Gaussian Hilbert Spaces partial, preliminary, unfinished, unpolished version not for distribution

lecture notes by Bálint Tóth

June 1, 2009

1 Fock space and Gaussian Hilbert space

1.1 Bosonic Fock space

Let \mathcal{V} be a real Hilbert space and

$$\mathcal{V}_0 := \mathbb{R}, \qquad \mathcal{V}_1 := \mathcal{V}, \qquad \mathcal{V}_n := \mathcal{V} \otimes \cdots \otimes \mathcal{V} \quad (n\text{-fold}).$$

For $n \in \mathbb{N}$ and $\sigma \in \text{Perm}(n)$ let $R(\sigma) \in \mathcal{B}(\mathcal{V}_n)$ defined as

$$R(\sigma)v_1\otimes\cdots\otimes v_n:=v_{\sigma(1)}\otimes\cdots\otimes v_{\sigma}n.$$

Then $\operatorname{Perm}(n) \ni \sigma \mapsto R(\sigma) \in \mathcal{B}(\mathcal{V}_n)$ is a unitary representation of the symmetric group $\operatorname{Perm}(n)$ over the Hilbert space \mathcal{V}_n .

Define $S_n \in \mathcal{B}(\mathcal{V}_n)$ as

$$S_n := \frac{1}{n!} \sum_{\sigma \in \text{Perm}(n)} R(\sigma).$$

This is an orthogonal projection on \mathcal{V}_n :

$$S_n = S_n^* = S_n^2.$$

Its range is

$$\mathcal{K}_n := S_n \mathcal{V}_n$$

the bosonic spaces.

Assume an orthonormal basis $(e_j)_i$ in \mathcal{V} . Then

$$(e_{j_1}\otimes\cdots\otimes e_{j_n})_{j_1,\ldots,j_n}$$

will be the generated orthonormal basis in \mathcal{V}_n

Let

$$N_n := \{\underline{n} = (n_j)_j : n_j \in \{0, 1, 2, \dots\}, \sum_j n_j = n\}.$$

Denote for $\underline{n} \in N_n$

$$|\underline{n}\rangle := \binom{n}{n}^{1/2} S_n(e_1 \otimes \cdots \otimes e_1 \otimes e_2 \otimes \cdots \otimes e_2 \otimes \cdots)$$

where the basis element e_j appears n_j -times in the tensor product on the right hand sides.

Then the collection

$$\{|\underline{n}\rangle \in \mathcal{K}_n : \underline{n} \in N_n\}$$

forms an orthonormal basis in \mathcal{K}_n .

Note that if the basic space \mathcal{V} is finite dimensional, with $d = \dim(\mathcal{V})$ then

$$\dim(\mathcal{K}_n) = \binom{n+d-1}{n}.$$

The (bosonic) Fock space is

$$\mathcal{K} := \overline{\bigoplus_{n=0}^{\infty} \mathcal{K}_n}$$

1.2 The Gaussian Hilbert space

Let $(\Omega, \mathcal{F}, \pi)$ be a probability space and $\mathcal{H} := \mathcal{L}^2(\Omega, \mathcal{F}, \pi)$. Assume the following

Gaussian embedding of V in H:

(i) There exists a map $\phi: \mathcal{V} \to \mathbb{H}$ such that for all $v \in \mathcal{V}$ the random variable $\phi(v)$ is Gaussian with

$$\mathbf{E}(\phi(v)) = 0, \quad \mathbf{Var}(\phi(v)) = ||v||^2.$$

(ii) The random variables $\{\phi(v):v\in\mathcal{V}\}$ generate the sigma-algebra \mathcal{F} .

This is the same as saying that

(i) $\{\phi(v):v\in\mathcal{V}\}$ are jointly Gaussian with

$$\mathbf{E}(\phi(v)) = 0, \quad \mathbf{Cov}(\phi(v), \phi(u)) = \langle v, u \rangle.$$

(ii) There is no random variable X which is jointly Gaussian with and independent of $\{\phi(v):v\in\mathcal{V}\}.$

1.2.1 Wick products

Given a zero mean Gaussian random variable X its Wick exponential is defined as follows

$$: \exp\{X\} := \exp\{X - \mathbf{E}(X^2)/2\}.$$

Given jointly Gaussian random variables $X = (X_1, ..., X_k)$ and integers $n = (n_1, ..., n_k)$ the Wick monomial is defined as:

$$: X_1^{n_1} \dots X_k^{n_k} := \left(\frac{\partial^n}{\partial t^n} : \exp\{tX\} : \right)_{t=0}$$

$$= \left(\frac{\partial^{n_1 + \dots + n_k}}{\partial t_1^{n_1} \dots \partial t_k^{n_k}} : \exp\{t_1 X_1 + \dots + t_k X_k\} : \right)_{t_1 = \dots = t_k = 0}.$$

Given jointly Gaussian random variables $X = (X_1, \ldots, X_k)$ and integers $n = (n_1, \ldots, n_k)$ and $m = (m_1, \ldots, m_k)$ the Wick product of two Wick monomials is defined as:

$$: (: X_1^{n_1} \dots X_k^{n_k} :) \, (: X_1^{m_1} \dots X_k^{m_k} :) := : X_1^{n_1 + m_1} \dots X_k^{n_k + m_k} : \ .$$

Wick polynomials are linear combinations of Wick monomials. The Wick product extends by linearity (from Wick monomials) to Wick polynomials.

Proposition. The Wick product (defined for Wick polynomials) is commutative, associative and distributive with respect to linear combinations. That is: given the Wick polynomials P, Q, R and the real numbers α, β , we have

$$:PQ:=:QP:,\quad :(:PQ:)R:=:P(:QR:):,\quad :P(\alpha Q+\beta R):=\alpha :PQ: +\beta :PR: .$$
 Proof. Straightforward.

Remark: It follows that Wick monomials with only first powers suffice:

$$: X_1^{n_1} X_2^{n_2} \dots X_k^{n_k} : = : Y_1 \dots Y_n :$$

with

$$Y_{n_1+\ldots n_l+r} = X_{l+1}, \qquad l = 0, \ldots, k-1, \ r = 1, \ldots, n_l.$$

Proposition. Let $X = (X_1, \ldots, X_m, Y_1, \ldots, Y_n)$ be jointly Gaussian. Then

$$\mathbf{E}(:X_1 \dots X_m::Y_1 \dots Y_n:) = \delta_{m,n} \sum_{\sigma \in \text{Perm}(\mathbf{n})} \prod_{i=1}^n \mathbf{E}(X_i Y_{\sigma(i)})$$

Proof. Note that

$$: \exp\{tX\}: : \exp\{sX\}: = : \exp\{tX + sY\}: \exp\{tCs\},\$$

where

$$C_{ij} = \mathbf{E}(X_i Y_j), \quad i = 1, \dots, m, \ j = 1, \dots, n,$$

is the covariance matrix of the jointly Gaussian vectors X and Y. Thus

$$\mathbf{E}\big(:\exp\{tX\}\colon \exp\{sX\}\colon\big) = \exp\{tCs\}.$$

The rest of the proof follows from explicit computation of

$$\left(\frac{\partial^{n+m}}{\partial s^m \partial t^n} \exp\{tCs\}\right)_{t=s=0} = \delta_{m,n} \sum_{\sigma \in \text{Perm(n)}} \prod_{i=1}^n \mathbf{E}(X_i Y_{\sigma(i)}).$$

It follows that the subspaces of homogeneous Wick polynomials of degree n,

$$\mathcal{H}_n := \operatorname{span}\{: \phi(v_1) \dots \phi(v_n):, v_1, \dots, v_n \in \mathcal{V}\}\$$

are mutually orthogonal for $n \neq m$. Actually,

$$\mathcal{H} := \overline{\bigoplus_{n=0}^{\infty} \mathcal{H}_n}.$$

1.3 Unitary isomorphism between K and H

Let n be fixed and $v_1, \ldots, v_n \in \mathcal{V}$. Consider

$$S_n(v_1 \otimes \cdots \otimes v_n) \in \mathcal{K}_n$$
 and $: \phi(v_1) \dots \phi(v_n) :\in \mathcal{H}_n$.

Then

$$||S_n(v_1 \otimes \cdots \otimes v_n)||_{\mathcal{K}_n}^2 = \frac{1}{n!} \sum_{\sigma \in \text{Perm}(n)} \prod_{j=1}^n \langle v_j, v_{\sigma(j)} \rangle,$$

$$||:\phi(v_1) \dots \phi(v_n):||_{\mathcal{H}_n}^2 = \mathbf{E}((:\phi(v_1) \dots \phi(v_n):)^2) = \sum_{\sigma \in \text{Perm}(n)} \prod_{j=1}^n \langle v_j, v_{\sigma(j)} \rangle.$$

Thus,

$$\mathcal{K}_n \ni S_n(v_1 \otimes \cdots \otimes v_n) \leftrightarrow (n!)^{-1/2} : \phi(v_1) \dots \phi(v_n) : \in \mathcal{H}_n$$

extends (by linearity and polarization) to a unitary isomorphism $U_n: \mathcal{K}_n \to \mathcal{H}_n$.

1.4 Models

Finite dimension: Let $\mathcal{V} = \mathbb{R}^d$. Then one can realize

$$\Omega = \mathbb{R}^d,$$

$$\pi(dx) = (2\pi)^{-d/2} \exp\{-x^2/2\} dx,$$

$$\phi(v)(\omega) = \langle v, \omega \rangle.$$

Note, that this construction doesn't work in infinite dimension: $\mathbf{E}(\omega^2) = d$.

Basis dependent embedding: Let $(e_j)_j$ be an orthonormal basis in \mathcal{V} . Let $(\Omega, \mathcal{F}, \pi)$ be a probability space with $(\xi_j(\omega))_j$ a \mathcal{F} -generating collection of i.i.d. standard normals and

$$\phi(v) = \sum_{j} \langle e_j, v \rangle \xi_j.$$

Gaussian distributions: Let $S := S(\mathbb{R}^d)$ be the space of rapidly decreasing test functions and $S' := S'(\mathbb{R}^d)$ the space of tempered distributions (Schwartz spaces). Let

 $b: \mathbb{R}^d \to \mathbb{R}$ be a (smooth?) positive definite function: for any $n < \infty, x_1, \dots, x_n \in \mathbb{R}^d$, $z_1, \dots, z_n \in \mathbb{C}$

$$\sum_{i,j=1}^{n} z_i \overline{z}_j b(x_i - x_j) \ge 0,$$

or, equivalently

$$\hat{b}(p) := (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{ipx} b(x) dx \ge 0.$$

For $u, v \in \mathcal{S}$ define the inner product

$$\langle u, v \rangle := \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} u(x)b(x-y)v(y) = \int_{\mathbb{R}^d} \overline{\hat{u}(p)}\hat{v}(p)\hat{b}(p)dp,$$

and let \mathcal{V} be the closure of \mathcal{S} with respect to this norm. Note that

$$\mathcal{V} = \{ u \in \mathcal{S}' : ||u||^2 = \int_{\mathbb{R}^d} |\hat{u}(p)|^2 \, \hat{b}(p) dp < \infty \}.$$

By Bochner-Minlos theorem there exists a unique Gaussian cylinder-set measure $d\pi$ on \mathcal{S}' with covariances

$$\int_{\mathcal{S}'} \omega(u)\omega(v)d\pi(\omega) = \langle u, v \rangle.$$

In this formula $u, v \in \mathcal{S}$, $\omega \in \mathcal{S}'$. Where is π concentrated?

Thus, in this model \mathcal{V} is defined as above, $\Omega = \mathcal{S}'$, \mathcal{F} is the sigma-algebra generated by finite cylinder sets and π is the gaussian measure on \mathcal{S}' with the given covariances. The imbedding is first defined only as $\phi : \mathcal{S} \to \mathcal{L}^2(\Omega, \mathcal{F}, \pi)$ by

$$\phi(v)(\omega) := \omega(v).$$

The point is that if $v_n \in \mathcal{S}$ and $v_n \to v \in \mathcal{V}$ in the strong (norm) topology of \mathcal{V} then the sequence $\phi(v_n)$ is Cauchy in $\mathcal{L}^2(\Omega, \mathcal{F}, \pi)$:

$$\mathbf{E}(|\phi(v_n) - \phi(v_m)|^2) = \mathbf{E}(\phi(v_n - v_m)^2) = ||v_n - v_m||^2.$$

Define

$$\phi(v) := \lim_{n} \phi(v_n), \quad \text{in } \mathcal{L}^2(\Omega, \mathcal{F}, \pi).$$

But mind that if $v \in \mathcal{V} \setminus \mathcal{S}$ then pointwise π -a.s. convergence doesn't hold.

2 Operators

With slight abuse of notation we denote by the same symbols the operators acting on \mathcal{K} and \mathcal{H} , transposed unitarily by $U: \mathcal{K} \to \mathcal{H}$.

The grade number operator is

$$N: \mathcal{K}(\mathcal{H}) \to \mathcal{K}(\mathcal{H}), \quad N \upharpoonright_{\mathcal{K}_n(\mathcal{H}_n)} = nI \upharpoonright_{\mathcal{K}_n(\mathcal{H}_n)}.$$

2.1 Creation and annihilation

2.1.1 Acting on Fock space

Let now $f \in \mathcal{V}$. We define $a^*(f) : \mathcal{K}_n \to \mathcal{K}_{n+1}$ and $a(f) : \mathcal{K}_n \to \mathcal{K}_{n-1}$, n = 0, 1, ... by $a^*(f)S_n(v_1 \otimes \cdots \otimes v_n) := (n+1)^{1/2}S_{n+1}(f \otimes v_1 \otimes \cdots \otimes v_n)$, $a(f)S_n(v_1 \otimes \cdots \otimes v_n) := n^{1/2}\sum_{j=1}^n \langle f, v_j \rangle S_{n-1}(v_1 \otimes \cdots \otimes v_{j-1} \otimes v_{j+1} \otimes \cdots \otimes v_n)$.

and extended by linearity. It is not difficult to check that these are indeed mutually adjoint: $a^*(f) = a(f)^*$, indeed. Denote

$$N(f) := a^*(f)a(f).$$

2.1.2 Acting on Gaussian space

Now

$$a^*(f): \mathcal{H}_n \to \mathcal{H}_{n+1}, \qquad a(f): \mathcal{H}_n \to \mathcal{H}_{n-1},$$

act as follows:

$$a^{*}(f) : \phi(v_{1}) \dots \phi(v_{n}) : = : \phi(f)\phi(v_{1}) \dots \phi(v_{n}) :,$$

$$a(f) : \phi(v_{1}) \dots \phi(v_{n}) : = \sum_{j=1}^{n} \langle f, v_{j} \rangle : \phi(v_{1}) \dots \phi(v_{j-1})\phi(v_{j+1}) \dots \phi(v_{n}) :.$$

It is again easy to check that

$$a^*(f) + a(f) = \phi(f).$$

(That is: multiplication by $\phi(f)$ on $\mathcal{L}^2(\Omega, \pi)$.)

2.2 Second quantization

2.2.1 Acting on Fock space

Given a linear operator A on V define the operators $\Gamma(A)$ and $d\Gamma(A)$ on K as follows

$$\Gamma(A)S_n(v_1 \otimes \cdots \otimes v_n) = S_n(Av_1 \otimes \cdots \otimes Av_n)$$

$$d\Gamma(A)S_n(v_1 \otimes \cdots \otimes v_n) = \sum_{j=1}^n S_n(v_1 \otimes \cdots \otimes Av_j \otimes \cdots \otimes v_n).$$

Clearly

$$\Gamma(AB) = \Gamma(A)\Gamma(B), \qquad \Gamma(A^*) = \Gamma(A)^*, \qquad \|\Gamma(A) \upharpoonright_{\mathcal{K}_n}\| = \|A\|^n,$$

$$d\Gamma(A+B) = d\Gamma(A) + d\Gamma(B) \qquad d\Gamma(A^*) = d\Gamma(A)^*, \qquad \|d\Gamma(A) \upharpoonright_{\mathcal{K}_n}\| = n\|A\|.$$

Note that

$$\Gamma(A)\mathbb{1} = \mathbb{1}, \qquad d\Gamma(A)\mathbb{1} = 0,$$

and

$$\Gamma(0) = (1, \cdot)1, \quad d\Gamma(I) = N, \quad \Gamma(\exp\{A\}) = \exp\{d\Gamma(A)\}.$$

2.2.2 Acting on Gaussian space

$$\Gamma(A) : \phi(v_1) \dots \phi(v_n) := : \phi(Av_1) \dots \phi(Av_n) :,$$

$$d\Gamma(A) : \phi(v_1) \dots \phi(v_n) := \sum_{j=1}^n : \phi(v_1) \dots \phi(Av_j) \dots \phi(v_n) :.$$

Note also that for $A \in \mathcal{B}(\mathcal{V})$

$$\Gamma(A) : \exp{\{\phi(v)\}} := : \exp{\{\phi(Av)\}} :$$
.

2.3 Commutation relations

The following commutation relations hold:

$$[a(f), a(g)] = [a^*(f), a^*(g)] = 0, [a(f), a^*(g)] = \langle f, g \rangle I.$$
$$[d\Gamma(A), a^*(f)] = a^*(Af), [d\Gamma(A), a(f)] = -a(A^*f).$$

2.4 Ornstein-Uhlenbeck processes

Theorem. Let $C \in \mathcal{B}(\mathcal{V})$.

- (i) If $||C|| \leq 1$ then $\Gamma(C)$ acting on \mathcal{H} is positivity preserving.
- (ii) If ||C|| < 1 then $\Gamma(C)$ acting on \mathcal{H} is positivity improving.

Remark: Together with $\Gamma(C)\mathbb{1}=\mathbb{1}$, this means that if $C\in\mathcal{B}(\mathcal{V})$ is a contraction, then $\Gamma(C)$ is a Markovian transition operator, with stationary measure π . Or, if G is the infinitesimal generator of a one parameter contraction semigroup $t\mapsto \exp\{tC\}$ on \mathcal{V} then $d\Gamma(G)$ is the infinitesimal generator of a (stationary) Markovian semigroup $t\mapsto \exp\{td\Gamma(G)\}$ on \mathcal{H} .

Proof. Let $n \in \mathbb{N}$ and, for $F \in \mathcal{S}(\mathbb{R}^n)$ denote the direct and inverse Fourier transforms in \mathbb{R}^n as follows:

$$\hat{F}(p) = (2\pi)^{n/2} \int_{\mathbb{R}^n} e^{-ip \cdot x} F(x) dx,$$

$$\check{F}(x) = (2\pi)^{n/2} \int_{\mathbb{R}^n} e^{ip \cdot x} F(p) dp.$$

Consider $F(\phi(v)) := F(\phi(v_1), \dots, \phi(v_n)) \in \mathcal{H}$ and write it as

$$F(\phi(v)) = (2\pi)^{n/2} \int_{\mathbb{R}^n} \exp\{ip \cdot \phi(v)\} \hat{F}(p) dp$$
$$= (2\pi)^{n/2} \int_{\mathbb{R}^n} :\exp\{ip \cdot \phi(v)\} : \exp\{-\frac{1}{2}p \cdot \langle v, v \rangle \cdot p\} \hat{F}(p) dp$$

Using the identity

$$\Gamma(C) : \exp{\{\phi(v)\}} := :\exp{\{\phi(Cv)\}} :$$

by linearity we get

$$\Gamma(C)F(\phi(v)) = (2\pi)^{n/2} \int_{\mathbb{R}^n} :\exp\{ip \cdot \phi(Cv)\} : \exp\{-\frac{1}{2}p \cdot \langle v, v \rangle \cdot p\} \hat{F}(p) dp$$
$$= (2\pi)^{n/2} \int_{\mathbb{R}^n} \exp\{ip \cdot \phi(Cv)\} \exp\{-\frac{1}{2}p \cdot \langle v, (I - C^*C))v \rangle \cdot p\} \hat{F}(p) dp.$$

This means that

$$\Gamma(C)F(\phi(v)) = (H * F)(\phi(Cv))$$

where $H(x) := H(x_1, ..., x_n)$ is the Gaussian

$$H(x) = \det(2\pi D)^{-1/2} \exp\{-\frac{1}{2}x \cdot D^{-1} \cdot x\},\,$$

and $D = \langle v, (I - C^*C) \rangle v \rangle$ is the matrix

$$D_{kl} = \langle v_k, (I - C^*C)v_l \rangle.$$

If D is not invertible, then approximate.

Finite dimension: Let $\mathcal{V} = \mathbb{R}^d$ with the representation

$$\Omega = \mathbb{R}^d$$
, $d\pi(x) = (2\pi)^{-d/2} \exp\{-|x|^2/2\} dx$.

The most general form of infinitesimal generator of a contraction semigroup over $\mathcal{V} = \mathbb{R}^d$ is written in matrix form as

$$G = -S + A,$$
 $S_{i,j} = s_j \delta_{i,j},$ $A_{i,j} = \sum_{k=1}^{d} \sum_{l=k+1}^{d} a_{k,l} (\delta_{k,i} \delta_{l,j} - \delta_{k,j} \delta_{l,i}),$

where $s_j \geq 0$, $a_{k,l} \in \mathbb{R}$. Then $d\Gamma(G)$ acting on $\mathcal{H} = \mathcal{L}^2(\mathbb{R}^d, \pi(dx))$ is

$$d\Gamma(G) = \sum_{i=1}^{d} s_{i} \left(\frac{1}{2} \frac{\partial^{2}}{\partial x_{i}^{2}} - x_{j} \frac{\partial}{\partial x_{j}} \right) + \sum_{k=1}^{d} \sum_{l=k+1}^{d} a_{k,l} \left(x_{k} \frac{\partial}{\partial x_{l}} - x_{l} \frac{\partial}{\partial x_{k}} \right).$$

This is the infinitesimal generator of a general Ornstein-Uhlenbeck process on \mathbb{R}^d .

Pure point spectrum: Let \mathcal{V} be general Hilbert space and assume that the infinitesimal generator is self adjoint and has a pure point spectrum:

$$G = G^* < 0,$$
 $Ge_k = -g_k e_k,$ $0 < g_1 \le g_2 \le \dots$

for an orthonormal basis $(e_j)_j$ in \mathcal{V} . Let $X_k(t)$ be independent stationary 1d Ornstein-Uhlenbeck processes with covariances

$$\mathbf{E}(X_k(t)X_l(s)) = \delta_{k,l}e^{-g_k|t-s|}.$$

For $t \in \mathbb{R}$ let

$$\xi(t,v) := \mathcal{L}^2 - \lim_{n \to \infty} \sum_{k=1}^n \langle e_k, v \rangle X_k(t).$$

Then $t \mapsto \xi(\cdot, t)$ is the infinite-dimensional Ornstein-Uhlenbeck process whose infinitesimal generator is $d\Gamma(G)$. Its covariances are

$$\mathbf{E}(\xi(s,u)\xi(t,v)) = \sum_{k=1}^{\infty} \langle e_k, u \rangle \langle e_k, v \rangle e^{-g_k|t-s|}.$$

Distribution valued Ornstein-Uhlenbeck processes: Let $b : \mathbb{R}^d \to \mathbb{R}$ be a (smooth?) positive definite function, as before. For $u, v \in \mathcal{S}$ define the inner product

$$\langle u, v \rangle := \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} u(x)b(x-y)v(y) = \int_{\mathbb{R}^d} \overline{\hat{u}(p)}\hat{v}(p)\hat{b}(p)dp,$$

and let \mathcal{V} be the closure of \mathcal{S} with respect to this norm. Then

$$\mathcal{V} = \{ u \in \mathcal{S}' : ||u||^2 = \int_{\mathbb{R}^d} |\hat{u}(p)|^2 \, \hat{b}(p) dp < \infty \}.$$

The Laplacian acts on \mathcal{V} :

$$\Delta u(x) = \frac{\partial^2 u}{\partial x^2}(x), \qquad \widehat{\Delta u}(p) = -p^2 \hat{u}(p).$$

The generalized Ornstein-Uhlenbeck process with infinitesimal generator $d\Gamma(\Delta)$ is the S'-valued Gaussian process $\xi(t,x)$ with covariances

$$\mathbf{E}(\xi(t,x)\xi(s,y)) = \int_{\mathbb{R}^d} e^{ip(y-x)} \hat{b}(p) e^{-p^2|t-s|} dp$$
$$= \int_{\mathbb{R}^d} (4\pi|t-s|)^{-\frac{d}{2}} e^{-\frac{(x-z)^2}{4|t-s|}} b(y-z) dz.$$