row of M −zI(k+1)d from the left by V1[−A∗−DA(A−zId)−1DA∗ ]V2U1/[z
2],

and add it to the (modified) last block row. The latter will then be modified to

( 0 0 0 V1[−A∗ −DA(A− zId)−1DA∗ ]V2U1U2/[z
2] . . . −zId ) .

Proceeding in this way, in step k multiply the (k− 1)st block row of M − zI(k+1)d from the left by V1[−A∗−
DA(A− zId)−1DA∗ ]V2U1U2 · · ·Uk−2/[zk−1], and add it to the (modified) last block row. Since the indicated
transformations do not change the value of the determinant (see, e.g., Gantmakher [13]), we obtain then

det(M − zI(k+1)d) =
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= det



A− zId DA∗V2 0 0 . . . 0
0 −zId U1 0 . . . 0
0 0 −zId U2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . Uk−1
0 0 0 0 . . . V1[−A∗ −DA(A− zId)−1DA∗ ]V2U1U2 · · ·Uk−1/[zk−1]− zId

.

The value of the right-hand side determinant of the upper triangular block matrix is the product of the
determinants of the diagonal blocks. Thus we obtain

det(M − zI(k+1)d) =

= det(A− zId)[det(−zId)](k−1) det{V1[−A∗ −DA(A− zId)−1DA∗ ]V2U1U2 · · ·Uk−1/[zk−1]− zId}.

Introduce the notation U := V2U1U2 · · ·Uk−1. Then U and V1 are unitary operators in Cd. The operator
valued function z 7→ −A∗ −DA(A− zId)−1DA∗ is clearly connected with the characteristic function Θ of A
and A∗ (cf. [23, pp. 237-238]), and is identical with

ΘA∗(1/z) ≡ ΘA(z)−1 (|z| = 1),

(the operators mapping Cd to Cd). Thus we obtain for z ∈ T

det(M − zI(k+1)d) = (−z)(k−1)d det(A− zId) det{V1ΘA(z)−1U/[zk−1]− zId}.

Since the contraction A is completely nonunitary, its spectrum lies in the open disk D. Hence for any |z| = 1
we have

det(M − zI(k+1)d) = 0⇐⇒ det[ΘA(z)−1 − zkW ] = 0. (∗)

Here we have applied the notation W for the unitary operator V −11 U−1, and used the fact that the modulus
of the determinant of a unitary matrix is 1. 4

Theorem 3. Let k ∈ N. The spectral list of any minimal unitary dilation till the exponent k of a
completely nonunitary contraction A in Cd is the list of all solutions z ∈ T of the equation

det[zkΘA(z) + Y ] = 0,

where Y is a unitary operator in Cd. Equivalently, it is the list of all solutions z ∈ T of the equation

det[zk+1Id − zkA+ (Id − zA∗)D−1A∗Y DA] = 0.

It follows that if z1, z2, . . . , z(k+1)d is the solutions list, then the trace tr (A) satisfies

tr (A) = z1 + z2 + . . .+ z(k+1)d.

In geometrical terms: the point tr (A)/(k + 1)d ∈ D is the centre of gravity of the polygon determined by the
points z1, z2, . . . , z(k+1)d ∈ T of the list. This shows, in particular, that not every list z1, z2, . . . , z(k+1)d ∈ T

is the spectral list of some minimal unitary dilation till the exponent k of the c.n.u. contraction A in Cd.
On the other hand, we have

z1 · z2 · . . . · z(k+1)d = (−1)(k+1)d det[Y ].

This shows how the product of the elements of the spectral list is connected to the number det[Y ] ∈ T, which
clearly varies with the unitary matrix Y .

Proof. By formula (∗) from the preceding proof, for any z ∈ T we have

det(M − zI(k+1)d) = 0⇐⇒ det[ΘA(z)zk −W ∗] = 0.

In view of [23, VI.(1.2)], we have

[ΘA(z)zk −W ∗]DA = DA∗(Id − zA∗)−1(zId −A)zk −W ∗DA.
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The operators DA∗(Id − zA∗)−1 are (boundedly) invertible for z in a neighbourhood of T, hence in this
neighbourhood the function z 7→ det[[DA∗(Id − zA∗)−1]−1] is not 0. Multiplying the equation above from
the left by the inverses, we obtain

[DA∗(Id − zA∗)−1]−1[ΘA(z)zk −W ∗]DA = (zId −A)zk − (Id − zA∗)D−1A∗W
∗DA.

By the preceding remarks, for any z ∈ T we have

det[ΘA(z)zk −W ∗] = 0⇐⇒ det[(zId −A)zk − (Id − zA∗)D−1A∗W
∗DA] = 0.

The matrix Y := −W ∗ is clearly unitary. Consider the matrix polynomial

P (z) := zk+1Id − zkA+ (Id − zA∗)D−1A∗Y DA,

which is monic of degree k + 1, and has d× d coefficient matrices. Denoting the entries of the matrix of A
(in the considered orthonormal basis) by aij , the leading coefficients in the matrix of P (z) are

zk+1 − zka11 −zka12 . . . −zka1d
−zka21 zk+1 − zka22 . . . −zka2d

...
...

. . .
...

−zkad1 −zkad2 . . . zk+1 − zkadd

 ,

(plus in each entry we find at most linear terms in the variable z). This shows that the determinant of P (z)
obtains the highest degree terms (in z) from the main diagonal of the matrix. They are

z(k+1)d − z(k+1)d−1[a11 + a22 + . . .+ add]

(plus lower degree terms in z). Denoting the roots of the scalar polynomial detP (z) by z1, z2, . . . , z(k+1)d,
the Viéte formulae show that

z1 + z2 + . . .+ z(k+1)d = tr(A).

It follows that for an arbitrary minimal unitary dilation till the exponent k of A in Cd, the centre of gravity
of the elements of the spectral list of the dilation is tr(A)/(k + 1)d, as stated.

The constant term in the polynomial detP (z) obtains if we calculate from the matrix of P (z) the
determinant with entries from the constant (matrix) term of P (z). Hence it is equal to

det[D−1A∗Y DA] = det[D−1A∗ ] det[DA] det[Y ].

The Viéte formulae show that the product of the roots of detP (z) satisfy

z1 · z2 · . . . · z(k+1)d = (−1)(k+1)d det[D−1A∗ ] det[DA] det[Y ].

Let λ1[·], . . . , λd[·] denote the eigenvalues (with multiplicities) of any operator in Cd. Since the eigenvalues
of A∗A and AA∗ are identical, it is clear that

(−1)d det[DA] =

d∏
i=1

λi[DA] =

d∏
i=1

λi[(Id −A∗A)1/2] =

d∏
i=1

λi[(Id −AA∗)1/2] =

=

d∏
i=1

λi[DA∗ ] = (−1)d det[DA∗ ].

It follows that det[D−1A∗ ] det[DA] = 1, hence

z1 · z2 · . . . · z(k+1)d = (−1)(k+1)d det[Y ],
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as stated. 4
For the basic properties of matrix polynomials in the next result see, e.g., [26].
Theorem 4. Let k ∈ N. Any minimal unitary dilation M till the exponent k of the c.n.u. contraction

A in Cd is uniquely determined by an operator B := D−1A∗Y DA, where Y := −W ∗ = −V2U1U2 . . . Uk−1V1.
Two such dilations M(B) and M(B′) are unitarily equivalent exactly when the first companion matrices
C(B) and C(B′) of the corresponding matrix polynomials P (B, z) and P (B′, z) (see below) are similar.

Proof. The preceding proof shows that any minimal unitary dilation M till the exponent k is uniquely
determined by the unitary operator

Y := −W ∗ = −V2U1U2 . . . Uk−1V1,

and its spectral list is determined by the relation

det(M − zI(k+1)d) = 0⇐⇒ det[(zId −A)zk + (Id − zA∗)D−1A∗Y DA] = 0 (z ∈ T).

Introduce the notation B := D−1A∗Y DA, and

P (B, z) := zk+1Id − zkA− zA∗B +B.

Then the map Y 7→ B is a bijection, and for the corresponding dilation M ≡M(Y ) ≡M(B) we have

det[M(B)− zI(k+1)d] = 0⇐⇒ det[P (B, z)] = 0 (z ∈ T).

It is well known that a monic matrix polynomial has the same spectrum as its first companion matrix C,
i.e., det[P (B, z)] = 0 if and only if

det[C(B)− zI(k+1)d] = det



−zId Id 0 0 . . . 0
0 −zId Id 0 . . . 0
0 0 −zId Id . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . Id
−B A∗B 0 0 . . . A− zId

 = 0.

In addition, the invariant polynomials (hence the partial multiplicities of every eigenvalue) are identical.
Consider now two unitaries Y and Y ′ in Cd, the corresponding B and B′, and the dilations M(B) and
M(B′). Since they are unitaries, M(B) and M(B′) are unitarily equivalent exactly when they have the
same spectral lists. This is the case exactly when det[P (B, z)] and det[P (B′, z)] have the same zeros, i.e.,
when the two polynomials are identical:

det[P (B, z)] ≡ det[P (B′, z)].

As mentioned above, this holds if and only if (with understandable notation)

det[C(B)− zI(k+1)d] ≡ det[C(B′)− zI(k+1)d].

Since both companion matrices are diagonalizable, the equality of the characteristic equations is equivalent
to the fact that C(B) and C(B′) are similar. 4
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