DIMENSION OF SLICES OF SIERPINSKI-LIKE CARPETS

BALAZS BARANY AND MICHAL RAMS

ABSTRACT. We investigate the dimension of intersections of the Sierpinski-like
carpets with lines. We show a sufficient condition that for a fixed rational slope
the dimension of almost every intersection w.r.t the natural measure is strictly
greater than s — 1, and almost every intersection w.r.t the Lebesgue measure
is strictly less than s — 1, where s is the Hausdorff dimension of the carpet.
Moreover, we give partial multifractal spectra for the Hausdorff and packing
dimension of slices.

1. INTRODUCTION AND STATEMENTS

Let N > 2 be an integer and let Q2 be a subset of {0,..., N —1}x{0,..., N —1}.
Suppose that N + 1 < #Q. Let

1
Fii(z,y z,y) + N(kz,l) for (k,1) € Q. (1.1)

)=
The attractor A C R? of the iterated function system ¥ = {F,} . is called a
Sierpiniski-like carpet. It is well known that W satisfies the open set condition and
dimyg A = dimp A = dimg A = llzgg%{,) > 1, where dimy A denotes the Hausdorff
dimension, dimp A denotes the packing dimension and dimp A denotes the box (or
Minkowski) dimension of the set A. For the definition and basic properties of the
box, packing and Hausdorff dimensions we refer the reader to [2].

The main purpose of this paper is to investigate the dimension theory of the
slices with fixed slope. For an angle 6 denote proj, the f-angle projection onto the
y-axis. That is, projy(z,y) = y — ztanf. For a point a € projyA let

Lo, = {(:c,y) e R?: a:y—a:tanﬂ} and Ep, = LgoNA

)

be the corresponding slice of the attractor. Without loss of generality, by applying
rotation and mirroring transformations on A, we may assume that 6 € [0, 7/2).
The dimension theory of some special cases was examined before for example in
[1,9, 10, 15]. Liu, Xi and Zhao [9] proved for the usual Sierpriski carpet (i.e. N =3
and Q = {0,1,2} x {0,1,2}\ {(1,1)}) that the box and Hausdorff dimension of a
slice Fy , for Lebesgue almost every point a are equal to a constant depending only
on 6 when the slope tanf is rational. Manning and Simon [10] showed that this
constant is strictly less than s — 1, where s is the dimension of the usual Sierpinski
carpet. Later Bardny, Ferguson and Simon [1] proved analogous result for the usual
Sierpinski gasket (i.e. N =2 and Q@ = {0,1} x {0,1}\{(1,1)}). Moreover, they
showed that the box and Hausdorff dimension of a slice Ey , for almost every point
a w.r.t the projection of the natural measure are equal to a constant depending
only on 6 strictly greater than s — 1, when the slope tan @ is rational , where s is
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the dimension of the gasket. Furthermore, Bérdny, Ferguson and Simon [1] gave
a non-complete multifractal spectra for the dimension of the slices. Our goal is to
generalize the previous results.

Let v be the unique self-similar measure satisfying

We call the measure v the natural measure supported on A. One may show that

this measure is nothing else than the normalized s-dimensional Hausdorff measure

restricted to A, i.e. v = %, where s = llzgg%) We denote by vy = v o projg_1 the

projection of the natural measure.
First, we mention a weak dimension conservation phenomena for the Sierpinski-
like carpets.

Proposition 1.1. Let N > 2 be integer and Q C {0,...,N —1} x {0,...,N — 1}
then for every fized 0 € [0,7/2)

log £€2
dimg Fy , = dimpg Fy , = 08 ¢ — dimg vy for vg-a.e a.
’ ’ log N
In particular,
. : log 2 .
dimg Fy, = dimp Fy 4 > — 1 for vp-a.e a. & dimg vy < 1. (1.2)

log N
This inequality makes sense when N + 1 < #€). In the case of rational slopes we
prove that the strict inequality is satisfied in (1.2) whenever N 1 £€).

Theorem 1.2. Let N > 2 be an integer and Q C {0,...,N —1} x {0,...,N — 1}
such that N +1 < #Q and N { §Q. Then for every fized 6 € [0,7/2) such that
tand € Q there exists a constant a(f) depending only on 0 such that

log 2
log N

A similar theorem can be formalized for Lebesgue-typical points of the projec-
tion.

Theorem 1.3. Let N > 2 be integer and Q@ C {0,...,N —1} x {0,...,N —1}
such that N +1 < 4Q and N {§Q. For every fized 0 € [0,7/2) such that tanf € Q
and projgA = [—tan@, 1] there exists a constant 8 depending only on 6 such that

log #$2
log N

The proof of Theorem 1.2 and Theorem 1.3 uses a method different to one used
in Manning, Simon [10] and Béarany, Ferguson, Simon [1]. In both of the papers
the authors construct a finite set of matrices. They prove that this set of matrices
satisfies a very strong irreducibility property (i.e. there exists a finite sequence of
matrices such that the product has strictly positive elements) and using this fact
they prove that the Lebesgue typical slice for a fixed rational slope has dimension
strictly less than s — 1. The proof of this special irreducibility property is ad hoc,
depends very much on the structure of the usual Sierpinski gasket and carpet and
does not hold in general. We are going to modify this method as follows. We will
construct the same type of matrices as in [1], [9]. Using the general properties of

a(f) = dimy Ep, = dimp Epq > — 1 for vyg-a.e a.

5(9) =dimpy E97a = dimp E97a <

— 1 Leb.-a.e. a € projyA.
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those matrices we will show that a vy typical slice has dimension strictly greater
than s — 1 whenever tanf € Q. Applying this fact and the results of Feng and
Lau about nonnegative matrices [6] we will be able to prove the theorem about
Lebesgue typical slices. For further details see Section 4.

Because of Theorem 1.2 and Theorem 1.3 one can claim that the dimension of the
slices has a non-trivial multifractal spectra for rational slopes. Béarany, Ferguson
and Simon [1] gave the incomplete spectrum of the dimension of the slices of the
usual Sierpinski gasket. Precisely, they calculated the function

§ — dimpy {a € projyA : dimy Ep, = 0}

for any 6 such that tanf € Q and the values § > 3(#), where 3(6) is the Lebesgue-
typical dimension. Our aim is to generalize the previous result for the Hausdorff
and packing dimension of the slices of the general Sierpinski-like carpets. Moreover,
we will give the full spectra for the packing dimension of the slices of the usual
Sierpinski gasket.
Consider the projected IFS ¢ = {f,} of ¥ = {F,} . i-e.
x —ktanf+1

fra(z) = Nt for every (k,1) € Q. (1.3)

By straightforward calculations and [11, Theorem 2.7] we see that 1) satisfies the
finite type condition for tanf € Q and therefore, the weak separation property.

Let us divide the interval I = [—tan#,1] = projgA into p + ¢ equal intervals,
ie. Iy = [%, k—;p] for k =1,...,p+ q. Moreover, let us divide I for every k
. I S s € k—l—-p | &+1 _
into N equal parts. That is, I} = [Tp + N P+ N—q] for £ =0,...,N —1.

For every £ = 0,...,N — 1 let us define a (p + q) x (p + ¢) real matrix A¢ in the
following way

(Ag),, =t {w €0 fu(l;) = If} . (1.4)

By some simple calculations the matrices A,, n = 0,..., N — 1 can be written in
the form

(An);; =8{(k,) €Q:iN+n=kp+(N—-1-0)g+j+N -1},
Denote by P(t) the pressure function which is defined as

N—-1
= 1 T t
P(t) = nlgglo nlog N log Z (Q Agy - AﬁnQ) ) (1.5)
51 7777 En:
where e = (1,...,1)T € RP*9, and let us define
P(t P
bmin = lim ( ) and bpax = lim ﬂ (16)
t——oo0 t t—oo t

Theorem 1.4. Let N > 2 be integer and Q@ C {0,...,N —1} x {0,...,N —1}.
Then for every fized 6 € [0,7/2) such that tan€ € Q and [—tan6, 1] = projgA we
have

dimpy {a € projyA : dimy Ey, =0} =
dimpg {a € projyA : dimp Ey , = 0} = P*(0) for every § € [B(8), bmax],

where P*(8) := inf, {—d0t + P(t)}. Moreover, the function P*(§) is continuous,
concave and monotone decreasing on [3(0), bmax]-
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Because of the special structure of the usual Sierpinski gasket (see Lemma 4.10),
it is possible to give complete spectrum for the packing dimension of the slices.

Proposition 1.5. Let A be the usual Sierpiniski gasket, i.e. N = 2 and ) =
{0,1}°\{(1,1)}. Then for every fized 6 € [0,7/2) such that tan € Q

dimpy {a € projyA : dimp Ey , = 0} = P*(0) for every § € [bmin, bmax]-

The organization of the paper is as follows, in Section 2 we prove Proposition 1.1.
In Section 3 we will construct our matrices according to the rational projection and
using their general properties we prove Theorem 1.2. In Section 4 we define the
so-called pressure function corresponding to our nonnegative matrices and using
previous results of Feng and Lau [3],[4],[6] we prove Theorem 1.3 and Theorem 1.4.

2. PROOF OF PROPOSITION 1.1

Before we prove Proposition 1.1, we state a general dimension conservation phe-
nomena for self-similar measures of Sierpinski-like carpets. Let N > 2 be integer
and Q C {0,...,N —1} x{0,...,N —1}. Then it is well known that for every
positive probability vector (py),cq there exists a unique probability measure
satisfying

p=> popoF,"
we
where the IFS ¥ = {F,} . are defined in (1.1). Denote by A the attractor of
{Fw}weﬂ'

Proposition 2.1. For any 0 € [0,7/2)
dimyy pg + dimgg ,u,z = dimg p for pg-a.e. a,

where (g = 1 Oproj;1 and {,uz}aeproje/\ denote the canonical system of conditional

measures with respect to the partition {projg_l(a) ra € pronA}. In particular, for
the natural measure v = :‘{S;(L\A), where s = llzggﬁ]{; (the measure corresponding to the

probabilistic vector p, = (1/49,...,1/4Q)), we have

log #$2
log N

—dimpy vy < dimpy Ey o for vg-a.e. x.

Proof. To prove the proposition we apply the results of Furstenberg [7] about er-
godic CP-chains.

We define a measurable map T : P([0,1]?) x [0,1]* = P([0,1]?) x [0, 1]?, where
P(A) denotes the probability measures of [0, 1]?, as follows

T(9, ) Ol =t g © Pt d1
"'E = 3 X mo )
I 51 >[5, 5H)

where z € [£ EEL) x [L L) Moreover, let us define a probability measure ©
on P([0,1]?) x [0,1]? that dO(9,z) = d¥(x)ds, (), where u is a given self-similar

measure of A. Then it is easy to see that the measure O is T-invariant and ergodic.
The statement of proposition follows from [7, Theorem 3.1]. O
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For an alternative proof we refer the reader to [5, Proposition 4.14, Remark 4.15].
For a finite length word w € Q" let F,, = F,,0---0F,, , and denote by G,,(0, a)
the set of nth level cylinders intersecting the line Ly ,. That is,

Gn(0,a) := {g eQ": Fy(A)NLgg # (Z)} . (2.1)
Standard calculation gives us

Lemma 2.2. For any 0 € [0,7/2)

log 4G (¢ — log §G, (0
dim Fy, = limint 228600 By = lim sup (282G 0).
» n—oo n log N s oo n log N

Lemma 2.3. For any 0 € [0,7/2)

— log #€2 .
d,,(a) +dimpFy, < Tog N for every a € projyA.
Proof. First, let us observe that
tGn (0, a)
(B (a)) 2 EE ),
Hence,
iGn(8,0)
.. dogvy(By-n(a)) .. . rQn
= < —_— =
dyy() hnrglo%f —nlogN  — hnrggf —nlog N
logfQ . logtGn(0,a) logQd ——
-1 = — dimgF,
log N P log N log N B Z0a
where the last inequality follows form the previous lemma.
O

Proof of Proposition 1.1. Since d,,(a) = dimpg vy for vp-almost every a € projgA,
the combination of Proposition 2.1 and Lemma 2.3 proves the statement. [l

3. PROOF OF THEOREM 1.2

Through this section we always assume that N { #Q and N + 1 < Q. Moreover,
let & € [0,7/2) and tanf = % be arbitrary but fixed. Let us recall the definition

of projected IFS (1.3) and the definition of matrices (1.4). The projected IFS
Y ={fo} of ¥ ={F,} cq according to projy is

—kp+1
fri(z) = % + ifz;q’ for every (k,l) € Q.
Divide the interval I = [-F, 1] into p + ¢ equal intervals, i.e. Ij, = [k_;_p, %]

for k=1,...,p+ q. Furthermore, divide I} for every k =1,...,p+ q into N equal

parts. That is, I,f = [k_;_p + Niq, k_;_p + ﬁNiql] for € =0,...,N — 1. For every

£€=0,...,N —1let us define a (p+¢q) x (p+ q) real matrix A¢ in the following way
(Ag),, =1t {w €0 fu(l;) = If} .

From the definition of the matrices (1.4) it is easy to see that

p+q N—1

Z Z <A€)z‘,j =fQ for every j =1,...,p+q. (3.1)
i=1 £€=0
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In general, for &1,...,&, € {0,...,N — 1} let Igl"“’gn be the interval

— 1=
e [] Z ]é\*;ck’J Z an] .

By the definition, for the products of the matrices hold
(Ag, -+ Ag,); ; =t {Q € Q" fu(l) = Iflw’gn} : (32)

Because of (3.1) the matrix

| N1 .
=@ nz:;) Al
defines a Markov-chain on Z := {1,...,p+ ¢}. Let us divide the set of states into
two parts. Let
E={ieZ: () >0}
Er={i e =) =0}.

Lemma 3.1. The set Z, is a recurrent class and Z; is a transient class of the
Markov-chain defined by P. Moreover, =, is aperiodic.

Proof. First, we show that if i« € =, and P;; > 0 then j € E,. Since F;; > 0
there exist w € @ and n € {0,..., N — 1} such that f,(f;) = I}. Therefore
0 <vp(fulli)) = vo(1}) < vy(I)).

On the other hand, for every K > 0 sufficiently large and for every j € =, there
exists a w € QF such that f,,(I) C I;. This implies that for every j € Z, and every
i € E, (PK);; > 0, which proves the statement. O

We note that if projyA = [—tan@, 1] then E, = = and =; = 0. It is well known
from the theory of Markov-chains that there exists a unique probability vector p
such that p is the stationary distribution of P, i.e. QTP = QT. In particular,

N-1
> Ac|p=1Q-p.
£=0

Lemma 3.2. For everyi € {1,...,p+q} and (&,...,&,) € {0,...,N —1}"
giAg - Ag,p
g 7

where e; denotes the ith element of the natural basis of RPTY.

Proof. First, let us observe that p, = vp(l;). That is,

Vg([fl’""g") _

N-1 N—1p+q VG( p+q V@(I N-1

_ &y _ J

=2 wl) =22 2 T 0 2 (A
=0 £=0 =1 weq: 1, (1;)=1I¢ J=1 £=0

At the second equality we have used that vy is a self-similar measure. Therefore the
vector (vp(I;))52 is a probability right-eigenvector of Zg o Ae. Thus, in general,

ity _ o vo(Ly) = ve(ly)
vo(I; ) = > 5O :Z; gQn (Ag - Ae.)y
]:

1=l weQr fu (I)=11 "
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g

Denote Ag the submatrix of A¢ by deleting the rows and columns of Z;. If j € =,

and i € =; then (A¢), . =0 for every £ =0,..., N — 1. Hence,

i,J
N-1
Z Z (Ag)” = #Q for every j € E,. (3.3)
i€E, £=0
Lemma 3.3. For any i,j € E, and &,...,&, €{0,...,N — 1}
(Ag, - "Aﬁn)i,j - (A21 Y gn)zg

Proof. Let us prove by induction. For n = 2

p+q
(A&A&)m' = Z (Afl)i,k (ASQ)]C,]' = Z (Agl)i7k; (Aﬁz)]w' = (AglAEQ)m-
k=1 kEE,

We used in the second equation that (Ag,), ; = 0 whenever k € Z;. Then

pt+q

(A£1 o AénAﬁnH)i,j - Z (Ag -+ Aﬁn)i,k: (A£n+1)k,j :

k=1

Again, (A§n+1)k,j = 0 whenever k € Z, so

Z (Aél ) "Aén)i,k (A£n+1)k,j = Z ( 21 Agn),k (A€n+1)k,j = ( 21 T gn+1)i .

ke=, keE, i
O
In particular, an important consequence of Lemma 3.3 is that for every &1,...,&, €
{0,...,N—1} and i € E,
~T —~
eTAr .. AT D
Ve(]’flw-fn) — 2 51 ﬁnf, (34)

g

where p = (v9(1;))je=, and €; is the ith element of the natural basis of R¥=r. Now,

we define a left-shift invariant measure 7 on the symbolic space ¥ = {0, ..., N — l}N.
Endow X with the metric d(§,¢) = N™" for £ = (£1,&2,...) and ¢ = (C1,C2,- - ),
where n is the largest integer such that & = (;(1 < i < n). For a cylinder set

[517"'7§7’L]:{(Clvc27"')EE:Ck:§k7 k:laan} let
’Q\TAgl...AgnE

n(&, - &) = o (3.5)

where ¢ = Y. = ¢;. By (3.3), n is a probability measure.

1ES,
Lemma 3.4. The probability measure n is o-invariant and mixing and hence er-
godic, where o denotes the left-shift operator on X.

Proof. First, we prove the invariance. It is enough to prove for the cylinder sets.

Since the vector € is a left-eigenvector of Z?:Bl Af (3.3), then for a cylinder set
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[517' . 767’&]

N

—_

_ NflATAAr”.ATA
n(U’l[fl,...,ﬁn])zZn([g,gl,...,gn]):ZE £ L &L _
§=0 =0 ﬁQ
STpr . oAr 5
e ((SHH))

To prove the mixing property it is enough to show that for any cylinder sets

[gla"'agk] and [Cla"'aCl]
T (s o0 G G = 1068 DG G

By the definition of 1 (3.5), for sufficiently large n

N-Lo gl AT o AT AT AT AT AT D

. e i In—k* ¢ =
77([517 s ,fk]m(f [C17 ot Cl]) = Z . . %Qnrl»l : 1 * N

U1 yeeeyin— =0
n—=k

~T 4r T N=1 gr z ‘P
e Ay oAy (Zi:() Ai) Ag - AGP
ﬁQn—‘rl ’

Applying Lemma 3.1 and the basic properties of aperiodic, irreducible Markov
chains, we have

which implies the mixing property. l

Lemma 3.5. Denote by h, the entropy of measure n. If N {4 and N + 1 < §Q
then h, <logN.

Proof. We argue by contradiction. Suppose that h,, = log N. By [14, Theorem 4.10]
and [14, Theorem 4.18] we have that

1 N-1 ETAEI...AETQ ETArl...Agnﬁ

i nt £ £
b= Jim o) T T TR
&1yees€n=0

and the right hand side decreases as n — oo. That is, h,, = log N if and only if
eA - ALD

1
“on = N’ for every n > 1 and &,...,&, € {0,...,N —1}. (3.6)

K
By Lemma 3.1 there exists a K > 0 such that (Zévz_ol Ag) > 0, i.e. each element

of the matrix is strictly positive. Without loss of generality, we may assume that
K > (p+ q)? + 1. Then there exists a word (Cy,...,(x) of length K such that

(Z?’:‘OlAg)K—Azl---AEK > 0. Let A:={0,...,N — 1}*\{(¢1,...,¢x)}. By

Perron-Frobenius theorem there exists a p > 0 and w, v vectors such that p is the
largest eigenvalue of the matrix E&e A AZ and u,v are the corresponding left and
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right eigenvectors. Moreover,
n
- — T
nh_)rlgo o Z AE VU (3.7)
feA
By our assumption (3.6)

I 10K A HOE(NK —1
loge ZA p = log NE = log (NK )

feA

On the other hand, by (3.7)

n

lim — log el Z Ag p = log p.

—0o N
n—00 éGA

So p = #OK — B2 4t this is a contradiction since 1O — ﬁ]g—;: € Q\Z cannot
be a root of characterlstlc polynomial of de A Ag, which is a matrix of integer

coeflicients. O

Proof of Theorem 1.2. Let T' be the natural projection from X to interval [0, 1],
that is,

(&, &, ) :Zé;n (3.8)

Denote hy, the linear function, mapping Iy, to [0, 1], that is, hy(z) = gz — (k—1—p).
The measure

vy = Z l/g’lkoh L—por™!
k€=,

is Nz mod 1 invariant and ergodic by (3.4) and Lemma 3.4. Moreover,

dimg g = min dimpg V9|I oh, =dimy vp. (3.9)
1<k<p+q

By the Volume Lemma [13, Theorem 10.4.1,Theorem 10.4.2] and Lemma 3.5, we
have

hyy
log N
The statement of the theorem follows from (3.9), (3.10) and Proposition 1.1. [

dimgy vy = < 1. (310)

4. PROOF OF THEOREM 1.3 AND THEOREM 1.4

In the rest of the paper we assume that projyA = [—tan6,1]. In the previous
section we have shown that the matrices, constructed in (1.4) can be used for
determine the dimension of the projected natural measure. In this section we show
that the matrices can be used for determine the box dimension of the slices, with
the additional assumption that the projection is an interval.

We note that if projyA = [—tan6,1] then =, = = and =; = (. In particular,
Af = Ag for every £ € {0,...,N — 1}.
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Lemma 4.1. Let Q C {0,...,N — 1} and 0 € [0,7/2) such that tan§ = £ and
projoA = [—tan6,1]. Then for a = k‘% + %Z;ﬁf’:l ﬁ%

log e Ag, - Ag,e logepAe, -+~ Ag.€

n

dim By =l inf === 50—, and dimp o = limsup == =,

where ey, is the kth element of the natural basis of RPTY.

Proof. Let a = k%i_p + % Yo % Let us recall the definition (2.1) of Gy (6, a),

which is the number of cylinder sets intersecting the line Lg,. Since projyA =
[—tan @, 1] let us observe that for every n > 1 and every w € Q"

Fg([ov 1]2) N Lé,a 7& @ <~ FQ(A) N L@,a 7é (Z)

Hence
G (0,a) = {w € Q" : F,([0,1]*) N Lo, # 0} .

Since tan @ is rational,

Using (3.2) we have e, A¢, - -~ A¢, e = §G (6, a). The statement follows from Lemma 2.2.

n
Proposition 4.2. Let Q C {0,...,N —1}* and 0 € [0,7/2) such that tan6 = L
and projpA = [—tan6,1]. Then there exists a constant 3 = B(0) depending only

on 0 such that
dimg Fy o = dimp Ey, = B(0) for Leb.-a.e. a € projyA.

For the proof of Proposition 4.2 we refer to [9, Section 7).
Now, let us recall the definition of the pressure function P(t), and byax defined
n (1.5), (1.6), i.e.

1 Nzl (7 A¢, - Ag €)', and b — lim L0
0og € &t Ag,€) , all max—tl)m - -

P(t)y= 1l "
€1rfn=0 >

360 nlog N

Lemma 4.3. The pressure function P(t) exists for every t € R, and monotone
increasing, convexr and continuous. Moreover, P(t) is continuously differentiable
for every t > 0.

K
Proof. By Lemma 3.1, there exists a K > 0 such that (Zév;()l Ag) > 0. Then

the existence follows from [3, Lemma 2.2]. The differentiability follows from [6,
Theorem 3.3], and the monotonicity, convexity, and continuity property can be
proven by standard argument. The continuity of the derivative is not explicitely
mentioned in [6, Theorem 3.3|, but it follows from convexity. O

Theorem 4.4. [3, Theorem 1.1] Let A¢ be non-negative matrices for§ =0,..., N— 1.
n
If there exists a K > 0 such that .5, <Zévz_01 Ag) > 0 then

IOg QTA£1 e AEn@

dimpgy {f €Y : lim

i PEESGAOE ok it (—at + P(0)} = P*(a),

where dimp is defined according to the metric d(§,() = N™" for £ = (&1,62,...)
and § = (C1,C2, ... ), where n is the largest integer such that & = ¢;(1 < i < n).
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Lemma 4.5. For every t > 0 there is a unique ergodic, left-shift invariant Gibbs
measure p; on X such that there exists a C > 0 that for any (&1,...,&,) €
{0,...,N —1}"
(SR ) |
T (eTAg, - Age)f N—nP(®)

Moreover,
dimy py = —tP'(t) + P(t)

and .
. loge” Ag - Ag e
1 ! == P -G.a. X,
Jim nlog N (t) for pe-a.a. (€1,&2,...) €
The proof of the lemma follows from [6, Theorem 3.2] and [6, Proof of The-

orem 1.3].

Lemma 4.6. For everyt > 0

N-1
Pl(t) - nh—{glo nlogN Z Mtqglu e 7571]) logQTAfl e Agng =
€1,..,6n=0
N-1
. T ...
égﬁ nlogNE Zé: Out([fl, o 6n])loget Ag - Ag e,
1ye56n=—

where g 1s the Gibbs measure defined in Lemma 4.5.
The proof of the lemma follows from [4, Theorem 1.2] and [4, Lemma 2.2(ii)].

Lemma 4.7. For any § >0
logeT Ag, -+ Ag e

dimpy {f € X : limsup

> <1 —
=00 nlog N - 6} - %25{ ot + P(t)}

Proof. We will prove the upper bound with the method of Olsen and Winter [12].
Let € > 0 be arbitrary but fixed. Let us define the following set of cylinders:

loggTAg1 - Ag e
klog N ’

An(e) = {[51,...,&] k2n d-e<
It is easy to see that the set

U & &l

[617"' 7§k]6An (5)

logeT Ag, - Ag, e

nlog N > 5} Let B, (g) be the

covers the set G5 := {§ € ¥ : limsup,,_,
set of disjoint cylinders in A,,(¢) such that

U &= U & &l

(€1, k] €Bn(e) (€1, k] €AR (€)
Then for every t > 0
H]:[(itjp(t)+25(G§) < Z N—k(—5t+P(t)+2a) <
[€1,-:€k]EBR(e)
N—ne Z N—kP(t) (QTA51 . Agkﬁ)t .
[€1,.-,8k]E€BR(€)
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By Lemma 4.5

H PO Gy <N ST (&) S N
[€1,--,6k]EBn(e)

Since € > 0 and ¢t > 0 were arbitrary,

. < . .
|:|

Before we prove our main theorems let us introduce p + ¢ projecting maps from
Y to I. That is,

k=1-p 13~ &
Tp(f) = —F+-> >
(©) q qi= Nk
Denote Ejy (¢ the union of slices corresponding to I'x(§), i.e.

pt+q
Eore = U Foruo-
k=1

Proof of Theorem 1.3. By Proposition 4.2, it is enough to show that
dimpy {a € projpA : dimy Ey, = dimp Ep, =s—1} <1 (4.1)

(we remind that s = log €2/ log N is the Hausdorff dimension of the carpet). How-
ever,

dimpy {a € projyA : dimy Ey, = dimp Ep, = s — 1} <

p+q
dimpg {a € projyA : dimp Eg, = s — 1} = dimpy U {a€ly:dimpEy, =s—1} =
k=1
p+q
dimpy | J {¢ €%+ dimp By, =5 -1} < dimpy {€ € 3 dimp By > 5 — 1}
k=1

By Lemma 4.1 and Lemma 4.7
dimpy {g €% : dimp Eype > s — 1} < inf {~(s— 1)t + P(t)}.

By the definition of pressure function P(t) we have P(0) =1, P(1) = s. Moreover,
by Lemma 4.3 and Lemma 4.5, we have P'(1) = s — dimygn > s — 1, where 7 is
the probability measure defined in (3.5). Then there exists a ¢’ € [0, 1], such that
P(') <14 (s—1)t'. Hence

%ng{—(s —Dt+Pt)} < —(s— '+ P(t') <1,

>

which implies (4.1) and completes the proof. O
Before we prove Theorem 1.4, we need two technical lemmas.

Lemma 4.8. Let iy be the measure defined in Lemma 4.5. Then for us-a.e. £ € X
dimH EQI(@ = dimp E97F(§) = dimB EQI(@.
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Proof. Let H : (z,y) — (x,px — qy mod 1) be a map of S! x S! into itself. Then
H(A) C S' x S' compact, Ty x Ty-invariant. Since py is left-shift invariant then
p o =1 is Ty-invariant. Using [8, Proposition 2.6] we have for j; o I l-a.e.

dimy 77 (z) = dimp 7~ (z) = dimp 7~ (),

where 7 : H(A) — S is the projection to the first coordinate.

Let J : * + —qgz mod 1 be the mapping projyA into S'. Then for every
k,leZand € € B, J(Tk(&)) = J(T(&)) =T(&), where I' : ¥ +— [0, 1] is defined in
(3.8). Observe that 7~ 1(I'(§)) = H(Epr()). The proof is completed by the fact
that dim H (Ep r()) = dim Ey (), where dim denotes packing, Hausdorff and box
dimension simultaneously. O

Lemma 4.9. For every 6 € (5(6),bmax) there exists a 0 < t = t5 such that
Pl(t(;) =9.

Proof. By Lemma 4.3, the function P’(¢) is monotone increasing and continuous
for t > 0, hence it is enough to show that 5(6) = lim;_o4 P’'(t).
First, we prove that

og el Ap - Ap e
Rae S SRt 5(0) | —int (-5(0) + PO} (12)

1:d1mH{£EE:nh_>ngo nlog N

The second equality follows from Theorem 4.4. Using Theorem 1.3, we have that
for every k € =

L({a € I : dimp By, = BO)}) = L(It) = 2

where £ denotes the Lebesgue measure on the real line. Let A be the uniform
Bernoulli measure on Y. Using that ¢ * L] I, =A© F,;l, we have

1=gxL({a €l dimp By, = B(0)}) = )\({§ € : dimp Eyr, () = 5(9)})

Hence,
p+q
1= M {¢ €3 dimp Eyr, = 8(6)}) <
k=1
T I
)\({5 eX: nh—>Holo nlog N =p5(6)p). (4.3)

Since dimg A = 1, we get the first equation in (4.2).
The other consequence of (4.3) combined with the sub-additive ergodic theorem
[14, p. 231] is that

N-1

, 1 1 .
1y--956n=—
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Moreover, it follows from the definition of Gibbs measures {y},.(, defined in
Lemma 4.5, that pu; — A weakly as t — 0+. Therefore, by Lemma 4.6,

N—-1
lim P'(t) < li locel Ae, - Ae e =
B PO B gy 2l elloesa +Aee

1y--n=

1 =g
T
nlOgNg Zﬁ: Omlogg Ag - Ag.e
196 —

Since it holds for every n > 1, we have lim;_o4 P’'(t) < 5(6).

On the other hand, it follows from Theorem 4.4 that for every ¢t > 0, 1 <
—B(0)t + P(t). Since P(0) = 0 and P(t) is continuously differentiable for ¢ > 0, we
have 5(6) < limy_,o4 P'(t). O
Proof of Theorem 1.4. Denote by dim either the Hausdorff or packing dimension
and let 0 € [3(0), bymax) then

ptq
dimpg {a € projyA : dim Fy , = 0} = dimy U {a €I :dimEy, =6}.
k=1
Then using the properties of I'y : 3 +— I, we get
p+q
dimr | J {a € I s dim Epo = 8} = dimy {¢ € T 3k € 2, dim By p, ) = 6
k=1
By simple property of dimension, we get

dimp {€ €T : 3k € 2, dim By, = 8} >

dimH {é cX: dlmH EQI(Q = dimp EQ,F(@ = dimB EQI@) = 5} .

There are two possibilities, if § = §(#) than we consider the uniform measure A
and dimy A = P*(8(0)) = 1. Otherwise, by Lemma 4.9, there exists a t5 > 0 such
that P’'(ts) = 0. Lemma 4.5 implies that dimpg py; = —tsP’(ts) + P(ts) = P*(9).
Using Lemma 4.8

dimpy {a € projyA : dim Ep , = 6} >
dim {g € % : dimpr By p(e) = dimp By p(e) = dimp Ep p(e) = 5} > dimg py, = P*(5),
which proves the lower bound. For the upper bound, using Lemma 4.7
dimpg {€ € $: Ik € E, dim By, =0} < dimpy {€ € T s dmpByreg = 6} <
%r>1£ {=d0t+P(t)}.

The function P(t) is convex (Lemma 4.3), hence ¢t — —dt + P(t) is convex as
well. So either § = S(0) then lim_,oy P'(t) = 6 = B(#) or 6 > ((6) then the
convexity of the function implies that

inf {=6t+P(t)} = }f;ﬁ {—6t+ P(t)} & there exists a t > 0 that P'(t) = 4.

Therefore,
dimpy {a € projyA : dim Ey , = 0} < %r>1(f) {=0t+ P(t)} = P*(9),
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which completes the proof. ]

Now we will turn to the special case of Sierpinski gasket.

Lemma 4.10. Suppose that A is the Sierpiriski gasket (i.e. N = 2 and Q =
{0,132\ {(1,1)}) then for any 0 € [0,7/2) such that tanf € Q the set

[e o]

M = U O-k{(é-th)-..) €X:Vn Z 137’7] € 57 (Agl Agn)lﬂ :O}

k=—o0
has Hausdorff dimension 0. Moreover, for every £ € X\N
dimpEy TR = dimpEy ) = dlmBE9 e for everyk=1,...,p+q.

Proof. The first part of the lemma follows from [1 Proposition 3.2].
To prove the rest of the statement, let us observe dlmBEg TrE) < < dimpFE, T(€)

for every £ € 3 and k € E. Moreover, since QTAE < Q- el and

n
Y

log gTAgl < Age

dimaLore =P = og N

we have HBEG,F(@ < mBEQ’F(O.@.
If £ ¢ M then there exists a K = K(£) such that

Agy - Agye > 0.

Therefore, for every n > K + 1, ¢f A¢, -+- Ag, e > el Agy,, -+ Ag,e for any k =
1,...,p+ q. This implies that dlmBEg ry(6) = dimpFEy T(oK¢)- Hence,

MBEG,F(O'KE) > HlBEg T(0€) > dlmBEg T = > dim mpFEy Tr(6) = > dim impFE, T(eKe)-

O

Proposition 4.11. If A is the Sierpiriski gasket then for every { ¢ M and k € 2
ﬁBE@Ik(Q = dimp E9,Fk(§)'

Proof. Let £ ¢ M and k € Z. Moreover, let {4;} be an arbitrary countable
decomposition of Fy T(6) Since the set Fy (€ is compact, there exists a j such
that A; contains a non-empty interior in Ey T4 That is, there exists an € > 0 and
T € Egp,(¢) such that Be(z) N Egr, ) € Aj. In particular, there exists an n > 1
and (wo, ..., wn—1) € Q" such that Fu,,. w, (A) N Epr, ¢ € A4;. It is easy to see

that Fi,.. w, (M) N Ey T(©) = Fooowon ( By, (0n€)> for an i € {1 .0+ q}.
Using Lemma 4.10 and the fact that M is ¢ invariant, we get

diimgAj > diimBFwo,...,wnf1(EO,Fi(ané)) = MBEH,Fi(ané) = diimBEg’Fk(é).
The statement follows from the definition of packing dimension. O

Proof of Proposition 1.5. Let § € [bumin, bmax| arbitrary, then

dimpy {a € projyA : dimp Ey, = 0} = dimpy {f €X:Jk € Edimp Egp, () = 6}
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Using Proposition 4.11 and Lemma 4.10
dimpg {€ € $: Ik € E, dimp By, =0} =

dimp {§ €¥:3ke =, dmpEyr, ) = 5} = dimy {§ €% dimpEy ) = 5} _
The statement follows from Lemma 4.1 and Theorem 4.4. m
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