Problem Set 6
 Strongly Continuous Contraction Semigroups and their Infinitesimal Generators

6.1 Let

$$
\begin{aligned}
\ell_{\infty} & :=\left\{f: \mathbb{N} \rightarrow \mathbb{R}:\|f\|:=\sup _{x \in \mathbb{N}}|f(x)|<\infty\right\}, \\
c_{0} & :=\left\{f \in \ell_{\infty}: \lim _{x \rightarrow \infty}|f(x)|=0,\|f\|:=\sup _{x \in \mathbb{N}}|f(x)|\right\} .
\end{aligned}
$$

Let $t \mapsto \eta_{t} \in \mathbb{N}$ be a time-homogeneous continuous time Markov chain on \mathbb{N}. Its transition operators are

$$
P_{t}: \ell_{\infty} \rightarrow \ell_{\infty}, \quad P_{t} f(x):=\mathbf{E}\left(f\left(\eta_{t}\right) \mid \eta_{0}=x\right)
$$

(a) Show that the one parameter family of operators $t \mapsto P_{t}$ form a semigroup of contractions on ℓ_{∞}.
(b) Give examples when $P_{t}: c_{0} \rightarrow c_{0}$, and when $P_{t}: c_{0} \nrightarrow c_{0}$.
(c) Prove that if $P_{t}: c_{0} \rightarrow c_{0}$ then by force the semigroup $t \mapsto P_{t}: c_{0} \rightarrow c_{0}$ is strongly continuous.
(d) Give an example when $P_{t}: c_{0} \nrightarrow c_{0}$ and the semigroup $t \mapsto P_{t}: \ell_{\infty} \rightarrow \ell_{\infty}$ is strongly continuous.
(e) Give an example when the semigroup $t \mapsto P_{t}: \ell_{\infty} \rightarrow \ell_{\infty}$ is not strongly continuous.
6.2 Let \mathcal{B} be a Banach space and $\mathcal{C} \subset \mathcal{B}$ a dense subspace. Recall that we call the densely defined operator $A: \mathcal{C} \rightarrow \mathcal{B}$ to be dissipative (or $-A$ to be accretive) if $\forall \varphi \in \mathcal{C}$ there exists a normalized tangent functional $\ell_{\varphi} \in \mathcal{B}^{*}$ to the vector φ, such that $\ell_{\varphi}(-A \varphi) \geq 0$. We showed in class that this implies that

$$
\begin{equation*}
\|(\lambda I-A) \varphi\| \geq \lambda\|\varphi\|, \quad \text { for all } \varphi \in \mathcal{C}, \text { and } \lambda>0 \tag{1}
\end{equation*}
$$

Conversely, if A is the infinitesimal generator of a strongly continuous contraction semigroup, then it is dissipative.
(a) Show that (1) implies that $A: \mathcal{C} \rightarrow \mathcal{B}$ is closable.
(b) Let

$$
\begin{aligned}
\mathcal{B} & =C_{0}[0, \infty) \\
& :=\left\{f:[0, \infty) \rightarrow \mathbb{R}: f \text { continuous, } \lim _{x \rightarrow \infty}|f(x)|=0, \text { with }\|f\|:=\sup _{0 \leq x<\infty}|f(x)|\right\} .
\end{aligned}
$$

Consider $A f=\frac{1}{2} f^{\prime \prime}$ defined on

$$
\widetilde{\mathcal{C}}:=C_{0}[0, \infty) \cap C_{0}^{2}[0, \infty) .
$$

Show that A defined on $\widetilde{\mathcal{C}}$ does not satisfy (1).
(c) Show that, on the other hand, $A f=\frac{1}{2} f^{\prime \prime}$ defined on

$$
\mathcal{C}:=C_{0}[0, \infty) \cap C_{0}^{2}[0, \infty) \cap\left\{f^{\prime}(0)=0\right\}
$$

does satisfy (1). The closure of this operator is the infinitesimal generator of Brownian motion on $[0, \infty)$ reflecting at 0 .
6.3 Young's inequality for convolutions says that if $1 \leq p, q, r \leq \infty$ satisfy $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1$, then

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q}
$$

Using this, show that $t \mapsto e^{\frac{1}{2} \Delta t}$ is a strongly continuous contraction semigroup on $\mathcal{L}^{p}, 1 \leq$ $p<\infty$.

Hint: Use the explicit form of the heat-kernel:

$$
e^{\frac{1}{2} \Delta t} f(x)=(2 \pi t)^{d / 2} \int_{\mathbb{R}^{d}} e^{|x-y|^{2} / 2 t} f(y) d y .
$$

6.4 In this problem we consider the infinitesimal generator of Brownian motion in \mathbb{R}^{d}, that is: the Laplaciam Δ on the Banach space

$$
\begin{aligned}
\mathcal{B} & =C_{0}\left(\mathbb{R}^{d}\right) \\
& :=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}: f \text { continuous, } \lim _{|x| \rightarrow \infty}|f(x)|=0 \text {, with }\|f\|:=\sup _{x \in \mathbb{R}^{d}}|f(x)|\right\} .
\end{aligned}
$$

In $d=1$ we have seen that the domain $\operatorname{Dom}(\Delta)=C_{0}(\mathbb{R}) \cap C_{0}^{2}(\mathbb{R})$, i.e., vanishing value and vanishing 2 nd derivative at infinity. We have also seen that on $\mathbb{R}^{d}, d \geq 2$, the Schwarz space $\mathcal{S}\left(\mathbb{R}^{d}\right)$ is a good core: the operator $-\Delta$ defined on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ is dissipative, hence closable, and $\overline{\left\{\varphi-\Delta \varphi: \varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)\right\}}=C_{0}\left(\mathbb{R}^{d}\right)$, and thus Δ is indeed an infinitesimal generator, as we already knew. But what is $\operatorname{Dom}(\Delta)$ obtained this way, in \mathbb{R}^{1} ? I.e., what domain do we get when we close the operator from $\mathcal{S}\left(\mathbb{R}^{1}\right)$? It certainly contains $C_{0}(\mathbb{R}) \cap C_{0}^{2}(\mathbb{R})$, but isn't it larger?
6.5 (a) Let ψ be a bounded continuous function on \mathbb{R}^{d}, and $\lambda>0$. Find a bounded solution u of the equation

$$
\lambda u-\frac{1}{2} \Delta u=\psi \quad \text { on } \mathbb{R}^{d}
$$

Prove that the solution is unique.
(b) Let $B(t)$ be d-dimensional Brownian motion $(d \geq 1)$ and let F be a Borel set in \mathbb{R}^{d}. Let

$$
T_{F}:=|\{t \leq 1: B(t) \in F\}|
$$

where $|\ldots|$ denotes Lebesgue measure. Prove that $\mathbf{E}\left(T_{F}\right)=0$ if and only if $|F|=0$.
Hint: Consider the resolvent R_{λ} for $\lambda>0$ and then let $\lambda \rightarrow 0$.)
6.6 In connection with the derivation of the Black-Scholes formula for the price of an option, the following partial differential equation appears for $u=u(t, x), t \in[0, \infty), x \in \mathbb{R}$:

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}(a, x)=-\rho u(t, x)+\alpha x \frac{\partial u}{\partial x}(t, x)+\frac{1}{2} \beta^{2} x^{2} \frac{\partial^{2} u}{\partial x^{2}}(t, x) & t>0, x \in \mathbb{R} \\
u(0, x)=(x-K)_{+} & x \in \mathbb{R}
\end{array}
$$

where $\rho>0, \alpha \in \mathbb{R}, \beta \in \mathbb{R}, K>0$ are constants.
Use the Feynman-Kac formula to prove that the solution $u(t, x)$ of this initial value problem is given by

$$
u(t, x)=\frac{e^{-\rho t}}{\sqrt{2 \pi t}} \int_{\mathbb{R}}\left(x e^{\left(\alpha-\beta^{2} / 2\right) t+\beta y}-K\right)_{+} e^{-y^{2} /(2 t)} d y, \quad t>0
$$

6.7 The elliptic Feynman-Kac formula, with Dirichlet boundary conditions.

Let $D \subset \mathbb{R}^{d}$ be a bounded domain with piecewise smooth boundary, $c, f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ smooth functions and $c \geq 0$. Prove the following statement:
The unique solution of the elliptic boundary value problem

$$
\begin{array}{ll}
\frac{1}{2} \Delta u-c u=f & \text { in } D \\
u \equiv 0 & \text { on } \partial D
\end{array}
$$

is given by

$$
u(x)=\mathbf{E}\left(\int_{0}^{\tau} f(B(t)) \exp \left\{-\int_{0}^{t} c(B(s)) d s\right\} \mid B(0)=x\right), \quad x \in D
$$

where $B(t)$ is Brownian motion starting from $x \in D$ and τ is the first hitting time of ∂D.

