
Problem Set 6
Strongly Continuous Contraction Semigroups and their

Infinitesimal Generators

6.1 Let

`∞ :=
{
f : N→ R : ‖ f ‖ := sup

x∈N
| f(x) | <∞

}
,

c0 :=
{
f ∈ `∞ : lim

x→∞
| f(x) | = 0, ‖ f ‖ := sup

x∈N
| f(x) |

}
.

Let t 7→ ηt ∈ N be a time-homogeneous continuous time Markov chain on N. Its transition
operators are

Pt : `∞ → `∞, Ptf(x) := E
(
f(ηt)

∣∣ η0 = x
)
.

(a) Show that the one parameter family of operators t 7→ Pt form a semigroup of contractions
on `∞.

(b) Give examples when Pt : c0 → c0, and when Pt : c0 6→ c0.

(c) Prove that if Pt : c0 → c0 then by force the semigroup t 7→ Pt : c0 → c0 is strongly
continuous.

(d) Give an example when Pt : c0 6→ c0 and the semigroup t 7→ Pt : `∞ → `∞ is strongly
continuous.

(e) Give an example when the semigroup t 7→ Pt : `∞ → `∞ is not strongly continuous.

6.2 Let B be a Banach space and C ⊂ B a dense subspace. Recall that we call the densely
defined operator A : C → B to be dissipative (or −A to be accretive) if ∀ϕ ∈ C there exists a
normalized tangent functional `ϕ ∈ B∗ to the vector ϕ, such that `ϕ(−Aϕ) ≥ 0. We showed
in class that this implies that

‖ (λI −A)ϕ ‖ ≥ λ ‖ϕ ‖ , for all ϕ ∈ C, and λ > 0. (1)

Conversely, if A is the infinitesimal generator of a strongly continuous contraction semigroup,
then it is dissipative.

(a) Show that (1) implies that A : C → B is closable.
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(b) Let

B =C0[0,∞)

:={f : [0,∞)→ R : f continuous, lim
x→∞

| f(x) | = 0, with ‖ f ‖ := sup
0≤x<∞

| f(x) |}.

Consider Af = 1
2f
′′ defined on

C̃ := C0[0,∞) ∩ C2
0 [0,∞).

Show that A defined on C̃ does not satisfy (1).

(c) Show that, on the other hand, Af = 1
2f
′′ defined on

C := C0[0,∞) ∩ C2
0 [0,∞) ∩ {f ′(0) = 0}

does satisfy (1). The closure of this operator is the infinitesimal generator of Brownian
motion on [0,∞) reflecting at 0.

6.3 Young’s inequality for convolutions says that if 1 ≤ p, q, r ≤ ∞ satisfy 1
p + 1

q = 1
r + 1, then

‖ f ∗ g ‖r ≤ ‖ f ‖p ‖ g ‖q .

Using this, show that t 7→ e
1
2

∆t is a strongly continuous contraction semigroup on Lp, 1 ≤
p <∞.

Hint: Use the explicit form of the heat-kernel:

e
1
2

∆tf(x) = (2πt)d/2
∫
Rd

e|x−y |
2/2tf(y)dy.

6.4 In this problem we consider the infinitesimal generator of Brownian motion in Rd, that is:
the Laplaciam ∆ on the Banach space

B =C0(Rd)

:={f : Rd → R : f continuous, lim
|x |→∞

| f(x) | = 0, with ‖ f ‖ := sup
x∈Rd

| f(x) |}.

In d = 1 we have seen that the domain Dom(∆) = C0(R) ∩ C2
0 (R), i.e., vanishing value and

vanishing 2nd derivative at infinity. We have also seen that on Rd, d ≥ 2, the Schwarz space
S(Rd) is a good core: the operator −∆ defined on S(Rd) is dissipative, hence closable, and
{ϕ−∆ϕ : ϕ ∈ S(Rd)} = C0(Rd), and thus ∆ is indeed an infinitesimal generator, as we
already knew. But what is Dom(∆) obtained this way, in R1? I.e., what domain do we get
when we close the operator from S(R1)? It certainly contains C0(R) ∩ C2

0 (R), but isn’t it
larger?
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6.5 (a) Let ψ be a bounded continuous function on Rd, and λ > 0. Find a bounded solution u
of the equation

λu− 1

2
∆u = ψ on Rd.

Prove that the solution is unique.

(b) Let B(t) be d-dimensional Brownian motion (d ≥ 1) and let F be a Borel set in Rd. Let

TF := | {t ≤ 1 : B(t) ∈ F} | ,

where | . . . | denotes Lebesgue measure. Prove that E (TF ) = 0 if and only if |F | = 0.

Hint: Consider the resolvent Rλ for λ > 0 and then let λ→ 0.)

6.6 In connection with the derivation of the Black-Scholes formula for the price of an option, the
following partial differential equation appears for u = u(t, x), t ∈ [0,∞), x ∈ R:

∂u

∂t
(a, x) = −ρu(t, x) + αx

∂u

∂x
(t, x) +

1

2
β2x2∂

2u

∂x2
(t, x) t > 0, x ∈ R

u(0, x) = (x−K)+ x ∈ R,

where ρ > 0, α ∈ R, β ∈ R, K > 0 are constants.

Use the Feynman-Kac formula to prove that the solution u(t, x) of this initial value problem
is given by

u(t, x) =
e−ρt√

2πt

∫
R

(
xe(α−β2/2)t+βy −K

)
+
e−y

2/(2t)dy, t > 0.

6.7 The elliptic Feynman-Kac formula, with Dirichlet boundary conditions.
Let D ⊂ Rd be a bounded domain with piecewise smooth boundary, c, f : Rd → R smooth
functions and c ≥ 0. Prove the following statement:
The unique solution of the elliptic boundary value problem

1

2
∆u− cu = f in D

u ≡ 0 on ∂D,

is given by

u(x) = E
( ∫ τ

0
f(B(t)) exp{−

∫ t

0
c(B(s))ds}

∣∣ B(0) = x
)
, x ∈ D,

where B(t) is Brownian motion starting from x ∈ D and τ is the first hitting time of ∂D.
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