
ON THE LEDRAPPIER-YOUNG FORMULA FOR SELF-AFFINE MEASURES

BALÁZS BÁRÁNY

Abstract. Ledrappier and Young [18] introduced a relation between entropy, Lyapunov exponents
and dimension for invariant measures of diffeomorphisms on compact manifolds. In this paper, we
show that self-affine measures on the plane satisfy the Ledrappier-Young formula if the corresponding
iterated function systems (IFS) satisfies the strong separation condition and the linear parts satisfy
the so called dominated splitting. We give a sufficient conditions, inspired by Ledrappier [16], that
the dimensions of such self-affine measure is equal to the Lyapunov dimension. We show some
applications, namely, we give another proof for Hueter-Lalley’s classical theorem [14] and we consider
self-affine measures and sets generated by lower triangular matrices.

1. Introduction

Let A := {A1, A2, . . . , AN} be a finite set of contracting, non-singular 2 × 2 matrices, and let

Φ := {fi(x) = Aix+ ti}
N
i=1 be an iterated function system on the plane with affine mappings. Well

known fact that there exists a unique non-empty compact subset Λ of R2 such that

Λ =
N⋃
i=1

fi(Λ).

We call the set Λ as the attractor of Φ.
The dimension theory of self-affine sets is far away from being well understood. One of the most

natural approach of the Hausdorff and box dimension of self-affine sets is the so-called subadditive
pressure function, introduced by Falconer [7]. Denote αi(A) the ith singular value of a 2 × 2 non-
singular matrix A. For s ≥ 0 define the singular value function φs as follows

φs(A) :=


α1(A)s 0 ≤ s ≤ 1

α1(A)α2(A)s−1 1 < s ≤ 2

(α1(A)α2(A))s/2 s > 2.

We note that in this case, α1(A) = ‖A‖ and α2(A) = ‖A−1‖−1, where ‖.‖ is the usual matrix norm
induced by the Euclidean norm on R2. Let us define the subadditive pressure function generated by
A for s ≥ 0 as

P (s) := lim
n→∞

1

n
log

N∑
i1,...,in=1

φs(Ai1 · · ·Ain). (1.1)

The function P (s) is continuous, strictly monotone decreasing on [0,∞), moreover P (0) = logN
and lims→∞ P (s) = −∞. Falconer showed in [7] that the unique root s0 of the subadditive pressure
function is always an upper bound for the box dimension of the attractor Λ and if ‖Ai‖ < 1/3 for
every i = 1, . . . , N then

dimH Λ = dimB Λ = min {2, s0} for Lebesgue almost every t = (t1, . . . , tN ) ∈ R2N .
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The bound was later extended to 1/2 by Solomyak, see [25].
In the case of similarities (i.e. Ai = ρiUi, where 0 < ρi < 1 and Ui are orthonormal matrices) the

dimension theory of the attractors is well understood if a separation condition holds. In the case of
strict affine mappings, it is very unclear. McMullen [21] showed a family of self-affine sets on the
plane, where the Hausdorff and box dimension differs, however a separation condition holds. Later,
such examples were constructed by Gatzouras and Lalley [12] and Barański [2]. In these cases the
linear parts of the maps were diagonal matrices.

Falconer [8] proved that under some conditions and separation, the box dimension of a self-affine
set is equal to the root of the subaddtive pressure. However, the only known sufficient condition in
general was given by Hueter and Lalley [14], which ensures that the Hausdorff and box dimension of
a self-affine set coincide and equal to the root of the subadditive pressure.

One way to understand the Hausdorff dimension of self-affine sets depends on the understand of
Hausdorff dimension of self-affine measures. We call a measure µ self-affine if its compactly supported
with support Λ and there exists a p = (p1, . . . , pN ) probability vector such that

µ =
N∑
i=1

piµ ◦ f−1
i . (1.2)

Ledrappier and Young [17, 18] introduced a formula for the Hausdorff dimension of invariant measures
of diffeomorphisms on compact manifolds. It is a widespread claim that self-affine measures satisfy
this formula but it was proven just in a very few cases. Basically, the first result on a class of self-
affine measures and sets, for which the formula hold, was proven by Przytycki and Urbański [23].
Later, Feng and Hu [11] proved that if the linear parts of the mappings are diagonal matrices then
the Ledrappier-Young formula holds for the Hausdorff dimension of the self-affine measures, without
assuming any separation condition or condition on the norm of the matrices. Moreover, Ledrappier
[16] proved that the formula is valid for a special family of self-affine measures, namely when the
support is the graphs of a Weierstrass functions.

Our main goal is to generalize Ledrappier’s result [16] for a more general family of self-affine
measures.

An other important dimension theoretical property of a self-affine measure is its exactness. Denote
Br(x) the two dimensional ball centered at x ∈ R2 with radius r. Then we call

dµ(x) = lim inf
r→0+

logµ(Br(x))

log r
and dµ(x) = lim sup

r→0+

logµ(Br(x))

log r

the lower and upper local dimension of µ at the point x, if the limit exists then we say that the
measure has local dimension dµ(x) at the point x. It is well known fact that

dimH µ = µ− esssupxdµ(x) (1.3)

for any µ Radon measure. Moreover, we call the measure µ exact dimensional if the local dimension
exists for µ almost every points and equals to dimH µ. Feng and Hu [11] proved that self-similar
measures, and self-affine measures if the linear parts are diagonal matrices, are exact dimensional.
Ledrappier [16] proved that for the graphs of Weierstrass functions. We extend this phenomena, as
well.

To analyse self-affine measures, it is convenient to handle it as a natural projection of Bernoulli
measures. That is, let Σ+ = {1, . . . , N}N be the symbolic space of one side infinite length words

and let ν = {p1, . . . , pN}N be a Bernoulli measure, where p = (p1, . . . , pN ) is a probability vector.

If π+ : Σ+ 7→ Λ denotes the natural projection, i.e. π+(i0, i1, . . . ) = limn→∞ fi0 ◦ · · · ◦ fin(0), then
µ = (π+)∗ν = ν ◦ π−1

+ .



According to the classical result of Oseledec Multiplicative Ergodic Theorem [22] for ν-almost
every i ∈ Σ+ there exist constants 0 < χsµ ≤ χssµ such that

lim
n→∞

1

n
logα1(Ai0 · · ·Ain−1) = −χsµ and

lim
n→∞

1

n
logα2(Ai0 · · ·Ain−1) = −χssµ for ν-a.e. i = (i0, i1, . . . ) ∈ Σ+.

Denote the entropy of ν by hν = −
∑N

i=1 pi log pi then we can define the Lyapunov-dimension of the
measure µ by

dimLyap µ = min

{
2,
hν
χsµ
, 1 +

hν − χsµ
χssµ

}
.

It is known that the Lyapunov dimension of a self-affine measure is always an upper bound for the
Hausdorff dimension, see [15]. We show also a sufficient condition (based on the idea of Ledrappier
[16]) which implies that the Lyapunov- and Hausdorff dimension of a self-affine measure coincide.

Throughout the paper we will follow the method of Ledrappier [16] and Ledrappier and Young
[17, 18]. At the end of the paper we give an alternative proof for the Hueter-Lalley Theorem and we
show some applications for triangular matrices.

2. Preliminaries and Results

Let A := {A1, A2, . . . , AN} be a finite set of contracting, non-singular 2 × 2 matrices, and let

Φ := {fi(x) = Aix+ ti}
N
i=1 be an iterated function system on the plane with affine mappings.

Definition 2.1. We say that Φ satisfies the strong separation condition (SSC) if there exists an open

and bounded set O ⊂ R2 such that

(1) for every i = 1, . . . , N , fi(O) ⊆ O and
(2) for every i 6= j, fi(O) ∩ fj(O) = ∅,

where O denotes the closure of O.

If the IFS satisfies the SSC then

fi(Λ) ∩ fj(Λ) = ∅ for every i 6= j, (2.1)

where Λ denotes the attractor of Φ. One can show that (2.1) is actually equivalent to SSC. Moreover,

Λ =
∞⋂
n=1

N⋃
i1,...,in=1

fi1 ◦ · · · ◦ fin(O).

Let us denote by S = {1, . . . , N} the set of symbols and by Σ = SZ the symbolic space of two side
infinite words. Moreover, let Σ+ = SN be the set of right- and Σ− = SZ− be the set of left side infinite
length words. For a two sided infinite length word i = (. . . , i−2, i−1; i0, i1, i2, . . . ) let us denote the
left hand side by i− and the right-hand side by i+, i.e. i− = (. . . , i−2, i−1) and i+ = (i0, i1, i2, . . . ).
Denote Σ∗ =

⋃∞
n=0 Sn the set of finite length words. The length of a finite length word i is denoted

by |i| and for an infinite length word i ∈ Σ we denote by i|kn the elements of i between n and k, i.e.
i|kn = (in, . . . , ik). Let us define also the cylinder sets on Σ (and on Σ+ respectively) by

[i|kn] =
{

j ∈ Σ : j|kn = i|kn
}
.

We denote the composition of functions of Φ for a finite length word i = (i1, . . . , in) ∈ Σ∗ by
fi = fi1 ◦ · · · ◦ fin .

Now let us introduce a dynamical system F acting on O × Σ+ by

F (x, i) := (fi0(x), σi),



where O is the open and bounded set from Definition 2.1. Since F is hyperbolic map acting O×Σ+,
the unique non-empty and compact set, which is F -invariant, is

⋂∞
n=0 F

n(O × Σ+) = Λ× Σ+.
Define π− : Σ− 7→ Λ (similarly to π+) by

π−(. . . , i−2, i−1) = lim
n→∞

fi−1 ◦ · · · ◦ fi−n(0) =
∞∑
n=1

Ai−1 · · ·Ai−n+1ti−n .

If σ is the left-shift operator on Σ then it is easy to see that F is conjugate to σ by the projection
π : Σ 7→ Λ× Σ+, where π(i) := (π−(i−), i+). That is,

π ◦ σ = F ◦ π.

Let p = (p1, . . . , pN ) be a probability vector and let ν = {p1, . . . , pN}N be the corresponding

left-shift invariant and ergodic Bernoulli-probability measure on Σ+. Denote ν̂ = {p1, . . . , pN}Z the
natural extension of ν to Σ. Let us define its projection to Λ×Σ+ by µ̂ := π∗ν̂ = ν̂ ◦ π−1. Then µ̂ is
an F -invariant and ergodic probability measure on Λ×Σ+, moreover µ̂ = µ×ν, where µ is self-affine
measure defined in (1.2).

For the analysis of the dimension theoretical point of view, we need an assumption for the matrices
A, which ensures for us that there is a dynamically invariant foliation on O × Σ+.

Definition 2.2. We say that the set A of matrices satisfies the dominated splitting if there are
constants C, δ > 0 such that

α1(Ai)

α2(Ai)
≥ Ceδn for all i ∈ Σ∗ with |i| = n.

For example, family of matrices with strictly positive entries satisfies dominated splitting, see [1].
Let us define a map from Σ to A in a natural way, i.e. A(i) := Ai0 . Denote the product by

A(n)(i) := A(σn−1i) · · ·A(i) for i ∈ Σ and n ≥ 1. Now we are going to state some useful properties
for set A of matrices, satisfying dominated splitting.

Lemma 2.3 ([4],[26]). The set A of matrices satisfies the dominated splitting if and only if for every
i ∈ Σ there are two one-dimensional subspaces ess(i), es(i) of R2 such that

(1) A(i)ei(i) = ei(σi) for every i ∈ Σ and i = s, ss,
(2) there are constants C, δ > 0 such that

‖A(n)(i)|es(i)‖
‖A(n)(i)|ess(i)‖

≥ Ceδn for all i ∈ Σ and n ≥ 1.

We call the family of subspaces ess(i) as strong stable directions.

We note that the dependence of the subspaces ei on i ∈ Σ is continuous, that is ei : Σ 7→ P1 is
continuous with the standard metrics, where P1 denotes the projective space, see [6, Section B.1].

Lemma 2.4 ([5]). Let A be a set of matrices satisfying the dominated splitting and let ess(i), es(i) be
the two one-dimensional subspaces of R2 defined in Lemma 2.3. Then there exists a constant C > 0
such that

C−1‖A(n)(i)|es(i)‖ ≤ α1(A(n)(i)) ≤ C‖A(n)(i)|es(i)‖ and

C−1‖A(n)(i)|ess(i)‖ ≤ α2(A(n)(i)) ≤ C‖A(n)(i)|ess(i)‖.

In particular,

χiµ = − lim
n→∞

1

n
log ‖A(n)(i)|ei(i)‖ = −

∫
log ‖A(i)|ei(i)‖dν̂(i) for ν̂-a.e. i and i = s, ss. (2.2)



The dominated splitting property implies that the Lyapunov exponents are always district, actually
χsµ + δ ≤ χssµ for any µ self-affine measure.

Let C+ :=
{

(x, y) ∈ R2\{(0, 0)} : xy ≥ 0
}

be the standard positive cone. A cone is an image of
C+ by a linear isomorphism and a multicone is a disjoint union of finitely many cones.

Lemma 2.5 ([1], [4]). A set A of matrices satisfies the dominated splitting if and only if A has

a forward invariant multicone, i.e there is a multicone M such that
⋃N
i=1Ai(M) ⊂ Mo, where Mo

denotes the interior of M .

Note that if M is a forward-invariant multicone w.r.t A = (A1, . . . , AN ) then the closure of its
complement is backward-invariant, i.e. forward-invariant for A−1 = (A−1

1 , . . . , A−1
N ).

Lemma 2.6 ([1], [4]). Let A be a set of matrices satisfying the dominated splitting and let M be a
forward-invariant multicone. Then for every i ∈ Σ

es(i) =
∞⋂
n=1

Ai−1 · · ·Ai−n(M) and ess(i) =

∞⋂
n=1

A−1
i0
· · ·A−1

in−1
(M c),

where M c denotes the complement of M . In particular, es(i) depends only on i− and ess(i) depends
only on i+.

An easy consequence of Lemma 2.5 and Lemma 2.6 is that there exists a constant α > 0 such that

^es(i),ess(j) ≥ α > 0, for every i, j ∈ Σ, (2.3)

where ^ denotes the included angle.
Let us denote the orthogonal projection from R2 to the subspace perpendicular to ess(i) by projssi .

We call the family of projections of µ along the strong stable directions as transversal measures and
we denote by

µTi := (projssi )∗µ = µ ◦ (projssi )−1. (2.4)

Now we are ready to state our main theorem.

Theorem 2.7. Let A = {A1, A2, . . . , AN} be a finite set of contracting, non-singular 2× 2 matrices,

and let Φ = {fi(x) = Aix+ ti}
N
i=1 be an iterated function system on the plane with affine mappings.

Let ν be a left-shift invariant and ergodic Bernoulli-probability measure on Σ+, and µ is the corres-
ponding self-affine measure. If

(1) A satisfies the dominated splitting,
(2) Φ satisfies the strong separation condition

then µ is exact dimensional and

dimH µ =
hν
χssµ

+

(
1−

χsµ
χssµ

)
dimH µ

T
i for ν-almost every i ∈ Σ+, (2.5)

where hν denotes the entropy of ν and χsµ, χ
ss
µ are the Lyapunov exponents, defined in (2.2).

We note that, unfortunately, the strong separation condition cannot be relaxed to the open
set condition. Let A1 and A2 be two matrices with strictly positive entries such that the IFS
{fi(x) = Aix}i=1,2 maps the closed unit square into itself and f1((0, 1)2) ∩ f2((0, 1)2) = ∅. Then the

IFS satisfies the open set condition, however its attractor is only a single point. Hence, (2.5) cannot
hold for any self-affine measure, which are just the Dirac measure.

Since the transversal measures µTi are the orthogonal projections of µ, dimH µ
T
i ≤ min {1,dimH µ}.

By (2.5), simple algebraic manipulations show that

dimH µ = dimLyap µ⇔ dimH µ
T
i = min {1, dimH µ} for ν-a.e. i ∈ Σ+. (2.6)



If the distribution of the strong stable directions ess has large dimension then one can claim that the
right-hand side of (2.6) holds. Let us consider the map ess : Σ+ 7→ P1 which maps an i ∈ Σ+ to the
element of the projective space associated to ess(i). Let us define the push-down measure of ν by ess
on P1 as

νss := (ess)∗ν = ν ◦ (ess)
−1. (2.7)

Theorem 2.8. Let A = {A1, A2, . . . , AN} be a finite set of contracting, non-singular 2× 2 matrices,

and let Φ = {fi(x) = Aix+ ti}
N
i=1 be an iterated function system on the plane with affine mappings.

Let ν be a left-shift invariant and ergodic Bernoulli-probability measure on Σ+, and µ is the corres-
ponding self-affine measure. If

(1) A satisfies the dominated splitting,
(2) Φ satisfies the strong separation condition,
(3) dimH νss ≥ min {1,dimLyap µ}

then

dimH µ = dimLyap µ = min

{
hν
χsµ
, 1 +

hν − χsµ
χssµ

}
.

The proof of Theorem 2.8 is based on the idea of Ledrappier [16, Lemma 1], and uses a modification
of the classical result of Marstrand [20].

Proof of Theorem 2.8. By Theorem 2.7, we know that dimH µ
T
i is a constant for ν-almost every

i ∈ Σ+. Using Lemma 5.1 we have that for every ε > 0 there exists a set A ⊆ Σ+ such that ν(A) > 0
and for every i ∈ A dimH µ

T
i ≥ min {1,dimH µ}−ε. This implies that dimH µ

T
i ≥ min {1, dimH µ}−ε

for ν-almost every i ∈ Σ+. Since ε > 0 was arbitrary we get

dimH µ
T
i = min {1, dimH µ} for ν-almost every i ∈ Σ+.

The statement of the theorem follows by (2.6). �

Lemma 5.1 is stated and proved in the Appendix, Section 5.

3. Proof of Ledrappier-Young formula

The proof of Theorem 2.7 is decomposed into four propositions, Proposition 3.1, 3.3, 3.7, and 3.8.
The proofs of Proposition 3.1 and 3.3 follow the proof of [16, Proposition 2]. Proposition 3.7 is a
modified versions of [18, Lemma 11.3.1] and Proposition 3.8 is a modification of [18, Section (10.2)].

Let ν be the left-shift invariant and ergodic Bernoulli-probability measure on Σ+ and µ is self-
affine measure defined in (1.2). Let µ̂ = µ × ν be the F -invariant and ergodic probability measure
on Λ× Σ+, defined in the previous section. Denote B the usual Borel σ-algebra on Λ× Σ+.

If ζ is a measurable partition of Λ × Σ+ then by the classical result of Rokhlin [24], there exists

a canonical system of conditional measures, i.e. for µ̂-a.e. y ∈ Λ × Σ there exists a measure µζy
supported on ζ(y), the element of ζ containing y. These measures are uniquely defined up to a 0

measure set and for every measurable set A the function y 7→ µζy(A) is Bζ-measurable, where Bζ is
the sub-σ-algebra of B whose elements are union of elements of ζ. Moreover,

µ̂(A) =

∫
µ̂ζy(A)dµ̂(y). (3.1)

For two measurable partitions ζ1 and ζ2 we define the common refinement ζ1 ∨ ζ2 such that for
every y, (ζ1 ∨ ζ2)(y) = ζ1(y) ∩ ζ2(y). Moreover, let us define the image of the partition ζ in the

natural way, i.e. for every y, (Fζ)(y) = F (ζ(F−1(y))).

We define a dynamically invariant foliation on Λ×Σ+ with respect to the strong stable directions.
Denote ess the family of one-dimensional strong stable directions defined in Lemma 2.3. Since ess



depends only on i+ by Lemma 2.5, it defines a foliation on O for every i+ ∈ Σ+. Hence, it defines a
foliation ξss on Λ×Σ+. Namely, for an y = (x, i) ∈ Λ×Σ+ let lss(y) be the line trough x parallel to

ess(i) on R2×{i}. Let the partition element ξss(y) be the intersection of the line lss(y) with Λ×{i}.
It is easy to see that Fξss is a refinement of ξss, that is, for every y, (Fξss)(y) ⊂ ξss(y).

Let us define the conditional entropy of Fξss with respect to ξss in the usual way,

H(Fξss|ξss) := −
∫

log µ̂ξ
ss

y ((Fξss)(y))dµ̂(y).

Proposition 3.1. For µ̂-a.e. y ∈ Λ× Σ+ the measure µ̂ξ
ss

y is exact dimensional and

dimH µ̂
ξss

y =
H(Fξss|ξss)

χssµ
.

Before we prove the proposition, we define another partition P = {fi(Λ)× Σ+}Ni=1. It is easy to
see that

P ∨ ξss = Fξss. (3.2)

Let us denote the ball with radius r centered at y by Br(y). Let Bss
r (y) be the restriction of the ball

to ξss(y). That is,

Bss
r (y) =

{
z ∈ ξss(y) : |y − z| ≤ r

}
,

where |.| denotes the usual Euclidean norm on R2.

Lemma 3.2. There is a constant c1 > 0 that for every n ≥ 1 and y = (x, i) ∈ Λ × Σ+ with
x = π−(. . . , i−2, i−1)

Bss
c−1
1 α2(Ai−1

···Ai−n )
(y) ⊆

(
n−1∨
k=0

F kP ∨ ξss
)

(y) ⊆ Bss
c1α2(Ai−1

···Ai−n )(y),

where α2(.) is the second singular value of a matrix.

Proof. Let us fix an n ≥ 1 and y ∈ Λ× Σ+ and let F−n(y) = (x′, i′) then i′ = (i−n, . . . , i−1, i0, . . . ).

Denote D = diam(O) the diameter of O. By the definition of strong stable directions, see Lemma 2.3,
we have

diam

((
n−1∨
k=0

F kP ∨ ξss
)

(y)

)
≤ D‖A(n)(i′)|ess(i′)‖.

On the other hand, let κ = mini 6=j dist(fi(Λ), fj(Λ)). Since the IFS Φ satisfies the strong separation
condition, see Definition 2.1, κ > 0. Then for every F−n(y) = (x′, i′) ∈ Λ × Σ+ if x′ ∈ fi(Λ) then

dist(x′, fj(Λ)) > κ/2 for every j 6= i. So

Fn(Bss
κ
2

(F−n(y))) ⊆

(
n−1∨
k=0

F kP ∨ ξss
)

(y).

Applying again Lemma 2.3, we get Fn(Bss
κ
2

(F−n(y))) = Bss
κ
2
‖A(n)(i′)|ess(i′)‖

(y).

Let C > 0 be the constant defined in Lemma 2.4, then by choosing c1 := C max
{
D, (κ2 )−1

}
, the

statement of the lemma follows. �

Proof of Proposition 3.1. To prove the statement of the proposition it is enough to show that

lim
r→0+

log µ̂ξ
ss

y (Bss
r (y))

log r
=
H(Fξss|ξss)

χssµ
for µ̂-a.e y.



By Lemma 3.2, it is equivalent to show that

lim
n→∞

log µ̂ξ
ss

y

((∨n−1
k=0 F

kP ∨ ξss
)

(y)
)

logα2(Ai−1 · · ·Ai−n)
=
H(Fξss|ξss)

χssµ
for µ̂-a.e y. (3.3)

Then by using the definition of the partitions and conditional measures,

log µ̂ξ
ss

y

((
n−1∨
k=0

F kP ∨ ξss
)

(y)

)
= log µ̂ξ

ss

y

(
P(y) ∩ · · · ∩ Fn−1(P(F−n+1(y)))

)
=

log µ̂ξ
ss

y (P(y)) + log µ̂ξ
ss∨P

y

(
F (P(F−1(y)))

)
+ · · ·+ log µ̂ξ

ss∨P∨···∨Fn−2P
y

(
Fn−1(P(F−n+1(y)))

)
.

Applying (3.2)

log µ̂ξ
ss∨P∨···∨Fk−1P

y

(
F k(P(F−k(y)))

)
= log µ̂F

kξss

y

(
F k(P(F−k(y)))

)
=

log µ̂ξ
ss

F−k(y)

(
P(F−k(y)))

)
,

where in the last equality we have used the invariance of the measure µ̂. Hence

1

n
log µ̂ξ

ss

y

((
n−1∨
k=0

F kP ∨ ξss
)

(y)

)
=

1

n

n−1∑
k=0

log µ̂ξ
ss

F−k(y)

(
P(F−k(y)))

)
Since µ̂ is ergodic

lim
n→∞

1

n
log µ̂ξ

ss

y

((
n−1∨
k=0

F kP ∨ ξss
)

(y)

)
=

∫
log µ̂ξ

ss

y (P(y))dµ̂(y) = −H(P|ξss). (3.4)

Using the property of conditional entropy and (3.2), H(P|ξss) = H(P ∨ ξss|ξss) = H(Fξss|ξss).
Applying Oseledec’s Theorem, we have

lim
n→∞

1

n
logα2(Ai−1 · · ·Ai−n) = −χssµ for ν-a.e i,

which together with (3.4) implies (3.3). �

The next proposition is devoted to prove that the transversal measures µTi = µ ◦ (projssi )−1 are
exact dimensional measures for ν-a.e i ∈ Σ+ and calculate the typical Hausdorff dimension, where
projssi is the orthogonal projection from R2 to the subspace perpendicular to ess(i).

Proposition 3.3. For ν-a.e. i ∈ Σ+ the measure µTi is exact dimensional and

dimH µ
T
i =

hν −H(Fξss|ξss)
χsµ

.

We define an other invariant foliation ξs with respect to the stable plane. That is, for every
y = (x, i) ∈ Λ× Σ+, ξs(y) = Λ× {i}. Then the foliation ξs has similar properties to ξss, i.e. Fξs is
a refinement of ξs and P ∨ ξs = Fξs. Moreover, it is easy to see that for every y

µ̂ξ
s

y = µ (3.5)

The proof of the proposition uses a slight modification of the classical result of Maker [19]. We
state and prove a simpler version of the theorem in the Appendix, Section 5.



For the examination of the local dimension of the projected measure, instead of looking at the
balls on the projection we introduce the transversal stable balls associated to the projection. Let
Bt
r(x, i) be transversal stable ball with radius r, i.e

Bt
r(x, i) =

{
(y, j) : i = j & dist(lss(x, i), lss(x, j)) ≤ 2r

}
,

where lss(x, i) denotes the line trough x parallel to ess(i).
By technical reasons, for the examination we have to introduce the modified transversal stable

ball. Since the IFS Φ satisfies the SSC, by Lemma 2.6, for an y = (x, i) ∈ Λ × Σ+ we can define
the stable direction es(y) of y by es(y) := es(x) := es(i−), where π−(i−) = x. Denote distes(y) the

natural Euclidean distance on the subspace es(y).

Then for an (x, i) ∈ Λ× Σ+, we define the modified transversal stable ball with radius δ by

BT
δ (x, i) =

{
(y, j) ∈ Λ× Σ+ : i = j & distes(x,i)(lss(x, i), lss(y, j)) ≤ δ

}
.

For a visualisation, see Figure 1.

Figure 1. A visualisation of the modified transversal ball BT
δ (y).

By (2.3) there exists a constant c > 0 that for every y ∈ Λ× Σ+ and r > 0

BT
c−1r(x, i) ⊆ B

t
r(x, i) ⊆ BT

cr(x, i). (3.6)

Lemma 3.4. For any y = (x, i) ∈ Λ× Σ+ with x = π−(. . . , i−1)

µ(BT
δ (y) ∩ P(y)) = µ

(
BT
‖Ai−1

|es(F−1(y))‖−1δ(F
−1(y))

)
pi−1 .

Proof. Since the directions es are F -invariant, we get for any y′ = (x′, i′) and ∞ > δ′ > 0

F
(
BT
δ′(y

′)× [i′0]
)

= BT
‖Ai′0

|es(y′)‖δ′(F (y′)) ∩ P(F (y′))× Σ+.

The map F is invertible, hence

BT
δ′(y

′)× [i′0] = F−1

(
BT
‖Ai′0

|es(y′)‖δ′(F (y′)) ∩ P(F (y′))× Σ+

)
.

By taking y′ = F (y) we have ‖Ai′0 |es(y
′)‖ = ‖Ai−1 |es(F−1(y))‖ and by taking

δ = ‖Ai−1 |es(F−1(y))‖δ′

BT
‖Ai−1

|es(F−1(y))‖−1δ(F
−1(y))× [i−1] = F−1

(
BT
δ (y) ∩ P(y)× Σ+

)
.

The measure µ̂ is F -invariant, therefore

µ(BT
δ (y) ∩ P(y)) = µ̂(BT

δ (y) ∩ P(y)× Σ+) = µ̂(F−1
(
BT
δ (y) ∩ P(y)× Σ+

)
) =

µ̂(BT
‖Ai−1

|es(F−1(y))‖−1δ(F
−1(y))× [i−1]) = µ(BT

‖Ai−1
|es(F−1(y))‖−1δ(F

−1(y)))pi−1 .

�



Lemma 3.5. For every y = (x, i) ∈ Λ× Σ+

‖A(2)(i)|es(y)‖ = ‖A(i)|es(y)‖‖A(σi)|es(F (y))‖.
In particular,

‖A(n)(i)|es(y)‖ =

n−1∏
k=0

‖A(σki)|es(F k(y))‖.

Proof. By definition ‖A(i)|es(y)‖ = supv∈es(y)
‖A(i)v‖
‖v‖ . On the other hand for every v1, v2 ∈ es(y)

there exists a constant c ∈ R such that cv1 = v2. Therefore ‖A(i)|es(y)‖ = ‖A(i)v‖ with any vector
v ∈ es(y) with ‖v‖ = 1. Hence,

‖A(2)(i)|es(y)‖ = ‖A(2)(i)v‖ = ‖A(σi)
A(i)v

‖A(i)v‖
‖‖A(i)v‖ = ‖A(σi)|es(F (y))‖‖A(i)|es(y)‖,

where we used in the last equation that A(i)v ∈ es(F (y)). �

Let us define functions g(y) := µ̂ξ
ss

y (P(y)) and gδ(y) :=
µ(BTδ (y)∩P(y))

µ(BTδ (y))
. By definition and (3.5),

gδ → g as δ → 0+ for µ almost everywhere and, since gδ is uniformly bounded, (3.1) implies gδ → g
in L1(µ̂) as δ → 0+.

Lemma 3.6. The function supδ>0 {− log gδ} is in L1(µ̂).

Proof. To verify the statement of the lemma, it is enough to show that
∞∑
k=1

µ̂

{
y : inf

δ>0
gδ(y) < e−k

}
<∞.

By (3.5)

µ̂

{
y : inf

δ>0
gδ(y) < e−k

}
=

N∑
i=1

∫
µ

{
x ∈ fi(Λ) : inf

δ>0

µ(BT
δ (x, i) ∩ fi(Λ))

µ(BT
δ (x, i))

< e−k
}
dν(i). (3.7)

For a fixed i ∈ Σ+ denote Eik,i the set
{
x ∈ fi(Λ) : infδ>0

µ(BTδ (x,i)∩fi(Λ))

µ(BTδ (x,i))
< e−k

}
. Let

E ik,i :=

{
BT
δ (x, i) :

µ(BT
δ (x, i) ∩ fi(Λ))

µ(BT
δ (x, i))

< e−k
}

be the collection of closed transversal balls. It is needless to say that E ik,i is a cover of Eik,i. Then by
Besicovitch covering Theorem there exists a constant c > 0 independent of i, i and k, and a countable
family of balls

⋃c
n=1Fn ⊆ E ik,i such that

Eik,i ⊆
c⋃

n=1

⋃
B∈Fn

B and B′ ∩B′′ = ∅ if B′, B′′ ∈ Fj for j = 1, . . . , n.

Hence,

µ

{
x ∈ fi(Λ) : inf

δ>0

µ(BT
δ (x, i) ∩ fi(Λ))

µ(BT
δ (x, i))

< e−k
}
≤

N∑
c=1

∑
B∈Fn

µ(B ∩ fi(Λ)) ≤ e−k
c∑

n=1

∑
B∈Fn

µ(B) ≤ ce−k.

Therefore, by (3.7)
∞∑
k=1

µ̂

{
y : inf

δ>0
gδ(y) < e−k

}
≤
∞∑
k=1

cNe−k <∞.

�



Proof of Proposition 3.3. By the definition of the transversal measure, the statement of the propos-
ition is equivalent to

lim
δ→0+

logµ(Bt
δ(y))

log δ
=
hν −H(Fξss|ξss)

χsµ
for µ̂-a.e y.

Hence, by (3.6) it is enough to show that

lim
δ→0+

logµ(BT
δ (y))

log δ
=
hν −H(Fξss|ξss)

χsµ
for µ̂-a.e y.

By Lemma 2.4, if y = (x, i) ∈ Λ× Σ+ with x = π−(. . . , i−2, i−1), it is sufficient to show

lim
n→∞

logµ
(
BT
‖Ai−1

···Ai−n |es(F−n(y))‖(y)
)

logα1(Ai−1 · · ·Ai−n)
=
hν −H(Fξss|ξss)

χsµ
for µ̂-a.e y. (3.8)

We write the measure of the ball as

µ
(
BT
‖Ai−1

···Ai−n |es(F−n(y))‖(y)
)

=

µ(BT
1 (F−n(y)))

µ(BT
‖Ai−n |es(F−n(y))‖(F

−n+1(y)))

µ(BT
1 (F−n(y)))

n−1∏
k=1

µ
(
BT
‖Ai−k ···Ai−n |es(F

−n(y))‖(F
−k+1(y))

)
µ

(
BT
‖Ai−k−1

···Ai−n |es(F−n(y))‖(F
−k(y))

) .
Applying Lemma 3.4 and Lemma 3.5 we get for every k = 1, . . . , n

µ
(
BT
‖Ai−k−1

···Ai−n |es(F−n(y))‖(F
−k(y))

)
=

µ
(
BT
‖Ai−k |es(F

−k(y))‖−1‖Ai−k ···Ai−n |es(F
−n(y))‖(F

−k(y))
)

=

µ
(
BT
‖Ai−k ···Ai−n |es(F

−n(y))‖(F
−k+1(y)) ∩ P(F−k+1(y))

)
p−1
i−k
.

Hence,

1

n
logµ

(
BT
‖Ai−1

···Ai−n |es(F−n(y))‖(y)
)

=

1

n
logµ(BT

1 (F−n(y)))− 1

n

n∑
k=1

log g‖Ai−k ···Ai−n |es(F
−n(y))‖(F

−k+1(y)) +
1

n

n∑
k=1

log pi−k .

Let us define a function hn,k(y) := log g‖Ai−1
···Ai−n+k−1

|es(F−n+k−1(y))‖(y). Then

1

n
logµ

(
BT
‖Ai−1

···Ai−n |es(F−n(y))‖(y)
)

=

1

n
logµ(BT

1 (F−n(y)))− 1

n

n∑
k=1

hn,k(F
−k+1(y)) +

1

n

n∑
k=1

log pi−k .

Since ‖Ai−1 · · ·Ai−n+k−1
|es(F−n+k−1(y))‖ → 0 uniformly on Λ×Σ+ as n−k →∞, limn−k→∞ hn,k =

log g in L1(µ̂) and for µ̂-almost everywhere. Moreover, by Lemma 3.6 we can apply Maker’s ergodic
theorem Lemma 5.2, thus by (3.4)

lim
n→∞

1

n

n∑
k=1

hn,k(F
−k+1(y)) =

∫
log g(y)dµ̂(y) = −H(Fξss|ξss) for µ̂-a.e y.



On the other hand

lim
n→∞

1

n
logµ(BT

1 (F−n(y))) = 0 for every y ∈ Λ× Σ+ and

lim
n→∞

1

n

n∑
k=1

log pi−k =
N∑
i=1

pi log pi = −hν for µ̂-a.e y ∈ Λ× Σ+,

which implies

lim
n→∞

1

n
logµ

(
BT
‖Ai−1

···Ai−n |es(F−n(y))‖(y)
)

= −hν +H(Fξss|ξss) (3.9)

Applying Oseledec’s Theorem, we have

lim
n→∞

1

n
logα1(Ai−1 · · ·Ai−n) = −χsµ for ν-a.e i,

which together with the equation (3.9) implies (3.8). �

Denote Bs
r(x, i) the square on Λ × {i} with a side parallel to ess(i) and length 2r centered at

(x, i) ∈ Λ× Σ+. It is easy to see that there exists a constant c > 0 that for every (x, i) ∈ Λ× Σ+,

Bc−1r(x) ⊆ Bs
r(x, i) ⊆ Bcr(x), (3.10)

where Br(x) is the usual Euclidean ball on R2.

Proposition 3.7. For µ-a.e x ∈ Λ

lim inf
r→0+

logµ(Br(x))

log r
≥ H(Fξss|ξss)

χssµ
+
hν −H(Fξss|ξss)

χsµ
.

Proof. By (3.10), it is enough to show that

lim inf
r→0+

logµ(Bs
r(y))

log r
≥ H(Fξss|ξss)

χssµ
+
hν −H(Fξss|ξss)

χsµ
for µ̂-a.e y. (3.11)

For simplicity, let ds := H(Fξss|ξss)
χssµ

. By Proposition 3.1, the measure µ̂ξ
ss

y is exact dimensional and

by Egorov’s Theorem for every ε > 0 there exists a set J1 ⊆ Λ × Σ+ with µ̂(J1) > 1 − ε such that
there exists an M1 > 0 that for every m ≥M1 and y ∈ J1

µ̂ξ
ss

y (Bss
2e−m(y)) ≤ em(−ds+ε).

By the definition of Bs
r(y) it is easy to see that Bs

r(y) ∩ ξss(y) = Bss
r (y) and by the definition of

conditional measures

µ̂ξ
ss

z (Bs
2e−m(y)) ≤ em(−ds+ε) for every y ∈ J1 and ξss(z) = ξss(y). (3.12)

The combination of Lebesgue density Theorem and Egorov’s Theorem implies that there exists a set
J2 ⊆ J1 with µ̂(J2) > 1− 2ε and M2 > 0 such that for every m ≥M2 and y ∈ J2

µ(J1 ∩Bs
e−m(y)) ≥ 1

2
µ(Bs

e−m(y)).

By (3.12), for every z ∈ Bt
e−m(y) such that there exists a z′ ∈ ξss(z) ∩Bs

e−m(y) ∩ J1

µ̂ξ
ss

z (Bs
e−m(y) ∩ J1) ≤ µ̂ξssz (Bs

2e−m(z′) ∩ J1) ≤ em(−ds+ε).

If ξss(z) ∩Bs
e−m(y) ∩ J1 = ∅ then the bound above is trivial. Hence, for every y ∈ J2

µ(Bs
e−m(y)) ≤ 2

∫
Bt
e−m

(y)
µ̂ξ

ss

z (Bs
e−m(y) ∩ J1)dµ̂(z) ≤ 2em(−ds+ε)µ(Bt

e−m(y)).



Since ε > 0 was arbitrary, inequality (3.11) follows by Proposition 3.3. �

Proposition 3.8. For µ-a.e x ∈ Λ

lim sup
r→0+

logµ(Br(x))

log r
≤ H(Fξss|ξss)

χssµ
+
hν −H(Fξss|ξss)

χsµ
.

Proof. For simplicity, let hs := H(Fξss|ξss). By applying Egorov’s Theorem for Proposition 3.1 and
for Shannon-McMillan-Breiman Theorem, we get that for every ε > 0 there exists a set J1 with
µ̂(J1) > 1− ε and M1 > 0 such that for every y = (x, i) ∈ J1 and every m ≥M1

µ̂ξ
ss

y (Bκ
2
e−m(χsµ−2ε)(y)) ≥ e−m(χsµ−2ε)(ds+ε), (3.13)

µ̂ξ
ss

y

((
m−1∨
k=0

F kP

)
(y)

)
≤ e−m(hs−ε), (3.14)(

m−1∨
k=0

F kP

)
(y) ⊆ B

e−m(χsµ−2ε)(x)× Σ+, (3.15)

µ̂

((
m−1∨
k=0

F kP

)
(y)

)
≥ e−m(hν+ε). (3.16)

Applying Lebesgue’s density Theorem and Egorov’s Theorem, there exists a set J2 ⊆ J1 with µ̂(J1) >
1− 2ε and M2 ≥M1 such that for every y = (x, i) ∈ J2 and every m ≥M2

µ̂ξ
ss

y (Bκ
2
e−m(χsµ−2ε)(y) ∩ J1)

µ̂ξ
ss

y (Bκ
2
e−m(χsµ−2ε)(y))

≥ 1

2
. (3.17)

For every m ≥M2 we can define a finite sequence
{

y
i

}Nm

i=1
such that for any i 6= j(

m−1∨
k=0

F kP

)
(y
i
) ∩

(
m−1∨
k=0

F kP

)
(y
j
) = ∅,

and y
i
∈ J1 whenever J1∩

(∨m−1
k=0 F

kP
)

(y
i
) 6= ∅. For simplicity, we introduce the notation Lm(y) :=

Bκ
2
e−m(χsµ−2ε)(y) ∩ J1. By (3.13) and (3.17), for any y ∈ J2

µ̂ξ
ss

y (Lm(y)) ≥ 1

2
µ̂ξ

ss

y (Bκ
2
e−m(χsµ−2ε)(y)) ≥ 1

2
e−m(χsµ−2ε)(ds+ε). (3.18)

Then by (3.14)

µ̂ξ
ss

y (Lm(y)) ≤
∑

i:y
i
∈J1

µ̂ξ
ss

y

((
m−1∨
k=0

F kP

)
(y
i
) ∩ Lm(y)

)

≤ ]

{
y
i
∈ J1 : Lm(y) ∩

(
m−1∨
k=0

F kP

)
(y
i
) 6= ∅

}
· max
i:y

i
∈J1

{
µ̂ξ

ss

y

((
m−1∨
k=0

F kP

)
(y
i
)

)}

≤ ]

{
y
i
∈ J1 : Lm(y) ∩

(
m−1∨
k=0

F kP

)
(y
i
) 6= ∅

}
e−m(hs−ε).



Hence,

µ̂ξ
ss

y (Lm(y))em(hs−ε) ≤ ]

{
y
i
∈ J1 : Lm(y) ∩

(
m−1∨
k=0

F kP

)
(y
i
) 6= ∅

}
. (3.19)

On the other hand, if Lm(y) ∩
(∨m−1

k=0 F
kP
)

(y
i
) 6= ∅ then by (3.15)(

m−1∨
k=0

F kP

)
(y
i
) ⊆ B

2e−m(χsµ−2ε)(x)× Σ+.

Therefore,

µ(B
2e−m(χsµ−2ε)(x)) = µ̂(B

2e−m(χsµ−2ε)(x)× Σ+)

≥ ]

{
y
i
∈ J1 : Lm(y) ∩

(
m−1∨
k=0

F kP

)
(y
i
) 6= ∅

}
min
i:y

i
∈J1

{
µ̂

((
m−1∨
k=0

F kP

)
(y
i
)

)}
.

By (3.16) and (3.19), for any y ∈ J2

µ(B
2e−m(χsµ−2ε)(x)) ≥ µ̂ξssy (Lm(y))em(hs−ε)e−m(hν+ε).

Using (3.18), for any y = (x, i) ∈ J2

µ(B
2e−m(χsµ−2ε)(x)) ≥ 1

2
e−m(χsµ−2ε)(ds+ε)em(hs−ε)e−m(hν+ε).

Hence, for any y ∈ J2

lim sup
m→∞

logµ(B
2e−m(χsµ−2ε)(x))

−m(χsµ − 2ε)
≤ ds + ε+

hν − hs
χsµ − 2ε

+ ε+
2ε

χsµ − 2ε

Since ε > 0 was arbitrary, the statement of the proposition follows. �

Proof of Theorem 2.7. Proposition 3.7 and Proposition 3.8 together imply that µ is exact dimen-
sional, moreover

dimH µ =
H(Fξss|ξss)

χssµ
+
hν −H(Fξss|ξss)

χsµ
.

Simple algebraic manipulations show that

H(Fξss|ξss)
χssµ

+
hν −H(Fξss|ξss)

χsµ
=

hν
χssµ

+

(
1−

χsµ
χssµ

)
hν −H(Fξss|ξss)

χsµ
.

The proof can be finished by applying Proposition 3.3. �

4. Applications

4.1. Hueter-Lalley Theorem. This section is devoted to show some applications of our main
theorems. In the point of view of Theorem 2.8, to prove that the Hausdorff dimension of a self-affine
measure is equal to its Lyapunov dimension, one has to study the dimension of νss defined in (2.7).
The measure νss is basically a self-conformal measure associated to an IFS on the projective space. If
the IFS on the projective space satisfies some separation condition then one may be able to calculate
its dimension. That is, what basically Hueter and Lalley [14] proved. Now we reprove their classical
result.



Theorem 4.1. Let A = {A1, A2, . . . , AN} be a finite set of contracting, non-singular 2× 2 matrices,

and let Φ = {fi(x) = Aix+ ti}
N
i=1 be an iterated function system on the plane with affine mappings.

Let ν be a left-shift invariant and ergodic Bernoulli-probability measure on Σ+, and µ is the corres-
ponding self-affine measure. Assume that

(1) A satisfies the dominated splitting,
(2) A satisfies the backward non-overlapping condition, i.e. there exists a backward invariant

multicone M that A−1
i (Mo) ⊆Mo and A−1

i (Mo) ∩A−1
j (Mo) = ∅ for every i 6= j,

(3) A satisfies the 1-bunched property, i.e. for every i = 1, . . . , N α1(Ai)
2 ≤ α2(Ai),

(4) Φ satisfies the strong separation condition.

Then

dimH µ = dimLyap µ =
hν
χsµ
≤ 1.

The proof of the theorem uses the following lemma.

Lemma 4.2. Let A = {A1, A2, . . . , AN} be a finite set of contracting, non-singular 2 × 2 matrices
and let ν be a left-shift invariant and ergodic Bernoulli-probability measure on Σ+. Assume that

(1) A satisfies the dominated splitting,
(2) A satisfies the backward non-overlapping condition.

Let ess : Σ+ 7→ P1 be the projection defined in Lemma 2.6. Then

dimH νss = dimH ν ◦ e−1
ss =

hν
χssµ − χsµ

,

where χssµ and χsµ are the Lyapunov exponents defined in Lemma 2.4.

Proof. The projective space P1 is equivalent to upper half unit sphere on R2. We define an iterated
function system on P1 by A in the natural way, i.e.

Ãi : θ ∈ P1 7→ sgn((A−1
i θ)2)

A−1
i θ

‖A−1
i θ‖

,

where sgn((Aiθ)2) denotes the signum of the second coordinate of the vector Aiθ. By [5, Lemma 3.2],

the IFS Ã =
{
Ã1, . . . , ÃN

}
is uniformly contracting on M , where M is the backward invariant

multicone with non-overlapping condition. Hence, the measure νss is the invariant measure associated

to the IFS Ã, and

dimH νss = lim
r→0+

log νss(Br(θ))

log r
for νss-a.e θ,

where Br(θ) denotes the ball with radius r centered at θ according to the spherical distance. Since
A satisfies the backward non-overlapping condition

dimH νss = lim
n→∞

log νss(Ãi1 ◦ · · · Ãin(M))

log diam(Ãi1 ◦ · · · Ãin(M))
for ν-a.e i,

where diam(.) denotes the diameter of a set according to the spherical distance. It is easy to see that
for any θ1, θ2 ∈ P1 with distance less than π/2

det(A−1
i )

2‖A−1
i (θ1)‖‖A−1

i (θ2)‖
≤ d(Ãi(θ1), Ãi(θ2)) ≤

2 det(A−1
i )

‖A−1
i (θ1)‖‖A−1

i (θ2)‖
for any i ∈ Σ∗. Thus

lim
n→∞

1

n
log diam(Ãi1 ◦ · · · Ãin(M)) = χsµ − χssµ for ν-a.e i.



On the other hand

lim
n→∞

1

n
log νss(Ãi1 ◦ · · · Ãin(M)) = lim

n→∞

1

n
log ν([i1, . . . , in]) = −hν for ν-a.e i.

The statement follows by taking the ratio of the previous two limits. �

Proof of Theorem 4.1. By 1-bunched property, χssµ ≤ 2χsµ. Hence, by using Lemma 4.2

1 ≥ dimH νss =
hν

χssµ − χsµ
≥ hν
χsµ

= dimLyap µ.

Thus, applying Theorem 2.8 we have that dimLyap µ = dimH µ. �

Corollary 4.3 (Hueter-Lalley,[14]). Let A = {A1, A2, . . . , AN} be a finite set of contracting, non-

singular 2 × 2 matrices, and let Φ = {fi(x) = Aix+ ti}
N
i=1 be an iterated function system on the

plane with affine mappings and denote Λ the attractor of the IFS Φ. With the assumptions (1)-(4)
of Theorem 4.1

dimH Λ = dimB Λ = s ≤ 1,

where s is the unique root of the pressure function P (s), defined in (1.1).

Proof. It is easy to see that the assumptions (1)-(4) of Theorem 4.1 are inherited to the higher
iterations, i.e. for any n ≥ 1 the IFS Φn =

{
fi
}
|i|=n and the set of matrices An =

{
Ai
}
|i|=n satisfy

the assumptions (1)-(4).
Let us define a monotone decreasing sequence {sn}∞n=1 such that sn are the unique solution of the

equations ∑
|i|=n

α1(Ai)
sn = 1.

We define the left-shift invariant Bernoulli measure νn with probability vector
(
α1(Ai)

sn
)
|i|=n and

let µn be the associated self-affine measure. Then by Theorem 4.1 and (2.2), for every n ≥ 1

1 ≥ dimH µn =
hνn
χsµn
≥ sn

1 + C
n logαmax

,

where αmax = maxi α1(Ai). Hence limn→ sn = s ≤ 1. Moreover, by [7, Proposition 5.1]

s ≥ dimBΛ ≥ dimH Λ ≥ lim
n→∞

dimH µn = s,

which had to be proven. �

4.2. Triangular matrices. The other way to study the dimension of νss is to handle the overlaps
of the associated IFS on the projective space. Since this IFS is very difficult to handle in general, we
focus on a special family of self-affine sets. Let us assume that the matrices in A are lower triangular,
i.e.

Ai =

[
ai 0
bi ci

]
, (4.1)

where 0 < |ai|, |ci| < 1 for every i = 1, . . . , N . Using [10, Theorem 2.5], the subadditive pressure
function P (s) defined in (1.1) can be written in a simpler form, i.e

P (s) =


log max

{∑N
i=1 |ai|s,

∑N
i=1 |ci|s

}
if 0 ≤ s < 1

log max
{∑N

i=1 |ai||ci|s−1,
∑N

i=1 |ci||ai|s−1
}

if 1 ≤ s < 2

log
∑N

i=1(|ai||ci|)s/2 if s ≥ 2.

(4.2)



In the case of triangular matrices, the calculation of Lyapunov-exponents of a self-affine measure
µ with probability vector (p1, . . . , pN ) is much simpler. That is,

χssµ = max

{
−

N∑
i=1

pi log |ai|,−
N∑
i=1

pi log |ci|

}
and χsµ = min

{
−

N∑
i=1

pi log |ai|,−
N∑
i=1

pi log |ci|

}
.

Lemma 4.4. The set A = {A1, A2, . . . , AN} of contracting, non-singular 2 × 2 lower-triangular
matrices in the form (4.1), satisfies the dominated splitting if

either |ai| > |ci| for every i = 1, . . . , N or |ai| < |ci| for every i = 1, . . . , N .

The proof of the lemma is straightforward by Lemma 2.3.
In the case of triangular matrices the study of the dimension of self-affine set can be tracked back

to study the dimension of some self-similar measure. In the first case of Lemma 4.4, the projected
measure in Theorem 2.7 is a self-similar measure. In the second case, the measure νss is a self-similar
measure. We introduce here a condition, which guarantees according to the recent result of Hochman
[13, Theorem 1.1] that the dimension of a self-similar measure is the quotient of the entropy and
Lyapunov-exponent.

Definition 4.5. For a self-similar IFS φ = {gi(x) = βix+ γi}Ni=1 on the real line let

d(gi, gj) :=

{
∞ if βi 6= βj

|gi(0)− gj(0)| if βi = βj .
and

∆n := min
{
d(gi, gj) : i 6= j ∈ {1, . . . , N}n

}
.

We say that the IFS φ satisfies the Hochman-condition if

lim
n→∞

− 1

n
log ∆n < +∞.

Theorem 4.6. Let A = {Ai}Ni=1 be a finite set of triangular matrices of type (4.1) and let

Φ = {fi(x) = Aix+ (ti, qi)}Ni=1 be the IFS on the plane.

(1) |ai| > |ci| for every i = 1, . . . , N ,
(2) Φ satisfies the strong separation condition,

(3) the self-similar IFS φ = {gi(x) = aix+ ti}Ni=1 satisfies the Hochman-condition

then for every µ self-affine measure

dimH µ = dimLyap µ. (4.3)

Moreover,

dimH Λ = dimB Λ = min {s1, s2} , (4.4)

where Λ is the attractor of Φ and s1 and s2 are the unique solutions of the equations

N∑
i=1

|ai|s1 = 1 and
N∑
i=1

|ai||ci|s2−1 = 1. (4.5)

Proof. Let ν = {p1, . . . , pN}N be an arbitrary Bernoulli-measure on Σ+ and µ be the corresponding
self-affine measure.

Condition (1) implies by Lemma 4.4 that the set A of matrices satisfies the dominated splitting
and ess(i), defined in Lemma 2.3, is equal to the subspace parallel to the y-axis for every i ∈ Σ+.



Hence, the transversal measure µTi ≡ µT , defined in (2.4), is a self-similar measure with the IFS

φ = {gi(x) = aix+ ti}Ni=1, namely

µT =

N∑
i=1

piµ
T ◦ g−1

i .

By condition (3) and [13, Theorem 1.1],

dimH µ
T = min

{
hν
χsµ
, 1

}
.

Thus, dimH µ
T = min {dimLyap µ, 1}. By condition (2), applying Theorem 2.7 and (2.6) we get (4.3).

To prove (4.4), first let us observe that condition (1) implies that the root of the subadditive
pressure (4.2) is the minimum of the solutions of the equations (4.5). Then we get the upper
bound by [7, Proposition 5.1]. The lower bound follows by choosing the measure ν according to
the probability vector {|a1|s1 , . . . , |aN |s1} or

{
|a1||c1|s2−1, . . . , |aN ||cN |s2−1

}
. �

Now we turn to the second case of Lemma 4.4.

Theorem 4.7. Let A = {Ai}Ni=1 be a finite set of triangular matrices of type (4.1) and let

Φ = {fi(x) = Aix+ (ti, qi)}Ni=1 be the IFS on the plane. Moreover, let ν be a left-shift invariant and
ergodic Bernoulli-probability measure on Σ+, and µ is the corresponding self-affine measure. Suppose
that

(1) |ai| < |ci| for every i = 1, . . . , N ,
(2) Φ satisfies the strong separation condition,

(3) the self-similar IFS φ =

{
gi(x) =

ai
ci
x− bi

ci

}N
i=1

satisfies the Hochman-condition,

(4)
hν

χssµ − χsµ
≥ min

{
1,
hν
χsµ

}
then

dimH µ = dimLyap µ. (4.6)

Moreover, if A satisfies the 1-bunched property, i.e. |ai| ≥ |ci|2 then

dimH Λ = dimB Λ = min {s1, s2} , (4.7)

where Λ is the attractor of Φ and s1 and s2 are the unique solutions of the equations

N∑
i=1

|ci|s1 = 1 and

N∑
i=1

|ci||ai|s2−1 = 1. (4.8)

We note if dimLyap µ ≤ 1 then condition (4) is basically the 1-bunched property, defined in The-
orem 4.1. However, if dimLyap µ > 1 then condition (4) is much relaxed and holds if dimLyap µ is
sufficiently large, for example if hν/χ

ss
µ ≥ 1.

Lemma 4.8. Let A = {Ai}Ni=1 be a finite set of matrices of type (4.1) and let us suppose that |ai| < |ci|
for every i = 1, . . . , N . Then the slopes of strong stable directions, defined in Lemma 2.3, form a

self-similar set of IFS φ =

{
gi(x) =

ai
ci
x− bi

ci

}N
i=1

. In particular, for every i = (i0, i1, . . . ) ∈ Σ+ the

subspace ess(i) is parallel to the vector v(i) = (1, ϑ(i))T , where

ϑ(i) = −
∞∑
n=0

binain−1 · · · ai0
cincin−1 · · · ci0

.



Proof. By simple algebraic calculations show that

Ai0v(i) = ai0v(σi).

The statement follows by Lemma 2.4 and Lemma 2.6. �

An immediate consequence of Lemma 4.8 that for any Bernoulli measure on Σ+

dimH νss = dimH ν ◦ ϑ−1, (4.9)

where νss is defined in (2.7).

Proof of Theorem 4.7. First, let us observe that condition (3) with (4.9) and [13, Theorem 1.1] imply
that

dimH νss = min

{
1,

hν
χssµ − χsµ

}
.

By Lemma 4.4, condition (1) implies that the IFS Φ satisfies the dominated splitting, and together
with conditions (2) and (4) by using Theorem 2.8, (4.6) follows.

To prove (4.7), first let us observe that condition (1) implies that the root of the subadditive
pressure (4.2) is the minimum of the solutions of the equations (4.8). One can check that the 1-
bunched property implies that condition (4) holds for any self-similar measure. Hence, the lower
bound follows by choosing the measure ν according to the probability vector {|c1|s1 , . . . , |cN |s1} or{
|c1||a1|s2−1, . . . , |cN ||aN |s2−1

}
. The upper bound follows by [7, Proposition 5.1]. �

4.3. An example. Finally, we consider a concrete family of self-affine sets inspired by the example
of Falconer and Miao, [10, Figure 1]. Let Φc = {f1, . . . , f6} be a parameterized family of IFSs on the
plane given by the functions

f1(x) =

[
1
3 0
0 c

]
x+

[
1
3
0

]
, f2(x) =

[
1
3 0
0 c

]
x+

[
1
3

1− c

]
,

f3(x) =

[
1
3 0

1
2 − c c

]
x+

[
0
1
2

]
, f4(x) =

[
1
3 0

1
2 − c c

]
x+

[
2
3
0

]
,

f5(x) =

[
1
3 0

c− 1
2 c

]
x+

[
0

1
2 − c

]
, f6(x) =

[
1
3 0

c− 1
2 c

]
x+

[
2
3

1− c

]
,

where 0 < c < 1/2. Denote Λc the attractor of Φc, see Figure 2.

Figure 2. The attractors Λc of IFSs Φc with parameters c = 0.25 and c = 0.4.



Theorem 4.9. For every 0 < c < 1
3

dimH Λc = dimB Λc = 1− log 2

log c
, (4.10)

and there exists a set C ⊆ (1
3 ,

1
2) such that dimP C = 0 and

dimH Λc = dimB Λc = 2 +
log 2c

log 3
for every c ∈

(
1

3
,
1

2

)
\C. (4.11)

The box dimension of Λc is already known for every c ∈ (0, 1
2) by [8, Corollary 5].

Proof. Denote S = {1, . . . , 6} the set of symbols and let S̃n := Sn\ {4, 6}n.
Observe that the IFS Φc satisfies the open set condition but not the strong separation condition.

However, the IFS Φ̃n
c given by Φ̃n

c =
{
fi
}
i∈S̃n satisfies SSC for every n ≥ 1 and 0 < c < 1

2 . Denote

the attractor of Φ̃n
c by Λ̃n,c. For every n ≥ 1 let Σ̃n =

(
S̃n
)N

be the symbolic space and ν(n) let be

the uniform Bernoulli measure on Σ̃n and µ̃n,c the corresponding self-affine measure supported on

Λ̃n,c.

First, let us consider the case 0 < c < 1
3 . Then by Lemma 4.4 the IFS Φ̃n

c satisfies the dominated
splitting and by Lemma 2.3 and Lemma 2.4, the strong stable directions are parallel to the y-
axis. Hence, the transversal measure µ̃Tn,c, defined in (2.4), is a self-similar measure with uniform
probabilities, satisfying SSC. Thus,

dimH µ̃
T
n,c =

log(3n − 1)

log 3n
.

Applying Theorem 2.7, we get

dimH Λ ≥ lim
n→∞

dimH Λ̃n,c ≥

lim
n→∞

dimH µ̃n,c = lim
n→∞

log(6n − 2n)

− log cn
+

(
1− log 3n

− log cn

)
log(3n − 1)

log 3n
= 1− log 2

log c
,

which proves (4.10).
Now we turn to the case 1

3 < c < 1
2 . Lemma 4.4 implies that the IFS Φ satisfies again the

dominated splitting, moreover, by Lemma 2.3 and Lemma 4.8, the strong stable directions can be
given by the IFS φc of similarities

g1(x) = g2(x) =
1

3c
x, g3(x) = g4(x) =

1

3c
x+

2c− 1

2c
, and g5(x) = g6(x) =

1

3c
x+

1− 2c

2c
.

Thus by (4.9), the distribution ν̃ssn,c of strong stable directions of the IFS Φ̃n
c are given by the IFS

φ̃nc =
{
gi
}
i∈S̃n with the uniform Bernoulli measure on Σ̃n. Applying [13, Theorem 1.8] we get that

for every n ≥ 1 there exists a set Cn with dimP Cn = 0 such that

dimH ν̃
ss
n,c = min

{
1,
−2n 2n−1

6n−2n log 2n−1
6n−2n − (3n − 2n) 1

3n−1 log 1
3n−1

log(3c)n

}
for every c ∈

(
1

3
,
1

2

)
\Cn.

For sufficiently large n, we apply Theorem 2.8, and therefore

dimH Λ ≥ lim
n→∞

dimH Λ̃n,c ≥

lim
n→∞

dimH µ̃n,c = lim
n→∞

1 +
log(6n − 2n)− (− log cn)

log 3n
= 2 +

log 2c

log 3
for every c ∈

(
1

3
,
1

2

)
\C,

where C =
⋃∞
n=1 Cn, which proves (4.11). �



5. Appendix

Lemma 5.1 (Marstrand, [20]). Let m be a probability measure on R2 and let λ be a measure on [0, π)
such that dimH λ ≥ min {1,dimH m}. For a θ ∈ [0, π) denote projθ the orthogonal projection onto
the line perpendicular to the vector (sin θ, cos θ). Then for every ε > 0 there exists a set Aε ⊆ [0, π)
such that λ(Aε) > 0 and

dimH(projθ)∗m ≥ min {1,dimH m} − ε for every θ ∈ Aε. (5.1)

Proof. Let us denote min {1, dimH m} by s. Since dimH λ ≥ s then using (1.3) and Egorov’s Theorem
for every ε > 0 there exists a set Aε and C > 0 such that λ(Aε) > 0 and for every θ ∈ Aε and r > 0

λ((θ − r, θ + r)) ≤ Crs−ε/2.
Moreover, without loss of generality we may assume that Aε is bounded away from 0 and π, i.e.
there exists a constant c > 0 s.t. dist(θ, {0, π}) > c for every θ ∈ Aε. Let λ′ := λ|Aε /λ(Aε) be the
restricted and normalized measure. It is easy to see that there exists a constant c′ > 0 such that for
any interval I ⊆ [0, π)

λ′(I) ≤ c′|I|s−ε/2.
We prove that for almost every point w.r.t λ′ (5.1) holds. For simplifity we denote (projθ)∗m by

mθ. By Frostman’s Lemma [9, Theorem 4.13] it is enough to show that

I :=

∫∫∫
1

|x− y|s−ε
dmθ(x)dmθ(y)dλ′(θ) < +∞.

Applying Fubini’s Theorem we have

I =

∫∫∫
1

|projθ(x)− projθ(y)|s−ε
dλ′(θ)dm(x)dm(y) =∫∫

1

‖x− y‖s−ε

∫
1( |projθ(x)−projθ(y)|

‖x−y‖

)s−εdλ′(θ)dm(x)dm(y).

Applying some algebaric manipulation we have for every x 6= y ∈ R2∫
1( |projθ(x)−projθ(y)|

‖x−y‖

)s−εdλ′(θ) ≤ 2s−ε
∞∑
n=0

2n(s−ε)λ′
({

θ :
|projθ(x)− projθ(y)|

‖x− y‖
≤ 1

2n

})
.

Since the set
{
θ :
|projθ(x)−projθ(y)|

‖x−y‖ ≤ 1
2n

}
is contained in at most two intervals with length c′′/2n we

get ∫
1( |projθ(x)−projθ(y)|

‖x−y‖

)s−εdλ′(θ) ≤ 2s−ε
∞∑
n=0

2n(s−ε)
(
c′′

2n

)s−ε/2
< +∞

Since
∫∫

1
‖x−y‖s−εdm(x)dm(y) < +∞, (5.1) follows. �

Lemma 5.2 (Maker, [19]). Let T : X 7→ X be an endomorphism on X ⊂ Rd compact set and
let m be a T -invariant ergodic measure. Moreover, let hn,k : X 7→ R be a family of functions
s.t. supn,k hn,k ∈ L1(m) and limn−k→∞ hn,k = h in L1(m) sense and m-almost everywhere, where

h ∈ L1(m). Then

lim
n→∞

1

n

n−1∑
k=0

hn,k(T
kx) =

∫
h(x)dm(x) for m-a.e x ∈ X.

The proof is a slight modification of Shannon-McMillan-Breiman Theorem in [3].



Proof. Since

1

n

n−1∑
k=0

hn,k(T
kx) =

1

n

n−1∑
k=0

h(T kx) +
1

n

n−1∑
k=0

(
hn,k(T

kx)− h(T kx)
)

and

lim
n→∞

1

n

n−1∑
k=0

h(T kx) =

∫
h(x)dm(x) for m-a.e x ∈ X,

it is enough to show that

lim sup
n→∞

1

n

n−1∑
k=0

|hn,k(T kx)− h(T kx)| = 0 for m-a.e x ∈ X.

Let HN (x) := supn−k≥N |hn,k(x)− h(x)|. Then

lim sup
n→∞

1

n

n−1∑
k=0

|hn,k(T kx)−h(T kx)| ≤ lim sup
n→∞

1

n

n−N∑
k=0

HN (T kx)+
1

n

n−1∑
k=n−N

H0(T kx) =

∫
HN (x)dm(x),

for m-a.e x. Since HN ∈ L1 and HN → 0 for m-almost everywhere as N →∞, the statement of the
theorem follows. �
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