Gaussian Hilbert Spaces
partial, preliminary, unfinished, unpolished version
not for distribution

lecture notes by Balint T6th
June 1, 2009

1 Fock space and Gaussian Hilbert space

1.1 Bosonic Fock space
Let V be a real Hilbert space and
V, =R, V=V, Ve =V® -V (nfold).
For n € N and o € Perm(n) let R(0) € B(V,) defined as
R(o)v1 ® -+ @ Up 1= V1) ® - - @ Uon.

Then Perm(n) 3 0 — R(o) € B(V,) is a unitary representation of the symmetric group
Perm(n) over the Hilbert space V,,.
Define S,, € B(V,,) as

" o€Perm(n)

This is an orthogonal projection on V,:
S, =S =52

Its range is
lCn = SnVna
the bosonic spaces.

Assume an orthonormal basis (ej)j in V. Then

(ejl ®"’®ejn)j1 ,,,,, Jn.

will be the generated orthonormal basis in V),

1



Let

N, = {Q: (nj)j i € {0,1,2,...},an:n}.

Denote for n € N,

1/2
n
n) = (n) Sufe1® ®e1®ea® - Re®...)

where the basis element e; appears n;-times in the tensor product on the right hand
sides.
Then the collection
{ln) € K, :n € N,}

forms an orthonormal basis in C,,.
Note that if the basic space V is finite dimensional, with d = dim(V) then

d—1
dim(KC,)) = (n * )
n
The (bosonic) Fock space is
K= @52 K.

1.2 The Gaussian Hilbert space
Let (Q, F,7) be a probability space and H := L2(Q, F,w). Assume the following

Gaussian embedding of V in H:
(i) There exists a map ¢ : V — H such that for all v € V the random variable ¢(v) is
Gaussian with

B(6() =0,  Var(6(v)) = [v]?.
(ii) The random variables {¢(v) : v € V} generate the sigma-algebra F.

This is the same as saying that
(i) {¢(v) : v € V} are jointly Gaussian with

E(gb(v)) =0, Cov(qb(v), (;S(u)) = (v,u).

(ii) There is no random variable X which is jointly Gaussian with and independent of

{p(v) : v € V}.

1.2.1 Wick products

Given a zero mean Gaussian random variable X its Wick exponential is defined as follows

rexp{X}:=exp{X — E(X?)/2}.



Given jointly Gaussian random variables X = (X7, ..., X}) and integers n = (nq, ..., ng)
the Wick monomial is defined as:

an
XX = (% :exp{tX}:)
t=0

gt
— (W rexp{t1 Xy + - -+ + tp Xy} :)
Lot

t1==t=0
Given jointly Gaussian random variables X = (X7, ..., X}) and integers n = (nq, ..., ng)
and m = (my, ..., my) the Wick product of two Wick monomials is defined as:

CCXT LX) X LX) = X X

Wick polynomaials are linear combinations of Wick monomials. The Wick product extends
by linearity (from Wick monomials) to Wick polynomials.

Proposition. The Wick product (defined for Wick polynomials) is commutative, asso-
crative and distributive with respect to linear combinations. That is: given the Wick
polynomials P, Q, R and the real numbers «, 3, we have

(PQ:=:QP:, :(:PQ:)R:=:P(:QR:):, :PlaQ+fR):=«a :PQ: +3 :PR: .
Proof. Straightforward. ]
Remark: It follows that Wick monomials with only first powers suffice:

XX X e=Y Y

with
Yn1+mnl+r:Xl+1, l:O,...,k—l’ T:17...7nl.

Proposition. Let X = (Xq,..., X, Y1,...,Y,) be jointly Gaussian. Then

E( Xy XY Y ):5m,n Z HE<XiYo(i))

o€Perm(n) i=1
Proof. Note that
rexp{tX}: exp{sX}:=:exp{tX + sY}: exp{tCs},

where
Cyy =E(X)Y;), i=1,....m, j=1,...,n,

is the covariance matrix of the jointly Gaussian vectors X and Y. Thus
E( :exp{tX}: :exp{sX}: ) =exp{tCs}.
The rest of the proof follows from explicit computation of

an—i-m n
(35’”(’%" exp{tCs}) = Omn Z E( XiYo) )
1

t=s=0 o€Perm(n) i=




It follows that the subspaces of homogeneous Wick polynomials of degree n,

H,, :=span{ :p(v1) ... p(vy):,v1,. .., 0, €V}
are mutually orthogonal for n # m. Actually,

H = EB?LO:()Hn-

1.3 Unitary isomorphism between K and 'H

Let n be fixed and vy, ..., v, € V. Consider

Sn(vl R ® vn) e K, and p(v1) ... P(vy): € Hy.
Then
||Sn(U1 - ® Uy Hicn Z H Uj, Vo(j))
o€Perm(n) j=1
I b)) .. d(on): 5, =B((o). .. dwn))?) = > [ vew)-
o€Perm(n) j=1
Thus,

K, > Sn(vl ® - ®vn) > (n!)_1/2 :p(v1) ... P(vy): € Hy,

extends (by linearity and polarization) to a unitary isomorphism U, : K,, — H,,.

1.4 Models

Finite dimension: Let V = R%. Then one can realize
Q=R?
m(dx) = (2m)" Y% exp{—2?/2}dz,
o(v)(w) = (v, w).
Note, that this construction doesn’t work in infinite dimension: E(wz) =d.

Basis dependent embedding: Let (ej)j be an orthonormal basis in V. Let (2, F, )
be a probability space with (@(w))g. a F-generating collection of i.i.d. standard normals

and
8(0) = Y les 006

Gaussian distributions: Let S := S(R?) be the space of rapidly decreasing test func-
tions and &' := S&'(RY) the space of tempered distributions (Schwartz spaces). Let



b:R?Y — R be a (smooth?) positive definite function: for any n < oo, xy,...,z, € R%
21,...,2, €C

n

Z Zizjb(l‘i — $]’) Z 0,

ij=1
or, equivalently
b(p) = (27T>_d/2/ eb(x)dr > 0.

R4
For u,v € S define the inner product

woyi= [ [ utwte =) = [ @01

and let V be the closure of § with respect to this norm. Note that

v—weswwﬁ—éymwwmm<w}

By Bochner-Minlos theorem there exists a unique Gaussian cylinder-set measure dm
on &’ with covariances

/,w(u)w(v)dw(w) = (u,v).

In this formula u,v € S, w € §’. Where is 7 concentrated?

Thus, in this model V is defined as above, 2 = &', F is the sigma-algebra generated
by finite cylinder sets and 7 is the gaussian measure on &’ with the given covariances.
The imbedding is first defined only as ¢ : S — £2(Q, F, m) by

¢(v)(w) = w(v).

The point is that if v, € S and v, — v € V in the strong (norm) topology of V then the
sequence ¢(v,) is Cauchy in L3(Q, F, m):

E( |¢(Un> - ¢(Um)‘2) = E(Gb(vn - Um)2) = ||Un - Um||2~

Define
o(v) == lim ¢(v,), in L*(Q,F, ).

But mind that if v € V' \ S then pointwise 7-a.s. convergence doesn’t hold.

2 Operators

With slight abuse of notation we denote by the same symbols the operators acting on K
and H, transposed unitarily by U : K — 'H.
The grade number operator is

N:K(H) = K(H), N lc,)=nd k. -



2.1 Creation and annihilation

2.1.1 Acting on Fock space

Let now f € V. We define a*(f) : K, = K41 and a(f) : K, — K-, n=0,1,... by
a*(f)Su(vi®@ - ®@v,) = (n+ DS (fOU & @),

a(f)sn(vl K- vn) = n1/2 Z<f7 Uj>Sn71 (Ul R 'Ujfl & Uj+1 K- ® nn)
j=1

and extended by linearity. It is not difficult to check that these are indeed mutually
adjoint: a*(f) = a(f)*, indeed. Denote

2.1.2 Acting on Gaussian space

Now

a*(f): Hy — Hasr, a(f) : Hy — Hp-,

act as follows:

a*(f) :¢(1) .. dva): =:0(flo(vr) ... lvn):,
a(f): ¢(v). : Zf,v] (p(v1) .. P51 P (V1) - D)

It is again easy to check that

a’(f) +a(f) = o(f)
(That is: multiplication by ¢(f) on £L2(Q,).)

2.2 Second quantization
2.2.1 Acting on Fock space
Given a linear operator A on V define the operators I'(A) and dI'(A) on K as follows

F(A)Sn(vl - ®vn) =5, (Av1 - ®Avn)

dF(A)Sn(vl -® vn Z S Ul QA Q- ® Un).

Clearly
['(AB) = I(A)I'(B), ['(A) =T(A)", IT(A) Tk, | = [IA]"
dl'(A+ B) = dI'(A) 4+ dI'(B) dI'(A*) = dI'(A)*, ldT(A) Tk, || = n|lA]



Note that

and

['0) =(1,)1, dI'(Il) =N, T(exp{A})=exp{dl'(A)}.

2.2.2 Acting on Gaussian space

L(A) cp(v1) ... 0(vn): =:0(Avy) ... p(Av,):,
dL(A) (1) ... d(vy): :Z “p(v1) ... B(Av;) ... P(vy):

Jj=1

Note also that for A € B(V)

I'(A) exp{o(v)}:=:exp{op(Av)}: .

2.3 Commutation relations

The following commutation relations hold:
[a(f), alg)] = [a"(f),a™(9)] = 0, la(f),a"(9)] = (f, 9)1.
[dI(A),a" ()] = a"(Af),  [dD(A),a(f)] = —a(A"f).

2.4 Ornstein-Uhlenbeck processes

Theorem. Let C' € B(V).
(i) If ||C|| < 1 then I'(C') acting on H is positivity preserving.
(ii) If ||C|| < 1 then I'(C) acting on H is positivity improving.

Remark: Together with I'(C)1 = 1, this means that if C' € B(V) is a contraction,
then I'(C') is a Markovian transition operator, with stationary measure 7. Or, if G
is the infinitesimal generator of a one parameter contraction semigroup t — exp{tC'}
on V then dI'(G) is the infinitesimal generator of a (stationary) Markovian semigroup

t — exp{tdl'(G)} on H.

Proof. Let n € N and, for F' € S(R™) denote the direct and inverse Fourier transforms
in R™ as follows:

A

F(p) = (2m)"2 / PR (),

F(z) = (27?)”/2/ eP* F(p)dp.
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Consider F(¢(v)) := F(¢(v1),...,¢0(v,)) € H and write it as

F(o(v)) = (2m)"" / explip - $(v)} F(p)dp

=0 [ exp{ip o)) exsp{~3p- (0.0} PHE )y

Using the identity
D(C) cexp{o(v)}: = rexp{6(Co)}:,
by linearity we get
() F(¢(v)) = (27T)”/2/ rexp{ip - ¢(Cv)}: exp{—%p- (v, v) - p}F (p)dp

= 202 [ explip- o(Cv)} expl—5p- (0. (I = CC)o) - p) F(p)ip.

n

This means that
T(C)F(¢(v)) = (H * F)(¢(Cv))

where H(z) := H(xy,...,x,) is the Gaussian
H(x) = det(2r D)~/ exp{—%:n D7z},
and D = (v, (I — C*C))v) is the matrix
Dy = (vg, (I — C*C)y).

If D is not invertible, then approximate. O]

Finite dimension: Let V = R? with the representation
Q=R% dr(x) = (2m)~Y? exp{—|z|*/2}dz.

The most general form of infinitesimal generator of a contraction semigroup over ¥V = R¢
is written in matrix form as

d d
G=-5+4, Sij = 5504, Ay = Z Z 1 (5k,i51,j — 5k,j(5l,i)7

where s; > 0, a; € R. Then dI'(G) acting on H = L*(R?, w(dz)) is

19 0 CAg 9 ]
dF(G) = ZSJ' (58_1'3 _mja_ilj'j) + Z Z Q.1 (Jﬁka—xl —.Qﬁla—xk) .

j=1 k=1 l=k+1

This is the infinitesimal generator of a general Ornstein-Uhlenbeck process on RY.
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Pure point spectrum: Let V be general Hilbert space and assume that the infinitesimal
generator is self adjoint and has a pure point spectrum:

G=G" <0, Gek:—gkek, 0<gp <gp<...

for an orthonormal basis (ej)j in V. Let X(t) be independent stationary 1d Ornstein-
Uhlenbeck processes with covariances

E( Xp(t)Xi(s)) = dp eI,
Fort € R let

E(t,v) = L nh_)nolo i(ekw)Xk(t).
k=1

Then t — &(+,t) is the infinite-dimensional Ornstein-Uhlenbeck process whose infinitesi-
mal generator is dI'(G). Its covariances are

o0

E(&(s,w)é(t,v)) = Z(ek, u) (e, v)e Ikl

k=1

Distribution valued Ornstein-Uhlenbeck processes: Let b : R? — R be a (smooth?)
positive definite function, as before. For u,v € § define the inner product

woyi= [ [ we—yetn) = [ T

and let V be the closure of § with respect to this norm. Then

V={ueS:ul = [ 1a) by < o0},

The Laplacian acts on V:

Nu(r) = T4@), Kulp) = —alp).

The generalized Ornstein-Uhlenbeck process with infinitesimal generator dI'(A) is the
S'-valued Gaussian process £(t, x) with covariances

B(£(t, 2)E(s,y)) = / P2 (p)e Pl dp

Rd

z—z)2
- / (4rlt — s)~Se T by — 2)d.
]Rd



