Problem Set 4
Stochastic Differential Equations

4.1 Check that the following processes solve the corresponding SDE’s, where B(t) is 1-dimensional

standard Brownian motion:
(a) X(t) = eP® with B(0) = b solves
1
dX(t) = S X()dt + X (D)dB(1),  X(0) = eb.

(b) X(t) = 24 with By = b, solves

X(t) 1
dX(t) = - dt+ —dB X(0) =b.
(*) T T TP (0)

(c) X(t) =sinB(t), with B(0) =b € (—7/2,7/2), and t < min{t : | B(t) | = m/2}, solves
AX(t) = —%X(t)dt + V1= X(02dB,,  X(0) = sinb.
(d) (X1(¢t), X2(t)) = (cosh B(t),sinh B(t)), with B(0) — b, solves
dXi(t)\ _ 1 (Xi(?) Xo(t)
(i) = 2 Gaa) 0+ (356 4w
4.2 Let B(t) be a standard 1-dimensional Brownian motion with B(0) = b, and (U(t),V (t)) :=

(cos B(t),sin B(t)). Write down in vectorial notation the SDE driving the 2-dimensional
process (U(t), V(t)).

4.3 Solve the following SDE’s, where B(t) is 1-dimensional standard Brownian motion starting
from B(0) = 0:
(a)
dX(t) = =X (t)dt + e 'dB(t).

(b)
dX (t) = rdt + X (t)dB(t),

with r, @ € R constants.
Hint: Multiply by exp ( — aB(t) + %zt)
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Now, X (t) = (X1(t), X2(t)) € R?, and B(t) = (Bi(t), Ba(t)) is standard 2-dimensional
Brownian motion.

dXy (t) X (t)dt + adB; (t)

dXs(t) = —X1(t)dt + BdBa(t),

or in vector notation,

0 1 a 0
dX(t) = JX(t)dt + AdB(t), where J = (_1 0) , A= <O 5) .

Hint: Multiply by left by e/t

4.4 The Ornstein-Uhlenbeck process:

(a)

Solve explicitly the stochastic differential equation
dX(t) = —yX(t)dt + adB(t), X(0) = zp,

and show that the process X (t) is Gaussian.

Hint: Multiply by et.

Compute E (X(t)) and Cov (X (s), X(t)).

Let Yk(n) be the Markov chain on the state space S := {0,1,...,n} with transition
matrix

7 n—1

P = di—15 + - Oit1,55 i,jesm.

W
The Markov chain Yk(n) is called FEhrenfest’s Urn Model (or Dogs and Fleas). Define
the sequence of continuous time processes
o~ (/2)

XM (1) = L"”\} t>0.
n

Write down an approzimate stochastic differential equation for X (™ (t), with time in-
crements dt = % and conclude (non-rigorously) that the Ornstein-Uhlenbeck process

is — in some sense — the limit of the processes X (™ (t) (that is: the scaling limit of
Ehrenfest’s Urn Model.)

4.5 Recall that a continuous Gaussian process X (¢) is uniquely determined by its expectations
m(t) := E (X (t)) and pairwise covariances c(s,t) := Cov(X(s), X(t)) = E (X (s)X(t)) —
E (X (s))E(X(t)). The one-dimensional Brownian bridge (from 0 to 0) is such a Gaus-

sian process defined on the time interval [0, 1], with m(¢) = 0 and ¢(s,t) = min(s,t)(1 —

max(s,t)). Prove that the law of this process is given by any of the following three repre-

sentations. In all expressions t € [0,1] and ¢ — B(¢) is standard 1-dimensional Brownian

motion.



4.6

(a) X(t) = B(t) —tB(1).

(b) Y(t) = (1 —t)B(15), for t € (0,1), and Y (1) = 0. Note that continuity at ¢ = 1 needs
an argument. See the hint at the end of the exercise.

(c) Z(t) = fg(l —t)/(1 —s)dB(s), for t € (0,1), and Z(1) = 0. Note again that continuity

at t = 1 needs an argument. See the hint at the end of the exercise.

(d) ¢t — Z(t) in the previous expression is in fact the strong solution of the SDE
Z(t
dZ(t) = —1(1dt +dB(t), tel0,1), Xo=0.

Hint: In order to prove continuity at ¢ = 0 note that ¢ — (1 —¢)~'Y(¢) and ¢t — (1 —
t)~1Z(t) are continuous martingales on [0,1). Use Doob’s maximal inequality to estimate
P (supy,cicqs, | Z(t) — Z(to) | > €), where 0 < ¢y < t; < 1, € > 0. Then proceed via a

Borel-Cantelli argument.

Remarks: (1) Yet another alternative definition of the Brownian bridge is X (¢) := ( ‘ B(1) =
0). That is: Brownian motion conditioned to be at 0 at the terminal time ¢ = 1.

(2) The Brownian bridge from a to b (where a,b € R) is X, 4(t) := bt + a(1 —t) + Xo,0(¢),
where X o(+) is a Brownina bridge from 0 to 0, as defined above.

(3) Note that X(t), Y(t), and Z(t) are genuinely different representations. They have the

same law but they are different path-wise.

Let t — B(t) = (Bx(t) :
motion, ¢ — v(t) = (vi(t) :

k ) € R™ be an m-dimensional standard Brownian

1 <
<1

<m
1 <n1<k< m) € R™ ™ progressively measurable (with
the usual conditions) and Y (t) = (Y;(¢) :

1<:i< n) € R"™ defined by the It6 integral

Zkzl/o ik (s)dBy(s)

Prove the following theorem due to Paul Lévy:
If

m
ZU k() i = 054, 1<4,j5 <n, *)
k=1

then ¢ — Y (¢) is an n-dimensional standard Brownian motion. (Note that condition (*)

forcibly implies n < m.)

Hint: Using the exponential martingales of Problem 3.7 prove that for any deterministic

continuous function h : [0,00) — R™ of compact support, E (exp{[;° h(s)-dY (s)}) =
2

exp{} [ [ h(s) P ds}.



4.7 In this problem ¢t — B(t) be a standard 1-dimensional Brownian motion,

1 t
t— L(t) = ,CZ— lim — / ]l{|B(s) |§5}d57
0

e—0 2¢
its local time at £ = 0 and

t— M(t) = ()Iggi(tB(s)

its maximum before time ¢.

Recall Tanaka’s formula (proved in class):

| B(t) |- [B(0) | :/0 sgn(B(s))dB(s) + L(t)- (T)

(a) Let S, be simple symmetric random walk on Z, and

n—1

b= lys,|=0)
m=0

denote the number of visits of 0 by S. before time n. (This is the discrete analogue of

local time.) Prove the following discrete version of Tanaka’s formula (T):
n—1
|Sn | =[S0l =D sen(Sm)(Smt1 — Sm) + ln.
m=0

(b) Using Tanaka’s formula (T') prove the following identity in law:

4

(IB®)],L(1) sy = (M(t) — B(t), M(1))

£>0°

This is a theorem due to Paul Lévy.



