Problem Set 7 Girsanov's Theorem and Some Applications

7.1 [Change of conditional expectation]

Let **Q** and **P** be two probability measures on (Ω, \mathcal{F}) , with $\mathbf{Q} \ll \mathbf{P}$, and Radon-Nikodym derivative $\frac{d\mathbf{Q}}{d\mathbf{P}}(\omega) = \varrho(\omega)$. Let $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ -algebra. Show that, for any \mathcal{F} -measurable random variable X, we have

$$\mathbf{E}_{\mathbf{Q}}(X \mid \mathcal{G}) = \frac{\mathbf{E}_{\mathbf{P}}(\varrho X \mid \mathcal{G})}{\mathbf{E}_{\mathbf{P}}(\varrho \mid \mathcal{G})}$$
(1)

7.2 [A discrete version of Girsanov's formula]

Let $\Omega_n := \{\mathsf{H},\mathsf{T}\}^n$, **P** be the probability measure on Ω_n given by tossing a biased coin n times independently which gives probability 2/3 to **H**, and **Q** the probability measure given by tossing a fair coin n times independently. Let $Z_n(\omega) := \frac{d\mathbf{Q}}{d\mathbf{P}}(\omega)$, and consider the martingale (with respect to the measure **P**) $Z_m := \mathbf{E}_{\mathbf{P}}(Z_n | \mathcal{F}_m)$ for $m \leq n$.

(a) Give *explicitly* the distribution of Z_{m+1} given Z_m, \ldots, Z_1 .

(b) Note that (1) of the previous exercise translates to $\mathbf{E}_{\mathbf{Q}}(X \mid \mathcal{F}_m) = (Z_m)^{-1} \mathbf{E}_{\mathbf{P}}(XZ_n \mid \mathcal{F}_m)$. Check this numerically for $n = 3, m = 2, X = \#\{\text{heads in } (\omega_1, \omega_2, \omega_3)\}.$

- (c) Interpret this exercise as a discrete version of Girsanov's theorem.
- 7.3 [Cameron-Martin theorem]

(a) Let $f \in L^2[0,1]$ be a deterministic function and $F(t) := \int_0^t f(u) du$, $t \in [0,1]$. Show that, if $t \mapsto B(t)$ is standard 1d Brownian motion, then the laws of the processes $\{t \mapsto F(t) + B(t) : t \in [0,1]\}$ and $\{t \mapsto B(t) : t \in [0,1]\}$ are mutually absolutely continuous w.r.t. each other. Compute the Radon-Nikodym derivatives.

(b) If F(t) is such that the above f(t) does not exist, then the laws of the two processes are mutually singular.

7.4 Let $B(t) = (B_1(t), B_2(t)), t \leq T$, be a 2-dimensional standard Brownian motion on the probability space $(\Omega, \mathcal{F}_T, \mathbf{P})$. Find a probability measure \mathbf{Q} on \mathcal{F}_T that is mutually absolutely continuous w.r.t. \mathbf{P} , and under which the following process $t \mapsto Y(t)$ becomes a martingale:

(a)

$$dY(t) = \begin{pmatrix} 2\\ 4 \end{pmatrix} dt + \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} dB_1(t)\\ dB_2(t) \end{pmatrix}, \qquad t \le T.$$

(b)

$$dY(t) = \begin{pmatrix} 0\\1 \end{pmatrix} dt + \begin{pmatrix} 1 & 3\\-1 & -2 \end{pmatrix} \begin{pmatrix} dB_1(t)\\dB_2(t) \end{pmatrix}, \qquad t \le T$$

7.5 Let $b : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be bounded measurable function. Construct a weak solution $t \mapsto X(t)$ of the SDE

$$dX(t) = b(X(t))dt + dB(t), \qquad X_0 = x \in \mathbb{R}^n.$$

- **7.6** Let B(t) be standard 1-dimensional Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and Y(t) = t + B(t). For each T > 0, find $\mathbf{Q}_T \sim \mathbf{P}$ on \mathbb{F}_T such that $\{t \mapsto Y(t)\}_{t \leq T}$ becomes a Brownian motion under \mathbb{Q}_T .
 - (a) Show that there exists a probability measure \mathbf{Q} on \mathcal{F} such that $\mathbf{Q}|_{\mathcal{F}_T} = \mathbb{Q}_T$ for all T > 0.

(b) Show that $\mathbf{P}(\lim_{t\to\infty} Y(t) = \infty) = 1$, while $\mathbf{Q}(\lim_{t\to\infty} Y(t) = \infty) = 0$. Why does not this contradict Girsanov's theorem?

7.7 Let $b : \mathbb{R} \to \mathbb{R}$ be Lipschitz, and $t \mapsto X(t)$ be the unique strong solution of the 1-dimensional SDE

$$dX(t) = b(X(t))dt + dB(t), \qquad X(0) = x \in \mathbb{R}.$$

(a) Use Girsanov's theorem to prove that for any $M < \infty$, $x \in \mathbb{R}$, and t > 0, we have $\mathbf{P}(X(t) > M) > 0$.

(b) Choose b(x) = -r, where r > 0 is a constant. Prove that, for all x, we have $\lim_{t\to\infty} X(t) = -\infty$, a.s. Compare this fact with the result in part (a).

7.8 [Feynman-Kac formul and killing rates]

Let B(t) denote standard Brownian motion in \mathbb{R}^n , and consider the Itô diffusion

$$dX(t)t = \nabla h(X(t))dt + dB(t), \qquad X_0 = x \in \mathbb{R}^n,$$

where $h \in C^2_{\text{comp}}(\mathbb{R}^n)$. We are going to relate this process to a Brownian motion killed at a certain rate V(x).

(a) Let

$$V(x) := \frac{1}{2} |\nabla h(x)|^2 + \frac{1}{2} \Delta h(x)$$

Prove that, for any $f \in C_{\text{comp}}(\mathbb{R}^n)$, we have

$$\mathbf{E}_{x}(f(X(t))) = \mathbf{E}_{x}(e^{-\int_{0}^{t} V(B(s))ds}e^{h(B(t))-h(x)}f(B(t))).$$
(2)

Hint: Use Girsanov's theorem to express the left hand side of (2) as an expectation with respect to B(t), then use Itô's formula.

(b) Assume $V \ge 0$, and use Feynman-Kac with local killing rate V(x). Let Y(t) be the Brownian motion B(t) killed with local rate V(x). Reinterpret (2) as

$$P_t^X f(x) = e^{-h(x)} P_t^Y (e^h f)(x),$$

where $P_t^X f(x) := \mathbf{E}_x (f(X(t)))$ is the semigroup of conditional expectations for the diffusion X(t), and similarly for Y.