Problem Set 5
 Infinitesimal Generator, Dynkin's Formula

5.1 Write down the infinitesimal generator as elliptic differential operator for the following Itô diffusions:
(a) $d X(t)=\beta d t+\alpha X(t) d B(t)$.
(b) $d Y(t)=\binom{d t}{d X(t)}$, where $d X(t)=-\gamma X(t) d t+\alpha d B(t)$.
(c) $\binom{d X_{1}(t)}{d X_{2}(t)}=\binom{1}{X_{2}(t)} d t+\binom{0}{e^{X_{1}(t)}} d B(t)$.
(d) $\binom{d X_{1}(t)}{d X_{2}(t)}=\binom{1}{0} d t+\left(\begin{array}{cc}1 & 0 \\ 0 & X_{1}\end{array}\right)\binom{d B_{1}(t)}{d B_{2}(t)}$.
5.2 Find an Itô diffusion (i.e., write down the SDE for it) whose infinitesimal generator is the following:
(a) $A f(x)=f^{\prime}(x)+f^{\prime \prime}(x), f \in C_{0}^{2}(\mathbb{R})$.
(b) $A f(t, x)=\frac{\partial f}{\partial t}+c x \frac{\partial f}{\partial x}+\frac{1}{2} \alpha^{2} x^{2} \frac{\partial^{2} f}{\partial x^{2}}, f \in C_{0}^{2}\left(\mathbb{R}^{2}\right)$.
5.3 Let $X(t)$ be a geometric Brownian motion, i.e. strong solution of the following SDE

$$
d X(t)=\beta X(t) d t+\alpha X(t) d B(t), \quad X_{0}=x>0
$$

where $\alpha>0, \beta \in \mathbb{R}$ are fixed parameters.
(a) Find the generator A of the diffusion $t \mapsto X(t)$ and compute $A f(x)$ when $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is $f(x)=x^{\gamma}, \gamma$ constant.
(b) Let $0<r<R<\infty$, and $r \leq x \leq R$. using Dynkin's formula, compute

$$
\mathbf{P}\left(\tau_{r}<\tau_{R} \mid X(0)=x\right)
$$

where τ_{r}, and τ_{R} are the first hitting times of r, respectively, R.
Hint: Solve the boundary value problem $A f(x)=0$ for $r<x<R$, with $f(r)=1$, $f(R)=0$.
(c) Assume $\beta<\alpha^{2} / 2$. What is $\mathbf{P}(X(t)$ ever hits $R \mid X(0)=x)$?
(d) Assume $\beta>\alpha^{2} / 2$. What is $\mathbf{P}(X(t)$ ever hits $r \mid X(0)=x)$?
5.4 (a) Find the generator of the δ-dimensional Bessel process, $B E S(\delta)$

$$
d Y^{(\delta)}(t)=\frac{\delta-1}{2 Y^{(\delta)}(t)} d t+d B(t)
$$

on \mathbb{R}_{+}.
(b) Let $0<r<R<\infty$, and $r \leq x \leq R$. using Dynkin's formula, compute

$$
\mathbf{P}\left(\tau_{r}<\tau_{R} \mid Y^{(\delta)}(0)=x\right)
$$

where τ_{r}, and τ_{R} are the first hitting times of r, respectively, R.
Hint: Solve the boundary value problem $A f(x)=0$ for $r<x<R$, with $f(r)=1$, $f(R)=0$. Note that the solutions are qualitatively different for $\delta \in[0,2), \delta=2$, respectively, $\delta>2$.
(c) Show that $\operatorname{BES}(\delta)$ is transient if $\delta>2$.
(d) Show that $B E S(2)$ almost surely hits all points in $(0, \infty)$, but never hits 0 .
(e) Show that for $\delta \in[0,2) B E S(\delta)$ almost surely hits 0 (no matter where it starts).
5.5 Show that the solution $u(t, x)$ of the initial value problem

$$
\begin{aligned}
& \frac{\partial u}{\partial t}(t, x)=\frac{1}{2} \beta^{2} x^{2} \frac{\partial^{2} u}{\partial x^{2}}(t, x)+\alpha x \frac{\partial u}{\partial x}(t, x), \quad t>0, x \in \mathbb{R}, \\
& u(0, x)=f(x), \quad\left(f \in C_{K}^{2}(\mathbb{R}) \text { given }\right)
\end{aligned}
$$

can be expressed as follows:

$$
\begin{aligned}
u(t, x) & =\mathbf{E}\left(f\left(x \exp \left\{\beta B(t)+\left(\alpha-\beta^{2} / 2\right) t\right\}\right)\right) \\
& =\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} f\left(x \exp \left\{\beta y+\left(\alpha-\beta^{2} / 2\right) t\right\}\right) \exp \left(-y^{2} /(2 t)\right) d y, \quad t>0 .
\end{aligned}
$$

In this expression $t \mapsto B(t)$ is standard 1-dimensional Brownian motion with $B(0)=0$.
5.6 Let $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function, for which $|\psi(x)|+|\nabla \psi(x)|^{2}+|\Delta \psi(x)| \leq C|x|^{2-\varepsilon}$. Prove that

$$
M(t):=\exp \left\{\psi(B(t))-\frac{1}{2} \int_{0}^{t}\left(|\nabla \psi(B(s))|^{2}+\Delta \psi(B(s))\right) d s\right\}
$$

is a martingale.

