
Problem Set 4
Stochastic Differential Equations

4.1 Check that the following processes solve the corresponding SDE’s, whereB(t) is 1-dimensional
standard Brownian motion:

(a) X(t) = eB(t), with B(0) = b solves

dX(t) =
1

2
X(t)dt+X(t)dB(t), X(0) = eb.

(b) X(t) = B(t)
1+t , with B0 = b, solves

dX(t) = −X(t)

1 + t
dt+

1

1 + t
dBt, X(0) = b.

(c) X(t) = sinB(t), with B(0) = b ∈ (−π/2, π/2), and t < min{t : |B(t) | = π/2}, solves

dX(t) = −1

2
X(t)dt+

√
1−X(t)2dBt, X(0) = sin b.

(d)
(
X1(t), X2(t)

)
=
(
coshB(t), sinhB(t)

)
, with B(0)− b, solves(

dX1(t)
dX2(t)

)
=

1

2

(
X1(t)
X2(t)

)
dt+

(
X2(t)
X1(t)

)
dB(t).

4.2 Let B(t) be a standard 1-dimensional Brownian motion with B(0) = b, and
(
U(t), V (t)

)
:=(

cosB(t), sinB(t)
)
. Write down in vectorial notation the SDE driving the 2-dimensional

process
(
U(t), V (t)

)
.

4.3 Solve the following SDE’s, where B(t) is 1-dimensional standard Brownian motion starting
from B(0) = 0:

(a)
dX(t) = −X(t)dt+ e−tdB(t).

(b)
dX(t) = rdt+ αX(t)dB(t),

with r, α ∈ R constants.
Hint: Multiply by exp

(
− αB(t) + α2

2 t
)
.
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(c) Now, X(t) =
(
X1(t), X2(t)

)
∈ R2, and B(t) =

(
B1(t), B2(t)

)
is standard 2-dimensional

Brownian motion.

dX1(t) = X2(t)dt+ αdB1(t)

dX2(t) = −X1(t)dt+ βdB2(t),

or in vector notation,

dX(t) = JX(t)dt+AdB(t), where J =

(
0 1
−1 0

)
, A =

(
α 0
0 β

)
.

Hint: Multiply by left by e−Jt.

4.4 The Ornstein-Uhlenbeck process:

(a) Solve explicitly the stochastic differential equation

dX(t) = −γX(t)dt+ adB(t), X(0) = x0,

and show that the process X(t) is Gaussian.
Hint: Multiply by eγt.

(b) Compute E (X(t)) and Cov
(
X(s), X(t)

)
.

(c) Let Y (n)
k be the Markov chain on the state space S(n) := {0, 1, . . . , n} with transition

matrix
P

(n)
i,j =

i

n
δi−1,j +

n− i
n

δi+1,j , i, j ∈ S(n).

The Markov chain Y
(n)
k is called Ehrenfest’s Urn Model (or Dogs and Fleas). Define

the sequence of continuous time processes

X(n)(t) :=
Y

(n)
bntc − (n/2)
√
n

, t ≥ 0.

Write down an approximate stochastic differential equation for X(n)(t), with time in-
crements dt = 1

n and conclude (non-rigorously) that the Ornstein-Uhlenbeck process
is – in some sense – the limit of the processes X(n)(t) (that is: the scaling limit of
Ehrenfest’s Urn Model.)

4.5 Recall that a continuous Gaussian process X(t) is uniquely determined by its expectations
m(t) := E (X(t)) and pairwise covariances c(s, t) := Cov

(
X(s), X(t)

)
= E (X(s)X(t)) −

E (X(s))E (X(t)). The one-dimensional Brownian bridge (from 0 to 0) is such a Gaus-
sian process defined on the time interval [0, 1], with m(t) = 0 and c(s, t) = min(s, t)(1 −
max(s, t)). Prove that the law of this process is given by any of the following three repre-
sentations. In all expressions t ∈ [0, 1] and t 7→ B(t) is standard 1-dimensional Brownian
motion.
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(a) X(t) = B(t)− tB(1).

(b) Y (t) = (1− t)B( t
1−t), for t ∈ (0, 1), and Y (1) = 0. Note that continuity at t = 1 needs

an argument. See the hint at the end of the exercise.

(c) Z(t) =
∫ t
0 (1− t)/(1− s)dB(s), for t ∈ (0, 1), and Z(1) = 0. Note again that continuity

at t = 1 needs an argument. See the hint at the end of the exercise.

(d) t 7→ Z(t) in the previous expression is in fact the strong solution of the SDE

dZ(t) = −Z(t)
1− t

dt+ dB(t), t ∈ [0, 1), X0 = 0.

Hint: In order to prove continuity at t = 0 note that t 7→ (1 − t)−1Y (t) and t 7→ (1 −
t)−1Z(t) are continuous martingales on [0, 1). Use Doob’s maximal inequality to estimate
P
(
supt0<t<t1 |Z(t)− Z(t0) | > ε

)
, where 0 ≤ t0 < t1 < 1, ε > 0. Then proceed via a

Borel-Cantelli argument.

Remarks: (1) Yet another alternative definition of the Brownian bridge isX(t) :=
(
B(t)

∣∣B(1) =

0
)
. That is: Brownian motion conditioned to be at 0 at the terminal time t = 1.

(2) The Brownian bridge from a to b (where a, b ∈ R) is Xa,b(t) := bt+ a(1− t) +X0,0(t),
where X0,0(·) is a Brownina bridge from 0 to 0, as defined above.
(3) Note that X(t), Y (t), and Z(t) are genuinely different representations. They have the
same law but they are different path-wise.

4.6 Let t 7→ B(t) =
(
Bk(t) : 1 ≤ k ≤ m

)
∈ Rm be an m-dimensional standard Brownian

motion, t 7→ v(t) =
(
vik(t) : 1 ≤ i ≤ n, 1 ≤ k ≤ m

)
∈ Rn×m progressively measurable (with

the usual conditions) and Y (t) =
(
Yi(t) : 1 ≤ i ≤ n

)
∈ Rn defined by the Itô integral

Yi(t) :=
m∑
k=1

∫ t

0
vik(s)dBk(s).

Prove the following theorem due to Paul Lévy:
If

m∑
k=1

v(t)ikv(t)jk ≡ δi,j , 1 ≤ i, j ≤ n, (*)

then t 7→ Y (t) is an n-dimensional standard Brownian motion. (Note that condition (*)
forcibly implies n ≤ m.)

Hint: Using the exponential martingales of Problem 3.7 prove that for any deterministic
continuous function h : [0,∞) → Rn of compact support, E

(
exp{

∫∞
0 h(s) · dY (s)}

)
=

exp{12
∫∞
0 |h(s) |

2 ds}.

3



4.7 In this problem t 7→ B(t) be a standard 1-dimensional Brownian motion,

t 7→ L(t) := L2- lim
ε→0

1

2ε

∫ t

0
11{|B(s) |≤ε}ds,

its local time at x = 0 and
t 7→M(t) := max

0≤s≤t
B(s)

its maximum before time t.

Recall Tanaka’s formula (proved in class):

|B(t) | − |B(0) | =
∫ t

0
sgn(B(s))dB(s) + L(t). (T)

(a) Let Sn be simple symmetric random walk on Z, and

`n :=
n−1∑
m=0

11{|Sn |=0}

denote the number of visits of 0 by S· before time n. (This is the discrete analogue of
local time.) Prove the following discrete version of Tanaka’s formula (T):

|Sn | − |S0 | =
n−1∑
m=0

sgn(Sm)(Sm+1 − Sm) + `n.

(b) Using Tanaka’s formula (T) prove the following identity in law:(
|B(t) | , L(t)

)
t≥0

d
=
(
M(t)−B(t),M(t)

)
t≥0.

This is a theorem due to Paul Lévy.
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