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Abstract. We investigate the dimension of intersections of the Sierpiński-like
carpets with lines. We show a sufficient condition that for a fixed rational slope
the dimension of almost every intersection w.r.t the natural measure is strictly
greater than s − 1, and almost every intersection w.r.t the Lebesgue measure
is strictly less than s − 1, where s is the Hausdorff dimension of the carpet.
Moreover, we give partial multifractal spectra for the Hausdorff and packing
dimension of slices.

1. Introduction and Statements

Let N ≥ 2 be an integer and let Ω be a subset of {0, . . . , N − 1}×{0, . . . , N − 1}.
Suppose that N + 1 ≤ ]Ω. Let

Fk,l(x, y) :=
1

N
(x, y) +

1

N
(k, l) for (k, l) ∈ Ω. (1.1)

The attractor Λ ⊂ R2 of the iterated function system Ψ = {Fω}ω∈Ω is called a
Sierpiński-like carpet. It is well known that Ψ satisfies the open set condition and
dimH Λ = dimP Λ = dimB Λ = log ]Ω

logN > 1, where dimH Λ denotes the Hausdorff

dimension, dimP Λ denotes the packing dimension and dimB Λ denotes the box (or
Minkowski) dimension of the set Λ. For the definition and basic properties of the
box, packing and Hausdorff dimensions we refer the reader to [2].

The main purpose of this paper is to investigate the dimension theory of the
slices with fixed slope. For an angle θ denote projθ the θ-angle projection onto the
y-axis. That is, projθ(x, y) = y − x tan θ. For a point a ∈ projθΛ let

Lθ,a :=
{

(x, y) ∈ R2 : a = y − x tan θ
}

and Eθ,a = Lθ,a ∩ Λ

be the corresponding slice of the attractor. Without loss of generality, by applying
rotation and mirroring transformations on Λ, we may assume that θ ∈ [0, π/2).

The dimension theory of some special cases was examined before for example in
[1, 9, 10, 15]. Liu, Xi and Zhao [9] proved for the usual Sierpński carpet (i.e. N = 3
and Ω = {0, 1, 2} × {0, 1, 2} \ {(1, 1)}) that the box and Hausdorff dimension of a
slice Eθ,a for Lebesgue almost every point a are equal to a constant depending only
on θ when the slope tan θ is rational. Manning and Simon [10] showed that this
constant is strictly less than s− 1, where s is the dimension of the usual Sierpiński
carpet. Later Bárány, Ferguson and Simon [1] proved analogous result for the usual
Sierpiński gasket (i.e. N = 2 and Ω = {0, 1} × {0, 1} \ {(1, 1)}). Moreover, they
showed that the box and Hausdorff dimension of a slice Eθ,a for almost every point
a w.r.t the projection of the natural measure are equal to a constant depending
only on θ strictly greater than s − 1, when the slope tan θ is rational , where s is
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the dimension of the gasket. Furthermore, Bárány, Ferguson and Simon [1] gave
a non-complete multifractal spectra for the dimension of the slices. Our goal is to
generalize the previous results.

Let ν be the unique self-similar measure satisfying

ν =
∑
ω∈Ω

1

]Ω
ν ◦ F−1

ω .

We call the measure ν the natural measure supported on Λ. One may show that
this measure is nothing else than the normalized s-dimensional Hausdorff measure

restricted to Λ, i.e. ν =
Hs|Λ
Hs(Λ) , where s = log ]Ω

logN . We denote by νθ = ν ◦ proj−1
θ the

projection of the natural measure.
First, we mention a weak dimension conservation phenomena for the Sierpiński-

like carpets.

Proposition 1.1. Let N ≥ 2 be integer and Ω ⊆ {0, . . . , N − 1} × {0, . . . , N − 1}
then for every fixed θ ∈ [0, π/2)

dimH Eθ,a = dimB Eθ,a =
log ]Ω

logN
− dimH νθ for νθ-a.e a.

In particular,

dimH Eθ,a = dimB Eθ,a >
log ]Ω

logN
− 1 for νθ-a.e a.⇔ dimH νθ < 1. (1.2)

This inequality makes sense when N + 1 ≤ ]Ω. In the case of rational slopes we
prove that the strict inequality is satisfied in (1.2) whenever N - ]Ω.

Theorem 1.2. Let N ≥ 2 be an integer and Ω ⊆ {0, . . . , N − 1} × {0, . . . , N − 1}
such that N + 1 ≤ ]Ω and N - ]Ω. Then for every fixed θ ∈ [0, π/2) such that
tan θ ∈ Q there exists a constant α(θ) depending only on θ such that

α(θ) = dimH Eθ,a = dimB Eθ,a >
log ]Ω

logN
− 1 for νθ-a.e a.

A similar theorem can be formalized for Lebesgue-typical points of the projec-
tion.

Theorem 1.3. Let N ≥ 2 be integer and Ω ⊆ {0, . . . , N − 1} × {0, . . . , N − 1}
such that N + 1 ≤ ]Ω and N - ]Ω. For every fixed θ ∈ [0, π/2) such that tan θ ∈ Q
and projθΛ = [− tan θ, 1] there exists a constant β depending only on θ such that

β(θ) = dimH Eθ,a = dimB Eθ,a <
log ]Ω

logN
− 1 Leb.-a.e. a ∈ projθΛ.

The proof of Theorem 1.2 and Theorem 1.3 uses a method different to one used
in Manning, Simon [10] and Bárány, Ferguson, Simon [1]. In both of the papers
the authors construct a finite set of matrices. They prove that this set of matrices
satisfies a very strong irreducibility property (i.e. there exists a finite sequence of
matrices such that the product has strictly positive elements) and using this fact
they prove that the Lebesgue typical slice for a fixed rational slope has dimension
strictly less than s− 1. The proof of this special irreducibility property is ad hoc,
depends very much on the structure of the usual Sierpiński gasket and carpet and
does not hold in general. We are going to modify this method as follows. We will
construct the same type of matrices as in [1], [9]. Using the general properties of
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those matrices we will show that a νθ typical slice has dimension strictly greater
than s − 1 whenever tan θ ∈ Q. Applying this fact and the results of Feng and
Lau about nonnegative matrices [6] we will be able to prove the theorem about
Lebesgue typical slices. For further details see Section 4.

Because of Theorem 1.2 and Theorem 1.3 one can claim that the dimension of the
slices has a non-trivial multifractal spectra for rational slopes. Bárány, Ferguson
and Simon [1] gave the incomplete spectrum of the dimension of the slices of the
usual Sierpiński gasket. Precisely, they calculated the function

δ 7→ dimH {a ∈ projθΛ : dimH Eθ,a = δ}
for any θ such that tan θ ∈ Q and the values δ ≥ β(θ), where β(θ) is the Lebesgue-
typical dimension. Our aim is to generalize the previous result for the Hausdorff
and packing dimension of the slices of the general Sierpiński-like carpets. Moreover,
we will give the full spectra for the packing dimension of the slices of the usual
Sierpiński gasket.

Consider the projected IFS ψ = {fω} of Ψ = {Fω}ω∈Ω, i.e.

fk,l(x) =
x

N
+
−k tan θ + l

N
, for every (k, l) ∈ Ω. (1.3)

By straightforward calculations and [11, Theorem 2.7] we see that ψ satisfies the
finite type condition for tan θ ∈ Q and therefore, the weak separation property.

Let us divide the interval I = [− tan θ, 1] = projθΛ into p + q equal intervals,

i.e. Ik = [k−1−p
q , k−pq ] for k = 1, . . . , p + q. Moreover, let us divide Ik for every k

into N equal parts. That is, Iξk = [k−1−p
q + ξ

Nq ,
k−1−p

q + ξ+1
Nq ] for ξ = 0, . . . , N − 1.

For every ξ = 0, . . . , N − 1 let us define a (p + q) × (p + q) real matrix Aξ in the
following way

(Aξ)i,j := ]
{
ω ∈ Ω : fω(Ij) = Iξi

}
. (1.4)

By some simple calculations the matrices An, n = 0, . . . , N − 1 can be written in
the form

(An)i,j = ] {(k, l) ∈ Ω : iN + n = kp+ (N − 1− l)q + j +N − 1} .

Denote by P (t) the pressure function which is defined as

P (t) = lim
n→∞

1

n logN
log

N−1∑
ξ1,...,ξn=0

(
eTAξ1 · · ·Aξne

)t
, (1.5)

where e = (1, . . . , 1)T ∈ Rp+q, and let us define

bmin = lim
t→−∞

P (t)

t
and bmax = lim

t→∞

P (t)

t
. (1.6)

Theorem 1.4. Let N ≥ 2 be integer and Ω ⊆ {0, . . . , N − 1} × {0, . . . , N − 1}.
Then for every fixed θ ∈ [0, π/2) such that tan θ ∈ Q and [− tan θ, 1] = projθΛ we
have

dimH {a ∈ projθΛ : dimH Eθ,a = δ} =

dimH {a ∈ projθΛ : dimP Eθ,a = δ} = P ∗(δ) for every δ ∈ [β(θ), bmax],

where P ∗(δ) := inft {−δt+ P (t)}. Moreover, the function P ∗(δ) is continuous,
concave and monotone decreasing on [β(θ), bmax].
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Because of the special structure of the usual Sierpiński gasket (see Lemma 4.10),
it is possible to give complete spectrum for the packing dimension of the slices.

Proposition 1.5. Let Λ be the usual Sierpiński gasket, i.e. N = 2 and Ω =
{0, 1}2 \ {(1, 1)}. Then for every fixed θ ∈ [0, π/2) such that tan θ ∈ Q

dimH {a ∈ projθΛ : dimP Eθ,a = δ} = P ∗(δ) for every δ ∈ [bmin, bmax].

The organization of the paper is as follows, in Section 2 we prove Proposition 1.1.
In Section 3 we will construct our matrices according to the rational projection and
using their general properties we prove Theorem 1.2. In Section 4 we define the
so-called pressure function corresponding to our nonnegative matrices and using
previous results of Feng and Lau [3],[4],[6] we prove Theorem 1.3 and Theorem 1.4.

2. Proof of Proposition 1.1

Before we prove Proposition 1.1, we state a general dimension conservation phe-
nomena for self-similar measures of Sierpiński-like carpets. Let N ≥ 2 be integer
and Ω ⊆ {0, . . . , N − 1} × {0, . . . , N − 1}. Then it is well known that for every
positive probability vector (pω)ω∈Ω there exists a unique probability measure µ
satisfying

µ =
∑
ω∈Ω

pωµ ◦ F−1
ω ,

where the IFS Ψ = {Fω}ω∈Ω are defined in (1.1). Denote by Λ the attractor of
{Fω}ω∈Ω.

Proposition 2.1. For any θ ∈ [0, π/2)

dimH µθ + dimH µ
θ
a = dimH µ for µθ-a.e. a,

where µθ = µ ◦proj−1
θ and

{
µθa
}
a∈projθΛ

denote the canonical system of conditional

measures with respect to the partition
{

proj−1
θ (a) : a ∈ projθΛ

}
. In particular, for

the natural measure ν =
Hs|Λ
Hs(Λ) , where s = log ]Ω

logN (the measure corresponding to the

probabilistic vector pω = (1/]Ω, . . . , 1/]Ω)), we have

log ]Ω

logN
− dimH νθ ≤ dimH Eθ,a for νθ-a.e. x.

Proof. To prove the proposition we apply the results of Furstenberg [7] about er-
godic CP-chains.

We define a measurable map T : P([0, 1]2) × [0, 1]2 7→ P([0, 1]2) × [0, 1]2, where
P(Λ) denotes the probability measures of [0, 1]2, as follows

T (ϑ, x) :=

(
ϑ|[ k

N
, k+1
N

)×[ l
N
, l+1
N

) ◦ Fk,l
ϑ([ kN ,

k+1
N )× [ lN ,

l+1
N ))

, Nx mod 1

)
,

where x ∈ [ kN ,
k+1
N ) × [ lN ,

l+1
N ). Moreover, let us define a probability measure Θ

on P([0, 1]2) × [0, 1]2 that dΘ(ϑ, x) = dϑ(x)dδµ(ϑ), where µ is a given self-similar
measure of Λ. Then it is easy to see that the measure Θ is T -invariant and ergodic.
The statement of proposition follows from [7, Theorem 3.1]. �
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For an alternative proof we refer the reader to [5, Proposition 4.14, Remark 4.15].
For a finite length word ω ∈ Ωn let Fω = Fω0 ◦ · · · ◦Fωn−1 and denote by Gn(θ, a)

the set of nth level cylinders intersecting the line Lθ,a. That is,

Gn(θ, a) :=
{
ω ∈ Ωn : Fω(Λ) ∩ Lθ,a 6= ∅

}
. (2.1)

Standard calculation gives us

Lemma 2.2. For any θ ∈ [0, π/2)

dimBEθ,a = lim inf
n→∞

log ]Gn(θ, a)

n logN
and dimBEθ,a = lim sup

n→∞

log ]Gn(θ, a)

n logN
.

Lemma 2.3. For any θ ∈ [0, π/2)

dνθ(a) + dimBEθ,a ≤
log ]Ω

logN
for every a ∈ projθΛ.

Proof. First, let us observe that

νθ(BN−n(a)) ≥ ]Gn(θ, a)

]Ωn
.

Hence,

dνθ(a) = lim inf
n→∞

log νθ(BN−n(a))

−n logN
≤ lim inf

n→∞

log ]Gn(θ,a)
]Ωn

−n logN
=

log ]Ω

logN
− lim sup

n→∞

log ]Gn(θ, a)

n logN
=

log ]Ω

logN
− dimBEθ,a,

where the last inequality follows form the previous lemma.
�

Proof of Proposition 1.1. Since dνθ(a) = dimH νθ for νθ-almost every a ∈ projθΛ,
the combination of Proposition 2.1 and Lemma 2.3 proves the statement. �

3. Proof of Theorem 1.2

Through this section we always assume that N - ]Ω and N + 1 ≤ ]Ω. Moreover,
let θ ∈ [0, π/2) and tan θ = p

q be arbitrary but fixed. Let us recall the definition

of projected IFS (1.3) and the definition of matrices (1.4). The projected IFS
ψ = {fω} of Ψ = {Fω}ω∈Ω according to projθ is

fk,l(x) =
x

N
+
−kp+ lq

Nq
, for every (k, l) ∈ Ω.

Divide the interval I = [−p
q , 1] into p + q equal intervals, i.e. Ik = [k−1−p

q , k−pq ]

for k = 1, . . . , p+ q. Furthermore, divide Ik for every k = 1, . . . , p+ q into N equal

parts. That is, Iξk = [k−1−p
q + ξ

Nq ,
k−1−p

q + ξ+1
Nq ] for ξ = 0, . . . , N − 1. For every

ξ = 0, . . . , N −1 let us define a (p+ q)× (p+ q) real matrix Aξ in the following way

(Aξ)i,j := ]
{
ω ∈ Ω : fω(Ij) = Iξi

}
.

From the definition of the matrices (1.4) it is easy to see that

p+q∑
i=1

N−1∑
ξ=0

(Aξ)i,j = ]Ω for every j = 1, . . . , p+ q. (3.1)
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In general, for ξ1, . . . , ξn ∈ {0, . . . , N − 1} let Iξ1,...,ξnj be the interval

Iξ1,...,ξnj =

[
j − 1− p

q
+

1

q

n∑
k=1

ξk
Nk

,
j − 1− p

q
+

1

q

n∑
k=1

ξk
Nk

+
1

qNn

]
.

By the definition, for the products of the matrices hold

(Aξ1 · · ·Aξn)i,j = ]
{
ω ∈ Ωn : fω(Ij) = Iξ1,...,ξni

}
. (3.2)

Because of (3.1) the matrix

P =
1

]Ω

N−1∑
n=0

ATn

defines a Markov-chain on Ξ := {1, . . . , p+ q}. Let us divide the set of states into
two parts. Let

Ξr = {i ∈ Ξ : νθ(Ii) > 0}
Ξt = {i ∈ Ξ : νθ(Ii) = 0} .

Lemma 3.1. The set Ξr is a recurrent class and Ξt is a transient class of the
Markov-chain defined by P . Moreover, Ξr is aperiodic.

Proof. First, we show that if i ∈ Ξr and Pi,j > 0 then j ∈ Ξr. Since Pi,j > 0
there exist ω ∈ Ω and n ∈ {0, . . . , N − 1} such that fω(Ii) = Inj . Therefore

0 < νθ(fω(Ii)) = νθ(I
n
j ) ≤ νθ(Ij).

On the other hand, for every K > 0 sufficiently large and for every j ∈ Ξr there
exists a ω ∈ ΩK such that fω(I) ⊆ Ij . This implies that for every j ∈ Ξr and every

i ∈ Ξ, (PK)i,j > 0, which proves the statement. �

We note that if projθΛ = [− tan θ, 1] then Ξr = Ξ and Ξt = ∅. It is well known
from the theory of Markov-chains that there exists a unique probability vector p

such that p is the stationary distribution of P , i.e. pTP = pT . In particular,N−1∑
ξ=0

Aξ

 p = ]Ω · p.

Lemma 3.2. For every i ∈ {1, . . . , p+ q} and (ξ1, . . . , ξn) ∈ {0, . . . , N − 1}n

νθ(I
ξ1,...,ξn
i ) =

eiAξ1 · · ·Aξnp
]Ωn

,

where ei denotes the ith element of the natural basis of Rp+q.
Proof. First, let us observe that p

i
= νθ(Ii). That is,

νθ(Ii) =

N−1∑
ξ=0

νθ(I
ξ
i ) =

N−1∑
ξ=0

p+q∑
j=1

∑
ω∈Ω:fω(Ij)=I

ξ
i

νθ(Ij)

]Ω
=

p+q∑
j=1

νθ(Ij)

]Ω

N−1∑
ξ=0

(Aξ)i,j .

At the second equality we have used that νθ is a self-similar measure. Therefore the
vector (νθ(Ii))

p+q
i=1 is a probability right-eigenvector of

∑N−1
ξ=0 Aξ. Thus, in general,

νθ(I
ξ1,...,ξn
i ) =

p+q∑
j=1

∑
ω∈Ωn:fω(Ij)=I

ξ1,...,ξn
i

νθ(Ij)

]Ωn
=

p+q∑
j=1

νθ(Ij)

]Ωn
(Aξ1 · · ·Aξn)i,j .
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�

Denote Arξ the submatrix of Aξ by deleting the rows and columns of Ξt. If j ∈ Ξr
and i ∈ Ξt then (Aξ)i,j = 0 for every ξ = 0, . . . , N − 1. Hence,

∑
i∈Ξr

N−1∑
ξ=0

(
Arξ
)
i,j

= ]Ω for every j ∈ Ξr. (3.3)

Lemma 3.3. For any i, j ∈ Ξr and ξ1, . . . , ξn ∈ {0, . . . , N − 1}

(Aξ1 · · ·Aξn)i,j =
(
Arξ1 · · ·A

r
ξn

)
i,j
.

Proof. Let us prove by induction. For n = 2

(Aξ1Aξ2)i,j =

p+q∑
k=1

(Aξ1)i,k (Aξ2)k,j =
∑
k∈Ξr

(Aξ1)i,k (Aξ2)k,j =
(
Arξ1A

r
ξ2

)
i,j
.

We used in the second equation that (Aξ2)k,j = 0 whenever k ∈ Ξt. Then

(
Aξ1 · · ·AξnAξn+1

)
i,j

=

p+q∑
k=1

(Aξ1 · · ·Aξn)i,k
(
Aξn+1

)
k,j
.

Again,
(
Aξn+1

)
k,j

= 0 whenever k ∈ Ξt, so∑
k∈Ξr

(Aξ1 · · ·Aξn)i,k
(
Aξn+1

)
k,j

=
∑
k∈Ξr

(
Arξ1 · · ·A

r
ξn

)
i,k

(
Aξn+1

)
k,j

=
(
Arξ1 · · ·A

r
ξn+1

)
i,j
.

�

In particular, an important consequence of Lemma 3.3 is that for every ξ1, . . . , ξn ∈
{0, . . . , N − 1} and i ∈ Ξr

νθ(I
ξ1,...,ξn
i ) =

êTi A
r
ξ1
· · ·Arξn p̂
]Ωn

, (3.4)

where p̂ = (νθ(Ij))j∈Ξr and êi is the ith element of the natural basis of R]Ξr . Now,

we define a left-shift invariant measure η on the symbolic space Σ = {0, . . . , N − 1}N.
Endow Σ with the metric d(ξ, ζ) = N−n for ξ = (ξ1, ξ2, . . . ) and ζ = (ζ1, ζ2, . . . ),
where n is the largest integer such that ξi = ζi(1 ≤ i ≤ n). For a cylinder set
[ξ1, . . . , ξn] = {(ζ1, ζ2, . . . ) ∈ Σ : ζk = ξk, k = 1, . . . , n} let

η([ξ1, . . . , ξn]) :=
êTArξ1 · · ·A

r
ξn
p̂

]Ωn
, (3.5)

where ê =
∑

i∈Ξr
êi. By (3.3), η is a probability measure.

Lemma 3.4. The probability measure η is σ-invariant and mixing and hence er-
godic, where σ denotes the left-shift operator on Σ.

Proof. First, we prove the invariance. It is enough to prove for the cylinder sets.
Since the vector ê is a left-eigenvector of

∑N−1
ξ=0 Arξ (3.3), then for a cylinder set
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[ξ1, . . . , ξn]

η(σ−1[ξ1, . . . , ξn]) =

N−1∑
ξ=0

η([ξ, ξ1, . . . , ξn]) =

N−1∑
ξ=0

êTAξA
r
ξ1
· · ·Arξn p̂

]Ωn+1
=

êTArξ1 · · ·A
r
ξn
p̂

]Ωn
= η([ξ1, . . . , ξn]).

To prove the mixing property it is enough to show that for any cylinder sets
[ξ1, . . . , ξk] and [ζ1, . . . , ζl]

lim
n→∞

η([ξ1, . . . , ξk] ∩ σ−n[ζ1, . . . , ζl]) = η([ξ1, . . . , ξk])η([ζ1, . . . , ζl]).

By the definition of η (3.5), for sufficiently large n

η([ξ1, . . . , ξk]∩σ−n[ζ1, . . . , ζl]) =
N−1∑

i1,...,in−k=0

êTArξ1 · · ·A
r
ξk
Ari1 · · ·A

r
in−k

Arζ1 · · ·A
r
ζl
p̂

]Ωn+l
=

êTArξ1 · · ·A
r
ξk

(∑N−1
i=0 Ari

)n−k
Arζ1 · · ·A

r
ζl
p̂

]Ωn+l
.

Applying Lemma 3.1 and the basic properties of aperiodic, irreducible Markov
chains, we have

lim
n→∞

(∑N−1
i=0 Ari

)n−k
]Ωn−k = p̂ êT ,

which implies the mixing property. �

Lemma 3.5. Denote by hη the entropy of measure η. If N - ]Ω and N + 1 ≤ ]Ω
then hη < logN .

Proof. We argue by contradiction. Suppose that hη = logN . By [14, Theorem 4.10]
and [14, Theorem 4.18] we have that

hη = lim
n→∞

− 1

n

N−1∑
ξ1,...,ξn=0

êTArξ1 · · ·A
r
ξn
p̂

]Ωn
log

êTArξ1 · · ·A
r
ξn
p̂

]Ωn
,

and the right hand side decreases as n→∞. That is, hη = logN if and only if

êTArξ1 · · ·A
r
ξn
p̂

]Ωn
=

1

Nn
, for every n ≥ 1 and ξ1, . . . , ξn ∈ {0, . . . , N − 1}. (3.6)

By Lemma 3.1 there exists a K > 0 such that
(∑N−1

ξ=0 Arξ

)K
> 0, i.e. each element

of the matrix is strictly positive. Without loss of generality, we may assume that
K > (p + q)2 + 1. Then there exists a word (ζ1, . . . , ζK) of length K such that(∑N−1

ξ=0 Arξ

)K
− Arζ1 · · ·A

r
ζK

> 0. Let A := {0, . . . , N − 1}K \ {(ζ1, . . . , ζK)}. By

Perron-Frobenius theorem there exists a ρ > 0 and u, v vectors such that ρ is the
largest eigenvalue of the matrix

∑
ξ∈AA

r
ξ and u, v are the corresponding left and
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right eigenvectors. Moreover,

lim
n→∞

1

ρn

∑
ξ∈A

Arξ

n

= vuT . (3.7)

By our assumption (3.6)

1

n
log êT

∑
ξ∈A

Arξ

n

p̂ = log
]ΩK]A
NK

= log
]ΩK(NK − 1)

NK
.

On the other hand, by (3.7)

lim
n→∞

1

n
log êT

∑
ξ∈A

Arξ

n

p̂ = log ρ.

So ρ = ]ΩK − ]ΩK

NK but this is a contradiction since ]ΩK − ]ΩK

NK ∈ Q\Z cannot
be a root of characteristic polynomial of

∑
ξ∈AA

r
ξ, which is a matrix of integer

coefficients. �

Proof of Theorem 1.2. Let Γ be the natural projection from Σ to interval [0, 1],
that is,

Γ(ξ1, ξ2, . . . ) =
∞∑
n=1

ξn
Nn

. (3.8)

Denote hk the linear function, mapping Ik to [0, 1], that is, hk(x) = qx−(k−1−p).
The measure

ν̃θ :=
∑
k∈Ξr

νθ|Ik ◦ h
−1
k = η ◦ Γ−1

is Nx mod 1 invariant and ergodic by (3.4) and Lemma 3.4. Moreover,

dimH ν̃θ = min
1≤k≤p+q

dimH νθ|Ik ◦ h
−1
k = dimH νθ. (3.9)

By the Volume Lemma [13, Theorem 10.4.1,Theorem 10.4.2] and Lemma 3.5, we
have

dimH ν̃θ =
hη

logN
< 1. (3.10)

The statement of the theorem follows from (3.9), (3.10) and Proposition 1.1. �

4. Proof of Theorem 1.3 and Theorem 1.4

In the rest of the paper we assume that projθΛ = [− tan θ, 1]. In the previous
section we have shown that the matrices, constructed in (1.4) can be used for
determine the dimension of the projected natural measure. In this section we show
that the matrices can be used for determine the box dimension of the slices, with
the additional assumption that the projection is an interval.

We note that if projθΛ = [− tan θ, 1] then Ξr = Ξ and Ξt = ∅. In particular,
Arξ = Aξ for every ξ ∈ {0, . . . , N − 1}.
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Lemma 4.1. Let Ω ⊆ {0, . . . , N − 1}2 and θ ∈ [0, π/2) such that tan θ = p
q and

projθΛ = [− tan θ, 1]. Then for a = k−1−p
q + 1

q

∑∞
n=1

ξn
Nn

dimBEθ,a = lim inf
n→∞

log ekAξ1 · · ·Aξne
n logN

, and dimBEθ,a = lim sup
n→∞

log ekAξ1 · · ·Aξne
n logN

,

where ek is the kth element of the natural basis of Rp+q.

Proof. Let a = k−1−p
q + 1

q

∑∞
n=1

ξn
Nn . Let us recall the definition (2.1) of Gn(θ, a),

which is the number of cylinder sets intersecting the line Lθ,a. Since projθΛ =
[− tan θ, 1] let us observe that for every n ≥ 1 and every ω ∈ Ωn

Fω([0, 1]2) ∩ Lθ,a 6= ∅ ⇔ Fω(Λ) ∩ Lθ,a 6= ∅.
Hence

]Gn(θ, a) = ]
{
ω ∈ Ωn : Fω([0, 1]2) ∩ Lθ,a 6= ∅

}
.

Since tan θ is rational,

Fω([0, 1]2) ∩ Lθ,a 6= ∅ ⇔ there exists a 1 ≤ j ≤ p+ q such that fω(Ij) = Iξ1,...,ξnk

Using (3.2) we have ekAξ1 · · ·Aξne = ]Gn(θ, a). The statement follows from Lemma 2.2.
�

Proposition 4.2. Let Ω ⊆ {0, . . . , N − 1}2 and θ ∈ [0, π/2) such that tan θ = p
q

and projθΛ = [− tan θ, 1]. Then there exists a constant β = β(θ) depending only
on θ such that

dimH Eθ,a = dimB Eθ,a = β(θ) for Leb.-a.e. a ∈ projθΛ.

For the proof of Proposition 4.2 we refer to [9, Section 7].
Now, let us recall the definition of the pressure function P (t), and bmax defined

in (1.5), (1.6), i.e.

P (t) = lim
n→∞

1

n logN
log

N−1∑
ξ1,...,ξn=0

(
eTAξ1 · · ·Aξne

)t
, and bmax = lim

t→∞

P (t)

t
.

Lemma 4.3. The pressure function P (t) exists for every t ∈ R, and monotone
increasing, convex and continuous. Moreover, P (t) is continuously differentiable
for every t > 0.

Proof. By Lemma 3.1, there exists a K > 0 such that
(∑N−1

ξ=0 Aξ

)K
> 0. Then

the existence follows from [3, Lemma 2.2]. The differentiability follows from [6,
Theorem 3.3], and the monotonicity, convexity, and continuity property can be
proven by standard argument. The continuity of the derivative is not explicitely
mentioned in [6, Theorem 3.3], but it follows from convexity. �

Theorem 4.4. [3, Theorem 1.1] Let Aξ be non-negative matrices for ξ = 0, . . . , N− 1.

If there exists a K > 0 such that
∑K

n=0

(∑N−1
ξ=0 Aξ

)n
> 0 then

dimH

{
ξ ∈ Σ : lim

n→∞

log eTAξ1 · · ·Aξne
n logN

= α

}
= inf

t
{−αt+ P (t)} =: P ∗(α),

where dimH is defined according to the metric d(ξ, ζ) = N−n for ξ = (ξ1, ξ2, . . . )
and ζ = (ζ1, ζ2, . . . ), where n is the largest integer such that ξi = ζi(1 ≤ i ≤ n).
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Lemma 4.5. For every t > 0 there is a unique ergodic, left-shift invariant Gibbs
measure µt on Σ such that there exists a C > 0 that for any (ξ1, . . . , ξn) ∈
{0, . . . , N − 1}∗

C−1 ≤ µt([ξ1, . . . , ξn])

(eTAξ1 · · ·Aξne)
tN−nP (t)

≤ C.

Moreover,
dimH µt = −tP ′(t) + P (t)

and

lim
n→∞

log eTAξ1 · · ·Aξne
n logN

= P ′(t) for µt-a.a. (ξ1, ξ2, . . . ) ∈ Σ.

The proof of the lemma follows from [6, Theorem 3.2] and [6, Proof of The-
orem 1.3].

Lemma 4.6. For every t > 0

P ′(t) = lim
n→∞

1

n logN

N−1∑
ξ1,...,ξn=0

µt([ξ1, . . . , ξn]) log eTAξ1 · · ·Aξne =

inf
n≥1

1

n logN

N−1∑
ξ1,...,ξn=0

µt([ξ1, . . . , ξn]) log eTAξ1 · · ·Aξne,

where µt is the Gibbs measure defined in Lemma 4.5.

The proof of the lemma follows from [4, Theorem 1.2] and [4, Lemma 2.2(ii)].

Lemma 4.7. For any δ > 0

dimH

{
ξ ∈ Σ : lim sup

n→∞

log eTAξ1 · · ·Aξne
n logN

≥ δ
}
≤ inf

t>0
{−δt+ P (t)}

Proof. We will prove the upper bound with the method of Olsen and Winter [12].
Let ε > 0 be arbitrary but fixed. Let us define the following set of cylinders:

An(ε) :=

{
[ξ1, . . . , ξk] : k ≥ n, δ − ε ≤

log eTAξ1 · · ·Aξke
k logN

}
.

It is easy to see that the set ⋃
[ξ1,··· ,ξk]∈An(ε)

[ξ1, . . . , ξk]

covers the set Gδ :=
{
ξ ∈ Σ : lim supn→∞

log eTAξ1 ···Aξne
n logN ≥ δ

}
. Let Bn(ε) be the

set of disjoint cylinders in An(ε) such that⋃
[ξ1,··· ,ξk]∈Bn(ε)

[ξ1, . . . , ξk] =
⋃

[ξ1,··· ,ξk]∈An(ε)

[ξ1, . . . , ξk].

Then for every t > 0

H−δt+P (t)+2ε
N−n (Gδ) ≤

∑
[ξ1,...,ξk]∈Bn(ε)

N−k(−δt+P (t)+2ε) ≤

N−nε
∑

[ξ1,...,ξk]∈Bn(ε)

N−kP (t)
(
eTAξ1 · · ·Aξke

)t
.
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By Lemma 4.5

H−δt+P (t)+2ε
N−n (Gδ) ≤ N−nε

∑
[ξ1,...,ξk]∈Bn(ε)

µt([ξ1, . . . , ξk]) ≤ N−nε.

Since ε > 0 and t > 0 were arbitrary,

dimH Gδ ≤ inf
t>0
{−δt+ P (t)} .

�

Before we prove our main theorems let us introduce p+ q projecting maps from
Σ to Ik. That is,

Γk(ξ) :=
k − 1− p

q
+

1

q

∞∑
k=1

ξk
Nk

.

Denote Eθ,Γ(ξ) the union of slices corresponding to Γk(ξ), i.e.

Eθ,Γ(ξ) :=

p+q⋃
k=1

Eθ,Γk(ξ).

Proof of Theorem 1.3. By Proposition 4.2, it is enough to show that

dimH {a ∈ projθΛ : dimH Eθ,a = dimB Eθ,a = s− 1} < 1 (4.1)

(we remind that s = log ]Ω/ logN is the Hausdorff dimension of the carpet). How-
ever,

dimH {a ∈ projθΛ : dimH Eθ,a = dimB Eθ,a = s− 1} ≤

dimH {a ∈ projθΛ : dimB Eθ,a = s− 1} = dimH

p+q⋃
k=1

{a ∈ Ik : dimB Eθ,a = s− 1} =

dimH

p+q⋃
k=1

{
ξ ∈ Σ : dimB Eθ,Γk(ξ) = s− 1

}
≤ dimH

{
ξ ∈ Σ : dimB Eθ,Γ(ξ) ≥ s− 1

}
.

By Lemma 4.1 and Lemma 4.7

dimH

{
ξ ∈ Σ : dimB Eθ,Γ(ξ) ≥ s− 1

}
≤ inf

t>0
{−(s− 1)t+ P (t)} .

By the definition of pressure function P (t) we have P (0) = 1, P (1) = s. Moreover,
by Lemma 4.3 and Lemma 4.5, we have P ′(1) = s − dimH η > s − 1, where η is
the probability measure defined in (3.5). Then there exists a t′ ∈ [0, 1], such that
P (t′) < 1 + (s− 1)t′. Hence

inf
t>0
{−(s− 1)t+ P (t)} ≤ −(s− 1)t′ + P (t′) < 1,

which implies (4.1) and completes the proof. �

Before we prove Theorem 1.4, we need two technical lemmas.

Lemma 4.8. Let µt be the measure defined in Lemma 4.5. Then for µt-a.e. ξ ∈ Σ

dimH Eθ,Γ(ξ) = dimP Eθ,Γ(ξ) = dimB Eθ,Γ(ξ).
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Proof. Let H : (x, y) 7→ (x, px− qy mod 1) be a map of S1 × S1 into itself. Then
H(Λ) ⊆ S1 × S1 compact, TN × TN -invariant. Since µt is left-shift invariant then
µt ◦ Γ−1 is TN -invariant. Using [8, Proposition 2.6] we have for µt ◦ Γ−1-a.e. x

dimH π
−1(x) = dimP π

−1(x) = dimB π
−1(x),

where π : H(Λ) 7→ S1 is the projection to the first coordinate.
Let J : x 7→ −qx mod 1 be the mapping projθΛ into S1. Then for every

k, l ∈ Ξ and ξ ∈ Σ, J(Γk(ξ)) = J(Γl(ξ)) = Γ(ξ), where Γ : Σ 7→ [0, 1] is defined in

(3.8). Observe that π−1(Γ(ξ)) = H(Eθ,Γ(ξ)). The proof is completed by the fact
that dimH(Eθ,Γ(ξ)) = dimEθ,Γ(ξ), where dim denotes packing, Hausdorff and box
dimension simultaneously. �

Lemma 4.9. For every δ ∈ (β(θ), bmax) there exists a 0 < t = tδ such that

P ′(tδ) = δ.

Proof. By Lemma 4.3, the function P ′(t) is monotone increasing and continuous
for t > 0, hence it is enough to show that β(θ) = limt→0+ P

′(t).
First, we prove that

1 = dimH

{
ξ ∈ Σ : lim

n→∞

log eTAξ1 · · ·Aξne
n logN

= β(θ)

}
= inf

t
{−β(θ)t+ P (t)} . (4.2)

The second equality follows from Theorem 4.4. Using Theorem 1.3, we have that
for every k ∈ Ξ

L({a ∈ Ik : dimB Eθ,a = β(θ)}) = L(Ik) =
1

q
,

where L denotes the Lebesgue measure on the real line. Let λ be the uniform
Bernoulli measure on Σ. Using that q ∗ L|Ik = λ ◦ Γ−1

k , we have

1 = q ∗ L({a ∈ Ik : dimB Eθ,a = β(θ)}) = λ(
{
ξ ∈ Σ : dimB Eθ,Γk(ξ) = β(θ)

}
)

Hence,

1 = λ(

p+q⋂
k=1

{
ξ ∈ Σ : dimB Eθ,Γk(ξ) = β(θ)

}
) ≤

λ(

{
ξ ∈ Σ : lim

n→∞

log eTAξ1 · · ·Aξne
n logN

= β(θ)

}
). (4.3)

Since dimH λ = 1, we get the first equation in (4.2).
The other consequence of (4.3) combined with the sub-additive ergodic theorem

[14, p. 231] is that

β(θ) = lim
n→∞

1

n logN

N−1∑
ξ1,...,ξn=0

1

Nn
log eTAξ1 · · ·Aξne.
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Moreover, it follows from the definition of Gibbs measures {µt}t>0, defined in
Lemma 4.5, that µt → λ weakly as t→ 0+. Therefore, by Lemma 4.6,

lim
t→0+

P ′(t) ≤ lim
t→0+

1

n logN

N−1∑
ξ1,...,ξn=0

µt([ξ1, . . . , ξn]) log eTAξ1 · · ·Aξne =

1

n logN

N−1∑
ξ1,...,ξn=0

1

Nn
log eTAξ1 · · ·Aξne.

Since it holds for every n ≥ 1, we have limt→0+ P
′(t) ≤ β(θ).

On the other hand, it follows from Theorem 4.4 that for every t > 0, 1 ≤
−β(θ)t+P (t). Since P (0) = 0 and P (t) is continuously differentiable for t > 0, we
have β(θ) ≤ limt→0+ P

′(t). �

Proof of Theorem 1.4. Denote by dim either the Hausdorff or packing dimension
and let δ ∈ [β(θ), bmax) then

dimH {a ∈ projθΛ : dimEθ,a = δ} = dimH

p+q⋃
k=1

{a ∈ Ik : dimEθ,a = δ} .

Then using the properties of Γk : Σ 7→ Ik, we get

dimH

p+q⋃
k=1

{a ∈ Ik : dimEθ,a = δ} = dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimEθ,Γk(ξ) = δ

}
.

By simple property of dimension, we get

dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimEθ,Γk(ξ) = δ

}
≥

dimH

{
ξ ∈ Σ : dimH Eθ,Γ(ξ) = dimP Eθ,Γ(ξ) = dimB Eθ,Γ(ξ) = δ

}
.

There are two possibilities, if δ = β(θ) than we consider the uniform measure λ
and dimH λ = P ∗(β(θ)) = 1. Otherwise, by Lemma 4.9, there exists a tδ ≥ 0 such
that P ′(tδ) = δ. Lemma 4.5 implies that dimH µtδ = −tδP ′(tδ) + P (tδ) = P ∗(δ).
Using Lemma 4.8

dimH {a ∈ projθΛ : dimEθ,a = δ} ≥

dimH

{
ξ ∈ Σ : dimH Eθ,Γ(ξ) = dimP Eθ,Γ(ξ) = dimB Eθ,Γ(ξ) = δ

}
≥ dimH µtδ = P ∗(δ),

which proves the lower bound. For the upper bound, using Lemma 4.7

dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimEθ,Γk(ξ) = δ

}
≤ dimH

{
ξ ∈ Σ : dimBEθ,Γ(ξ) ≥ δ

}
≤

inf
t>0
{−δt+ P (t)} .

The function P (t) is convex (Lemma 4.3), hence t 7→ −δt + P (t) is convex as
well. So either δ = β(θ) then limt→0+ P

′(t) = δ = β(θ) or δ > β(θ) then the
convexity of the function implies that

inf
t
{−δt+ P (t)} = inf

t>0
{−δt+ P (t)} ⇔ there exists a t > 0 that P ′(t) = δ.

Therefore,

dimH {a ∈ projθΛ : dimEθ,a = δ} ≤ inf
t>0
{−δt+ P (t)} = P ∗(δ),
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which completes the proof. �

Now we will turn to the special case of Sierpiński gasket.

Lemma 4.10. Suppose that Λ is the Sierpiński gasket (i.e. N = 2 and Ω =

{0, 1}2 \ {(1, 1)}) then for any θ ∈ [0, π/2) such that tan θ ∈ Q the set

M :=
∞⋃

k=−∞
σk
{

(ξ1, ξ2, . . . ) ∈ Σ : ∀n ≥ 1∃i, j ∈ Ξ, (Aξ1 · · ·Aξn)i,j = 0
}

has Hausdorff dimension 0. Moreover, for every ξ ∈ Σ\N

dimBEθ,Γk(ξ) = dimBEθ,Γ(ξ) = dimBEθ,Γ(σξ) for every k = 1, . . . , p+ q.

Proof. The first part of the lemma follows from [1, Proposition 3.2].
To prove the rest of the statement, let us observe dimBEθ,Γk(ξ) ≤ dimBEθ,Γ(ξ)

for every ξ ∈ Σ and k ∈ Ξ. Moreover, since eTAξ ≤ ]Ω · eT and

dimBEθ,Γ(ξ) = lim sup
n→∞

log eTAξ1 · · ·Aξne
n logN

,

we have dimBEθ,Γ(ξ) ≤ dimBEθ,Γ(σξ).

If ξ /∈M then there exists a K = K(ξ) such that

Aξ1 · · ·AξK > 0.

Therefore, for every n ≥ K + 1, eTkAξ1 · · ·Aξne ≥ eTAξK+1
· · ·Aξne for any k =

1, . . . , p+ q. This implies that dimBEθ,Γk(ξ) ≥ dimBEθ,Γ(σKξ). Hence,

dimBEθ,Γ(σKξ) ≥ dimBEθ,Γ(σξ) ≥ dimBEθ,Γ(ξ) ≥ dimBEθ,Γk(ξ) ≥ dimBEθ,Γ(σKξ).

�

Proposition 4.11. If Λ is the Sierpiński gasket then for every ξ /∈M and k ∈ Ξ

dimBEθ,Γk(ξ) = dimP Eθ,Γk(ξ).

Proof. Let ξ /∈ M and k ∈ Ξ. Moreover, let {Ai} be an arbitrary countable
decomposition of Eθ,Γk(ξ). Since the set Eθ,Γk(ξ) is compact, there exists a j such

that Aj contains a non-empty interior in Eθ,Γk(ξ). That is, there exists an ε > 0 and

x ∈ Eθ,Γk(ξ) such that Bε(x) ∩ Eθ,Γk(ξ) ⊆ Aj . In particular, there exists an n ≥ 1

and (ω0, . . . , ωn−1) ∈ Ωn such that Fω0,...,ωn−1(Λ) ∩ Eθ,Γk(ξ) ⊆ Aj . It is easy to see

that Fω0,...,ωn−1(Λ) ∩ Eθ,Γk(ξ) = Fω0,...,ωn−1(Eθ,Γi(σnξ)) for an i ∈ {1, . . . , p+ q}.
Using Lemma 4.10 and the fact that M is σ invariant, we get

dimBAj ≥ dimBFω0,...,ωn−1(Eθ,Γi(σnξ)) = dimBEθ,Γi(σnξ) = dimBEθ,Γk(ξ).

The statement follows from the definition of packing dimension. �

Proof of Proposition 1.5. Let δ ∈ [bmin, bmax] arbitrary, then

dimH {a ∈ projθΛ : dimP Eθ,a = δ} = dimH

{
ξ ∈ Σ : ∃k ∈ Ξ dimP Eθ,Γk(ξ) = δ

}
.
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Using Proposition 4.11 and Lemma 4.10

dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimP Eθ,Γk(ξ) = δ

}
=

dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimBEθ,Γk(ξ) = δ

}
= dimH

{
ξ ∈ Σ : dimBEθ,Γ(ξ) = δ

}
.

The statement follows from Lemma 4.1 and Theorem 4.4. �
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