The Alder-Wainwright argument (informal notes for friendly use)

September 21, 2010

1 Sketch of the argument in general form

Let $t \mapsto X(t) \in \mathbb{R}^{d}$ be a random motion in some random environment, with stationary and ergodic increments. The random environment also evolves in time. Usually we decompose the random motion into martingale+compensator:

$$
\begin{equation*}
X(t)=M(t)+\int_{0}^{t} V(s) d s=: M(t)+\tilde{X}(t) \tag{1}
\end{equation*}
$$

where $M(t)$ is a square integrable martingale with stationary and ergodic increments and the compensator $V(t)$ is stationary and ergodic, also square integrable. I'll call it the instantaneous velocity of the motion. We are interested in understanding the origins of the possibly superdiffusive behaviour of $X(t)$. Since $M(t)$ is anyway diffusive, we don't care much about it. The main contribution to the superdiffusive behaviour anyway comes from

$$
\begin{equation*}
\tilde{X}(t):=\int_{0}^{t} V(s) d s \tag{2}
\end{equation*}
$$

It is assumed that the instantaneous velocity comes from some background velocity field $U(t, x)$ as follows:

$$
\begin{equation*}
V(t)=U(t, X(t)) . \tag{3}
\end{equation*}
$$

And it is important to note that we think about a joint random dynamics $t \mapsto(X(t), U(t, \cdot))$. The dynamics of $t \mapsto U(t, x)$ is also influenced by $X(t)$ (and vice versa). The process of the velocity field $t \mapsto U(t, \cdot)$ is usually not stationary while the field as seen from the position of the random motion $V(t, x):=U(t, X(t)+x)$, is. Note, that with this notation $V(t)=V(t, 0)$.

1.1 Various notations

The correlations of the velocity field:

$$
\begin{align*}
K_{i j}(t, x) & :=\mathbf{E}\left(U_{i}(0,0) U_{j}(t, x)\right) \tag{4}\\
K(t, x) & :=\mathbf{E}(U(0,0) \cdot U(t, x))=\sum_{i=1}^{d} K_{i i}(t, x) . \tag{5}
\end{align*}
$$

Mind that the field $U(t, x)$ is not stationary under either time or space shifts, so

$$
\begin{equation*}
\mathbf{E}\left(U_{i}(s, y) U_{j}(t, x)\right) \neq K_{i j}(t-s, x-y) . \tag{6}
\end{equation*}
$$

The velocity autocorrelation function:

$$
\begin{align*}
C_{i j}(t) & :=\mathbf{E}\left(V_{i}(0) V_{j}(t)\right), \tag{7}\\
C(t) & :=\mathbf{E}(V(0) \cdot V(t))=\sum_{i=1}^{d} C_{i i}(t) . \tag{8}
\end{align*}
$$

Mind that the velocity process $V(t)$ is assumed stationary (and ergodic), thus

$$
\begin{equation*}
\mathbf{E}\left(V_{i}(s) V_{j}(t)\right)=C_{i j}(t-s) \tag{9}
\end{equation*}
$$

The diffusivity:

$$
\begin{align*}
D_{i j}(t) & :=t^{-1} \mathbf{E}\left(X_{i}(t) X_{j}(t)\right), \tag{10}\\
D(t) & :=\mathbf{E}(X(t) \cdot X(t))=\sum_{i=1}^{d} D_{i i}(t) . \tag{11}\\
\tilde{D}_{i j}(t) & :=t^{-1} \mathbf{E}\left(\tilde{X}_{i}(t) \tilde{X}_{j}(t)\right), \tag{12}\\
\tilde{D}(t) & :=\mathbf{E}(\tilde{X}(t) \cdot \tilde{X}(t))=\sum_{i=1}^{d} \tilde{D}_{i i}(t) . \tag{13}
\end{align*}
$$

In case of superdiffusive behaviour

$$
\begin{equation*}
D_{i j}(t) \asymp \tilde{D}_{i j}(t) \tag{14}
\end{equation*}
$$

By stationarity of $V(t)$

$$
\begin{equation*}
\tilde{D}_{i j}(t)=2 \int_{0}^{t} \frac{t-s}{t} C_{i j}(s) d s, \tag{15}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\tilde{D}_{i j}(t) \asymp \int^{t} C_{i j}(s) d s \tag{16}
\end{equation*}
$$

We shall refer to (16) as the asymptotic form of the Green-Kubo formula.

1.2 Scaling assumptions

I will treat separately the cases of isotropic scaling, when all spatial directions are scaled in the same order, respectively, the anisotropic scaling, when different spatial directions scale in different order. I will treat the anisotropic scaling cases only in $d=2$ and only in the case when one of the spatial directions scales diffusively and the other one is expected to scale superdiffusively.

1.2.1 Isotropic scaling assumptions

In the isotropic case I will not care about directions, components, subscripts.
Scaling of the displacement: We assume that $X(t)$ is of order

$$
\begin{equation*}
\alpha(t)=t^{\nu}(\log t)^{\gamma} . \tag{17}
\end{equation*}
$$

More explicitly, assume that

$$
\begin{equation*}
\mathbf{P}(X(t) \in d x) \asymp \alpha(t)^{-d} \varphi\left(\alpha(t)^{-1} x\right) d x \tag{18}
\end{equation*}
$$

where $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$is a density, which is regular at $x=0$ and decays fast at $|x| \rightarrow \infty$. Its Fourier transform is

$$
\begin{equation*}
\hat{\varphi}(p):=\int_{\mathbb{R}^{d}} \varphi(x) e^{i x \cdot p} d x . \tag{19}
\end{equation*}
$$

Scaling of the velocity field: We also assume that the correlations of the velocity field $U(t, x)$ scale as

$$
\begin{equation*}
K(t, x) \asymp \beta(t)^{-d} \psi\left(\beta(t)^{-1} x\right) . \tag{20}
\end{equation*}
$$

Note that under this assumption

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} K(t, x) d x \asymp \text { const. } \tag{21}
\end{equation*}
$$

This corresponds to some kind of conservation of momentum carried by the velocity field. Note, that since $\psi(x)$ is a correlation function, it is by force of positive type:

$$
\begin{equation*}
\hat{\psi}(p):=\int_{\mathbb{R}^{d}} \psi(x) e^{i x \cdot p} d x>0 . \tag{22}
\end{equation*}
$$

Main scaling assumptions: We make two important assumptions

1. Regularity of ψ and/or φ : One of the following two regularity conditions holds: Either

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}|\psi(x)| d x<\infty, \quad \hat{\psi}(0)>0 \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{\varphi}(p)>0, \quad \varlimsup_{p \rightarrow 0} \hat{\psi}(p)>0 \tag{24}
\end{equation*}
$$

2. Displacement scales on faster order than the velocity-field correlations:

$$
\begin{equation*}
\beta(t)=\mathcal{O}(\alpha(t)) . \tag{25}
\end{equation*}
$$

1.2.2 Anisotropic scaling assumptions

In two dimensions, for some models we may make the following anisotropic scaling assumptions. I will denote the component of the displacement $(X(t), Y(t))$ rather than $\left(X_{1}(t), X_{2}(t)\right)$.

Scaling of the displacement: We assume that $X(t)$ is of order

$$
\begin{equation*}
\alpha(t)=t^{\nu}(\log t)^{\gamma}, \tag{26}
\end{equation*}
$$

while $Y(t)$ is assumed diffusive (of order $t^{1 / 2}$). More explicitly, assume that

$$
\begin{equation*}
\mathbf{P}(X(t) \in d x, Y(t) \in d y) \asymp \alpha(t)^{-1} t^{-1 / 2} \varphi\left(\alpha(t)^{-1} x, t^{-1 / 2} y\right) d x d y \tag{27}
\end{equation*}
$$

where $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$is a density, which is regular at $x=y=0$ and decays fast at $|x|+|y| \rightarrow \infty$. Its Fourier transform is

$$
\begin{equation*}
\hat{\varphi}(p, q):=\int_{\mathbb{R}^{2}} \varphi(x) e^{i(x p+y q)} d x d y . \tag{28}
\end{equation*}
$$

More general anisotropic scaling assumptions are also possible.
Scaling of the velocity field: We also assume that the correlations of the velocity field $U(t, x, y)$ scale as

$$
\begin{equation*}
K_{i j}(t, x, y) \asymp \beta(t)^{-1} \beta^{\prime}(t)^{-1} \psi_{i j}\left(\beta(t)^{-1} x, \beta^{\prime}(t)^{-1} y\right) . \tag{29}
\end{equation*}
$$

Note that the conservation law

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} K_{i j}(t, x, y) d x d y \asymp \text { const. } \tag{30}
\end{equation*}
$$

still holds and $\psi(x, y)$ is still of positive type:

$$
\begin{equation*}
\hat{\psi}_{i j}(p, q):=\int_{\mathbb{R}^{2}} \psi_{i j}(x, y) e^{i(x p+y q)} d x d y>0 \quad \text { (as matrix). } \tag{31}
\end{equation*}
$$

Main scaling assumptions: We make two important assumptions

1. Regularity of ψ and/or φ :

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|\psi_{11}(x, y)\right| d x d y<\infty, \quad \hat{\psi}_{11}(0,0)>0 \tag{32}
\end{equation*}
$$

2. Displacement scales on faster order than the velocity-field correlations:

$$
\begin{equation*}
\beta(t)=\mathcal{O}(\alpha(t)), \quad \beta^{\prime}(t)=\mathcal{O}\left(t^{1 / 2}\right), \tag{33}
\end{equation*}
$$

2 Computations

2.1 Isotropic scaling

First, assuming condition (23):

$$
\begin{array}{rlr}
C(t) & =\mathbf{E}(V(0) \cdot V(t))=\mathbf{E}(U(0,0) \cdot U(t, X(t))) & \tag{34}\\
& \approx \int_{\mathbb{R}^{d}} K(t, x) \mathbf{P}(X(t) \in d x) & \text { decoupling!!! } \\
& \asymp \int_{\mathbb{R}^{d}} \beta(t)^{-d} \psi\left(\beta(t)^{-1} x\right) \alpha(t)^{-d} \varphi\left(\alpha(t)^{-1} x\right) d x & \text { scaling } \\
& =\alpha(t)^{-d} \int_{\mathbb{R}^{d}} \psi(x) \varphi\left(\beta(t) \alpha(t)^{-1} x\right) d x & \\
& \asymp \alpha(t)^{-d} &
\end{array}
$$

Of course, the second step (decoupling) is the shaky one. In the last step we used (23) and regularity of φ at $x=0$.

If instead of (23) we assume (24), then in the previous computation, after the scaling step we take the Fourier transforms:

$$
\begin{align*}
C(t) & \asymp \int_{\mathbb{R}^{d}} \beta(t)^{-d} \psi\left(\beta(t)^{-1} x\right) \alpha(t)^{-d} \varphi\left(\alpha(t)^{-1} x\right) d x \quad \text { scaling } \tag{35}\\
& =\int_{\mathbb{R}^{d}} \hat{\psi}(\beta(t) p) \hat{\varphi}(\alpha(t) p) d p \\
& =\alpha(t)^{-d} \int_{\mathbb{R}^{d}} \hat{\psi}\left(\beta(t) \alpha(t)^{-1} p\right) \hat{\varphi}(p) d p \\
& \asymp \alpha(t)^{-d}
\end{align*}
$$

Now, in the last step we have used (24).

Conclusions in the isotropic scaling

From the scaling assumption (18) it follows that

$$
\begin{equation*}
\tilde{D}(t) \asymp t^{-1} \alpha(t)^{2} . \tag{36}
\end{equation*}
$$

On the other hand, using the Green-Kubo formula (16) and the computations in (34) we get

$$
\begin{equation*}
\tilde{D}(t) \asymp \int^{t} \alpha(s)^{-d} d s \tag{37}
\end{equation*}
$$

The only choices of the scaling function $\alpha(t)$ consistent with both (36) and (37), are

$$
\begin{array}{lll}
\mathbf{d}=\mathbf{1}: & \nu=\frac{2}{3}, & \gamma=0, \\
\mathbf{d}=\mathbf{2}: & \nu=\frac{1}{2}, & \gamma=\frac{1}{4}, \\
\mathbf{d}=\mathbf{3}: & \nu=\frac{1}{2}, & \gamma=0, \\
\hline(t) \asymp(\log t)^{1 / 2}, \tag{40}\\
\hline 1 / 3, \\
& \nu(t) \asymp 1 .
\end{array}
$$

2.2 Anisotropic scaling

I will compute the asymptotics of $C_{11}(t)$

$$
\begin{align*}
C_{11}(t) & =\mathbf{E}\left(V_{1}(0) \cdot V_{1}(t)\right)=\mathbf{E}\left(U_{1}(0,0) \cdot U_{1}(t, X(t), Y(t))\right) \tag{41}\\
& \approx \int_{\mathbb{R}^{2}} K_{11}(t, x, y) \mathbf{P}(X(t) \in d x, Y(t) \in d y) \\
& \asymp \int_{\mathbb{R}^{2}} \beta(t)^{-1} \beta^{\prime}(t)^{-1} \psi\left(\beta(t)^{-1} x, \beta^{\prime}(t)^{-1} y\right) \alpha(t)^{-1} t^{-1 / 2} \varphi\left(\alpha(t)^{-1} x, t^{-1 / 2} y\right) d x d y \quad \text { scaling } \\
& =\alpha(t)^{-1} t^{-1 / 2} \int_{\mathbb{R}^{2}} \psi(x, y) \varphi\left(\beta(t) \alpha(t)^{-1} x, \beta^{\prime}(t) t^{-1 / 2} y\right) d x d y \\
& \asymp \alpha(t)^{-1} t^{-1 / 2}
\end{align*}
$$

Same remarks/comments are in order as in the isotropic case.

Conclusions in the anisotropic scaling

From the scaling assumption (27) it follows that

$$
\begin{equation*}
\tilde{D}_{11}(t) \asymp t^{-1} \alpha(t)^{2} . \tag{42}
\end{equation*}
$$

On the other hand, using the Green-Kubo formula (16) and the computations in (41) we get

$$
\begin{equation*}
\tilde{D}_{11}(t) \asymp \int^{t} \alpha(s)^{-1} t^{-1 / 2} d s \tag{43}
\end{equation*}
$$

We are in $d=2$. The only choice of the scaling function $\alpha(t)$ consistent with both (42) and (43), is

$$
\begin{equation*}
\mathbf{d}=\mathbf{2}: \quad \nu=\frac{1}{2}, \quad \gamma=\frac{1}{3}, \quad D(t) \asymp(\log t)^{2 / 3} . \tag{44}
\end{equation*}
$$

3 Examples

3.1 Second class particle in ASEP (anisotropic scaling)

We start the system ASEP + SCP from the stationary distribution - as seen from the position of the SCP, corresponding to $\rho=1 / 2 . \quad\left(\eta_{t}(x)\right)_{x \in \mathbb{Z}^{d}}$ is the ASEP. $X(t)$ is the
displacement of the SCP. Then

$$
\begin{align*}
V(t) & =\sum_{v} p(v) v\left(1-\eta_{t}(X(t)+v)\right)-\sum_{v} p(v) v \eta_{t}(X(t)-v) \tag{45}\\
& =\langle v\rangle-\sum_{v} p(v) v\left(\eta_{t}(X(t)+v)+\eta_{t}(X(t)-v)\right)
\end{align*}
$$

where

$$
\begin{equation*}
\langle v\rangle:=\sum_{v} p(v) v . \tag{46}
\end{equation*}
$$

The velocity field is

$$
\begin{equation*}
U(t, x)=\langle v\rangle-\sum_{v} p(v) v\left(\eta_{t}(x+v)+\eta_{t}(x-v)\right) \tag{47}
\end{equation*}
$$

with correlations

$$
\begin{equation*}
K_{i j}(t, x)=4\left\langle v_{i}\right\rangle\left\langle v_{j}\right\rangle \operatorname{Cov}\left(\eta_{0}(0), \eta_{t}(x)\right)+\text { small error. } \tag{48}
\end{equation*}
$$

The "small error" consists of four terms like

$$
\begin{equation*}
\sum_{v} \sum_{u} p(v) v_{i} p(u) u_{j}\left(\operatorname{Cov}\left(\eta_{0}(\pm u), \eta_{t}(x \pm v)\right)-\operatorname{Cov}\left(\eta_{0}(0), \eta_{t}(x)\right)\right) \tag{49}
\end{equation*}
$$

which clearly disappear under scaling. Note that the covariance matrix $K_{i j}$ is asymptotically rank one. This leads to the anisotropic scaling in $d \geq 2$.

Beside these we have the fundamental identity

$$
\begin{equation*}
\operatorname{Cov}\left(\eta_{0}(0), \eta_{t}(x)\right)=\mathbf{P}(X(t)=x) \tag{50}
\end{equation*}
$$

$\mathbf{d}=\mathbf{1}$: Using the fundamental identity (50) we get

$$
\begin{equation*}
\beta(t)=\alpha(t), \quad \psi(x)=\phi(x) \tag{51}
\end{equation*}
$$

Plugging these into (34) we conclude (38).
$\mathbf{d}=\mathbf{2}:$ We are in the anisotropic case. Say, $\langle v\rangle$ points in the horizontal direction (of subscript 1). Then - using again the fundamental relation (50) - we get:

$$
\begin{equation*}
\beta(t)=\alpha(t), \quad \beta^{\prime}(t)=t^{1 / 2}, \quad \psi(x, y)=\varphi(x, y)=\varphi(x) e^{-y^{2} / 2} \tag{52}
\end{equation*}
$$

Plugging these into (41) we conclude (44).

3.2 Diffusion in curl-MFGF field and Random Walk on Square Ice (isotropic scaling)

We are in $d=2$. Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the zero mean Gaussian vector field with covariances

$$
\begin{equation*}
\mathbf{E}\left(U_{i}(x)\right)=0, \quad \mathbf{E}\left(U_{i}(x) U_{j}(y)\right)=K_{i j}(y-x), \tag{53}
\end{equation*}
$$

where $K_{i j}(x)$ has the Fourier transform

$$
\begin{equation*}
\hat{K}_{i j}(p)=\left(2 \delta_{i, j}-1\right) \frac{p_{i} p_{j}}{|p|^{2}} e^{-|p|^{2} / 2} \tag{54}
\end{equation*}
$$

where we have denoted

$$
\begin{equation*}
\underline{i}:=3-i, \quad i=1,2 . \tag{55}
\end{equation*}
$$

This corresponds to the vector field $U(x)$ being the curl of the massless free Gaussian field, smeared out by convolution with $e^{-|x|^{2} / 2}$. Note that the field $U(x)$ is divergence free.

Let $X(t)$ be the diffusion in the random drift field $U(x)$:

$$
\begin{equation*}
d X(t)=d B(t)+U(X(t)) d t \tag{56}
\end{equation*}
$$

Since the vector field $U(x)$ is divergence free, the random environment seen from the moving particle

$$
\begin{equation*}
V(t, x):=U(t, X(t)+x) \tag{57}
\end{equation*}
$$

is stationary (and ergodic) in time.
The problem is isotropic. Since the velocity field $U(x)$ does not change with time, from start we know that

$$
\begin{equation*}
\beta(t) \equiv 1, \quad \psi_{i j}(x)=K_{i j}(x) \tag{58}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left|K_{i i}(x)\right| \sim|x|^{-2} \tag{59}
\end{equation*}
$$

and thus, the condition (23) doesn't hold. Nevertheless, we do the computations (35) and apply condition (24). We get

$$
\begin{align*}
C(t) & =\int_{\mathbb{R}^{2}} \hat{K}(p) \hat{\varphi}(\alpha(t) p) d p \tag{60}\\
& =\alpha(t)^{-2} \int_{\mathbb{R}^{2}} \hat{V}\left(\alpha(t)^{-1} p\right) \hat{\varphi}(p) d p \\
& \asymp \alpha(t)^{-2} .
\end{align*}
$$

This leads to the conclusion (39).
The random walk on square ice is the analogous discrete space-time RWRE problem. Take the isotropic six-vertex (or: square ice) model and let $X(n)$ be the n.n. RWRE which jumps with probability $\frac{1}{4}+\varepsilon$, respectively, $\frac{1}{4}-\varepsilon\left(0<\varepsilon<\frac{1}{4}\right)$ in, respectively, against the direction of orientation of the edges. Everything seems to be very similar to the previous diffusion in RE.

3.3 True Self-Avoiding Walk and Self-Repelling Brownian Polymer (isotropic scaling)

See

