Problem Set 7
 Girsanov's Theorem and Some Applications

7.1 [Change of conditional expectation]

Let \mathbf{Q} and \mathbf{P} be two probability measures on (Ω, \mathcal{F}), with $\mathbf{Q} \ll \mathbf{P}$, and Radon-Nikodym derivative $\frac{d \mathbf{Q}}{d \mathbf{P}}(\omega)=\varrho(\omega)$. Let $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ-algebra. Show that, for any \mathcal{F}-measurable random variable X, we have

$$
\begin{equation*}
\mathbf{E}_{\mathbf{Q}}(X \mid \mathcal{G})=\frac{\mathbf{E}_{\mathbf{P}}(\varrho X \mid \mathcal{G})}{\mathbf{E}_{\mathbf{P}}(\varrho \mid \mathcal{G})} \tag{1}
\end{equation*}
$$

7.2 [A discrete version of Girsanov's formula]

Let $\Omega_{n}:=\{\mathrm{H}, \mathrm{T}\}^{n}, \mathbf{P}$ be the probability measure on Ω_{n} given by tossing a biased coin n times independently which gives probability $2 / 3$ to H , and \mathbf{Q} the probability measure given by tossing a fair coin n times independently. Let $Z_{n}(\omega):=\frac{d \mathbf{Q}}{d \mathbf{P}}(\omega)$, and consider the martingale (with respect to the measure $\mathbf{P}) Z_{m}:=\mathbf{E}_{\mathbf{P}}\left(Z_{n} \mid \mathcal{F}_{m}\right)$ for $m \leq n$.
(a) Give explicitly the distribution of Z_{m+1} given Z_{m}, \ldots, Z_{1}.
(b) Note that (1) of the previous exercise translates to $\mathbf{E}_{\mathbf{Q}}\left(X \mid \mathcal{F}_{m}\right)=\left(Z_{m}\right)^{-1} \mathbf{E}_{\mathbf{P}}\left(X Z_{n} \mid \mathcal{F}_{m}\right)$. Check this numerically for $n=3, m=2, X=\#\left\{\right.$ heads in $\left.\left(\omega_{1}, \omega_{2}, \omega_{3}\right)\right\}$.
(c) Interpret this exercise as a discrete version of Girsanov's theorem.

7.3 /Cameron-Martin theorem/

(a) Let $f \in L^{2}[0,1]$ be a deterministic function and $F(t):=\int_{0}^{t} f(u) d u, t \in[0,1]$. Show that, if $t \mapsto B(t)$ is standard 1d Brownian motion, then the laws of the processes $\{t \mapsto F(t)+B(t)$: $t \in[0,1]\}$ and $\{t \mapsto B(t): t \in[0,1]\}$ are mutually absolutely continuous w.r.t. each other. Compute the Radon-Nikodym derivatives.
(b) If $F(t)$ is such that the above $f(t)$ does not exist, then the laws of the two processes are mutually singular.
7.4 Let $B(t)=\left(B_{1}(t), B_{2}(t)\right), t \leq T$, be a 2-dimensional standard Brownian motion on the probability space $\left(\Omega, \mathcal{F}_{T}, \mathbf{P}\right)$. Find a probability measure \mathbf{Q} on \mathcal{F}_{T} that is mutually absolutely continuous w.r.t. \mathbf{P}, and under which the following process $t \mapsto Y(t)$ becomes a martingale:
(a)

$$
d Y(t)=\binom{2}{4} d t+\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{d B_{1}(t)}{d B_{2}(t)}, \quad t \leq T
$$

(b)

$$
d Y(t)=\binom{0}{1} d t+\left(\begin{array}{cc}
1 & 3 \\
-1 & -2
\end{array}\right)\binom{d B_{1}(t)}{d B_{2}(t)}, \quad t \leq T .
$$

7.5 Let $b: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be bounded measurable function. Construct a weak solution $t \mapsto X(t)$ of the SDE

$$
d X(t)=b(X(t)) d t+d B(t), \quad X_{0}=x \in \mathbb{R}^{n}
$$

7.6 Let $B(t)$ be standard 1-dimensional Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and $Y(t)=t+B(t)$. For each $T>0$, find $\mathbf{Q}_{T} \sim \mathbf{P}$ on \mathbb{F}_{T} such that $\{t \mapsto Y(t)\}_{t \leq T}$ becomes a Brownian motion under \mathbb{Q}_{T}.
(a) Show that there exists a probability measure \mathbf{Q} on \mathcal{F} such that $\left.\mathbf{Q}\right|_{\mathcal{F}_{T}}=\mathbb{Q}_{T}$ for all $T>0$.
(b) Show that $\mathbf{P}\left(\lim _{t \rightarrow \infty} Y(t)=\infty\right)=1$, while $\mathbf{Q}\left(\lim _{t \rightarrow \infty} Y(t)=\infty\right)=0$. Why does not this contradict Girsanov's theorem?
7.7 Let $b: \mathbb{R} \rightarrow \mathbb{R}$ be Lipschitz, and $t \mapsto X(t)$ be the unique strong solution of the 1-dimensional SDE

$$
d X(t)=b(X(t)) d t+d B(t), \quad X(0)=x \in \mathbb{R}
$$

(a) Use Girsanov's theorem to prove that for any $M<\infty, x \in \mathbb{R}$, and $t>0$, we have $\mathbf{P}(X(t)>M)>0$.
(b) Choose $b(x)=-r$, where $r>0$ is a constant. Prove that, for all x, we have $\lim _{t \rightarrow \infty} X(t)=$ $-\infty$, a.s. Compare this fact with the result in part (a).

7.8 [Feynman-Kac formual and killing rates]

Let $B(t)$ denote standard Brownian motion in \mathbb{R}^{n}, and consider the Itô diffusion

$$
d X(t) t=\nabla h(X(t)) d t+d B(t), \quad X_{0}=x \in \mathbb{R}^{n}
$$

where $h \in C_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right)$. We are going to relate this process to a Brownian motion killed at a certain rate $V(x)$.
(a) Let

$$
V(x):=\frac{1}{2}|\nabla h(x)|^{2}+\frac{1}{2} \Delta h(x)
$$

Prove that, for any $f \in C_{\text {comp }}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{equation*}
\mathbf{E}_{x}(f(X(t)))=\mathbf{E}_{x}\left(e^{-\int_{0}^{t} V(B(s)) d s} e^{h(B(t))-h(x)} f(B(t))\right) \tag{2}
\end{equation*}
$$

Hint: Use Girsanov's theorem to express the left hand side of (2) as an expectation with respect to $B(t)$, then use Itô's formula.
(b) Assume $V \geq 0$, and use Feynman-Kac with local killing rate $V(x)$. Let $Y(t)$ be the Brownian motion $B(t)$ killed with local rate $V(x)$. Reinterpret (2) as

$$
P_{t}^{X} f(x)=e^{-h(x)} P_{t}^{Y}\left(e^{h} f\right)(x),
$$

where $P_{t}^{X} f(x):=\mathbf{E}_{x}(f(X(t)))$ is the semigroup of conditional expectations for the diffusion $X(t)$, and similarly for Y.

