Problem Set 4 Stochastic Differential Equations

4.1 Check that the following processes solve the corresponding SDE's, where $B(t)$ is 1-dimensional standard Brownian motion:
(a) $X(t)=e^{B(t)}$, with $B(0)=b$ solves

$$
d X(t)=\frac{1}{2} X(t) d t+X(t) d B(t), \quad X(0)=e^{b}
$$

(b) $X(t)=\frac{B(t)}{1+t}$, with $B_{0}=b$, solves

$$
d X(t)=-\frac{X(t)}{1+t} d t+\frac{1}{1+t} d B_{t}, \quad X(0)=b
$$

(c) $X(t)=\sin B(t)$, with $B(0)=b \in(-\pi / 2, \pi / 2)$, and $t<\min \{t:|B(t)|=\pi / 2\}$, solves

$$
d X(t)=-\frac{1}{2} X(t) d t+\sqrt{1-X(t)^{2}} d B_{t}, \quad X(0)=\sin b
$$

(d) $\left(X_{1}(t), X_{2}(t)\right)=(\cosh B(t), \sinh B(t))$, with $B(0)-b$, solves

$$
\binom{d X_{1}(t)}{d X_{2}(t)}=\frac{1}{2}\binom{X_{1}(t)}{X_{2}(t)} d t+\binom{X_{2}(t)}{X_{1}(t)} d B(t)
$$

4.2 Let $B(t)$ be a standard 1-dimensional Brownian motion with $B(0)=b$, and $(U(t), V(t)):=$ $(\cos B(t), \sin B(t))$. Write down in vectorial notation the SDE driving the 2-dimensional process $(U(t), V(t))$.
4.3 Solve the following SDE's, where $B(t)$ is 1-dimensional standard Brownian motion starting from $B(0)=0$:
(a)

$$
d X(t)=-X(t) d t+e^{-t} d B(t)
$$

(b)

$$
d X(t)=r d t+\alpha X(t) d B(t)
$$

with $r, \alpha \in \mathbb{R}$ constants.
Hint: Multiply by $\exp \left(-\alpha B(t)+\frac{\alpha^{2}}{2} t\right)$.
(c) Now, $X(t)=\left(X_{1}(t), X_{2}(t)\right) \in \mathbb{R}^{2}$, and $B(t)=\left(B_{1}(t), B_{2}(t)\right)$ is standard 2-dimensional Brownian motion.

$$
\begin{aligned}
d X_{1}(t) & =X_{2}(t) d t+\alpha d B_{1}(t) \\
d X_{2}(t) & =-X_{1}(t) d t+\beta d B_{2}(t)
\end{aligned}
$$

or in vector notation,

$$
d X(t)=J X(t) d t+A d B(t), \quad \text { where } J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad A=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right) .
$$

Hint: Multiply by left by $e^{-J t}$.
4.4 The Ornstein-Uhlenbeck process:
(a) Solve explicitly the stochastic differential equation

$$
d X(t)=-\gamma X(t) d t+a d B(t), \quad X(0)=x_{0}
$$

and show that the process $X(t)$ is Gaussian.
Hint: Multiply by $e^{\gamma t}$.
(b) Compute $\mathbf{E}(X(t))$ and $\operatorname{Cov}(X(s), X(t))$.
(c) Let $Y_{k}^{(n)}$ be the Markov chain on the state space $S^{(n)}:=\{0,1, \ldots, n\}$ with transition matrix

$$
P_{i, j}^{(n)}=\frac{i}{n} \delta_{i-1, j}+\frac{n-i}{n} \delta_{i+1, j}, \quad i, j \in S^{(n)} .
$$

The Markov chain $Y_{k}^{(n)}$ is called Ehrenfest's Urn Model (or Dogs and Fleas). Define the sequence of continuous time processes

$$
X^{(n)}(t):=\frac{Y_{\lfloor n t\rfloor}^{(n)}-(n / 2)}{\sqrt{n}}, \quad t \geq 0 .
$$

Write down an approximate stochastic differential equation for $X^{(n)}(t)$, with time increments $d t=\frac{1}{n}$ and conclude (non-rigorously) that the Ornstein-Uhlenbeck process is - in some sense - the limit of the processes $X^{(n)}(t)$ (that is: the scaling limit of Ehrenfest's Urn Model.)
4.5 Recall that a continuous Gaussian process $X(t)$ is uniquely determined by its expectations $m(t):=\mathbf{E}(X(t))$ and pairwise covariances $c(s, t):=\operatorname{Cov}(X(s), X(t))=\mathbf{E}(X(s) X(t))-$ $\mathbf{E}(X(s)) \mathbf{E}(X(t))$. The one-dimensional Brownian bridge (from 0 to 0) is such a Gaussian process defined on the time interval $[0,1]$, with $m(t)=0$ and $c(s, t)=\min (s, t)(1-$ $\max (s, t))$. Prove that the law of this process is given by any of the following three representations. In all expressions $t \in[0,1]$ and $t \mapsto B(t)$ is standard 1-dimensional Brownian motion.
(a) $X(t)=B(t)-t B(1)$.
(b) $Y(t)=(1-t) B\left(\frac{t}{1-t}\right)$, for $t \in(0,1)$, and $Y(1)=0$. Note that continuity at $t=1$ needs an argument. See the hint at the end of the exercise.
(c) $Z(t)=\int_{0}^{t}(1-t) /(1-s) d B(s)$, for $t \in(0,1)$, and $Z(1)=0$. Note again that continuity at $t=1$ needs an argument. See the hint at the end of the exercise.
(d) $t \mapsto Z(t)$ in the previous expression is in fact the strong solution of the SDE

$$
d Z(t)=-\frac{Z(t)}{1-t} d t+d B(t), \quad t \in[0,1), \quad X_{0}=0 .
$$

Hint: In order to prove continuity at $t=0$ note that $t \mapsto(1-t)^{-1} Y(t)$ and $t \mapsto(1-$ $t)^{-1} Z(t)$ are continuous martingales on $[0,1)$. Use Doob's maximal inequality to estimate $\mathbf{P}\left(\sup _{t_{0}<t<t_{1}}\left|Z(t)-Z\left(t_{0}\right)\right|>\varepsilon\right)$, where $0 \leq t_{0}<t_{1}<1, \varepsilon>0$. Then proceed via a Borel-Cantelli argument.

Remarks: (1) Yet another alternative definition of the Brownian bridge is $X(t):=(B(t) \mid B(1)=$ $0)$. That is: Brownian motion conditioned to be at 0 at the terminal time $t=1$.
(2) The Brownian bridge from a to b (where $a, b \in \mathbb{R}$) is $X_{a, b}(t):=b t+a(1-t)+X_{0,0}(t)$, where $X_{0,0}(\cdot)$ is a Brownina bridge from 0 to 0 , as defined above.
(3) Note that $X(t), Y(t)$, and $Z(t)$ are genuinely different representations. They have the same law but they are different path-wise.
4.6 Let $t \mapsto B(t)=\left(B_{k}(t): 1 \leq k \leq m\right) \in \mathbb{R}^{m}$ be an m-dimensional standard Brownian motion, $t \mapsto v(t)=\left(v_{i k}(t): 1 \leq i \leq n, 1 \leq k \leq m\right) \in \mathbb{R}^{n \times m}$ progressively measurable (with the usual conditions) and $Y(t)=\left(Y_{i}(t): 1 \leq i \leq n\right) \in \mathbb{R}^{n}$ defined by the Itô integral

$$
Y_{i}(t):=\sum_{k=1}^{m} \int_{0}^{t} v_{i k}(s) d B_{k}(s) .
$$

Prove the following theorem due to Paul Lévy:
If

$$
\begin{equation*}
\sum_{k=1}^{m} v(t)_{i k} v(t)_{j k} \equiv \delta_{i, j}, \quad 1 \leq i, j \leq n \tag{}
\end{equation*}
$$

then $t \mapsto Y(t)$ is an n-dimensional standard Brownian motion. (Note that condition $\left(^{*}\right)$ forcibly implies $n \leq m$.)

Hint: Using the exponential martingales of Problem 3.7 prove that for any deterministic continuous function $h:[0, \infty) \rightarrow \mathbb{R}^{n}$ of compact support, $\mathbf{E}\left(\exp \left\{\int_{0}^{\infty} h(s) \cdot d Y(s)\right\}\right)=$ $\exp \left\{\frac{1}{2} \int_{0}^{\infty}|h(s)|^{2} d s\right\}$.
4.7 In this problem $t \mapsto B(t)$ be a standard 1-dimensional Brownian motion,

$$
t \mapsto L(t):=\mathcal{L}^{2}-\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{0}^{t} \mathbb{1}_{\{|B(s)| \leq \varepsilon\}} d s,
$$

its local time at $x=0$ and

$$
t \mapsto M(t):=\max _{0 \leq s \leq t} B(s)
$$

its maximum before time t.
Recall Tanaka's formula (proved in class):

$$
\begin{equation*}
|B(t)|-|B(0)|=\int_{0}^{t} \operatorname{sgn}(B(s)) d B(s)+L(t) . \tag{T}
\end{equation*}
$$

(a) Let S_{n} be simple symmetric random walk on \mathbb{Z}, and

$$
\ell_{n}:=\sum_{m=0}^{n-1} \mathbb{1}_{\left\{\left|S_{n}\right|=0\right\}}
$$

denote the number of visits of 0 by S. before time n. (This is the discrete analogue of local time.) Prove the following discrete version of Tanaka's formula (T):

$$
\left|S_{n}\right|-\left|S_{0}\right|=\sum_{m=0}^{n-1} \operatorname{sgn}\left(S_{m}\right)\left(S_{m+1}-S_{m}\right)+\ell_{n}
$$

(b) Using Tanaka's formula (T) prove the following identity in law:

$$
(|B(t)|, L(t))_{t \geq 0} \stackrel{d}{=}(M(t)-B(t), M(t))_{t \geq 0} .
$$

This is a theorem due to Paul Lévy.

