Problem Set 3
 Itô calculus

3.1 Let $s \mapsto v(s)$ be a smooth deterministic function with $\sup _{0 \leq s \leq T}\left|v^{\prime}(s)\right| \leq C$. Prove directly from the definition of the Itô integral that

$$
\int_{0}^{t} v(s) d B(s)=v(t) B(t)-\int_{0}^{t} v^{\prime}(s) B(s) d s
$$

Hint: Write

$$
\left.v\left(s_{i+1}\right) B\left(s_{i+1}\right)-v\left(s_{i}\right) B\left(s_{i}\right)=v\left(s_{i}\right)\left(B\left(s_{i+1}\right)-B\left(s_{i}\right)\right)+B\left(s_{i+1}\right)\left(v\left(s_{i+1}\right)\right)-v\left(s_{i}\right)\right) .
$$

3.2 Prove directly form the definition of the Itô integral that

$$
\begin{aligned}
& \int_{0}^{t} B(s) d B(s)=\frac{1}{2} B(t)^{2}-\frac{t}{2} \\
& \int_{0}^{t} B(s)^{2} d B(s)=\frac{1}{3} B(t)^{3}-\int_{0}^{t} B(s) d s .
\end{aligned}
$$

3.3 Suppose $v, w \in \mathcal{V}_{T}$ and $C, D \in \mathbb{R}$ are such that

$$
\int_{0}^{T} v(s) d B(s)+C=\int_{0}^{T} w(s) d B(s)+D
$$

Show that $C=D$ and $v=w(s, \omega)$-almost surely.
3.4 (a) For which values of $\alpha \in \mathbb{R}$ is the process

$$
Y_{\alpha}(t):=\int_{0}^{t}(t-s)^{-\alpha} d B(s)
$$

well defined as an Itô integral?.
(b) Compute the covariances $\mathbf{E}\left(Y_{\alpha}(s) Y_{\alpha}(t)\right)$.
3.5 Use Itô's formula to write the following processes $t \mapsto X(t)$ in the standard form

$$
X(t)=X(0)+\int_{0}^{t} u(s) d s+\int_{0}^{t} v(s) d B(s) .
$$

Identify the processes $s \mapsto u(s)$ and $s \mapsto v(s)$ under the integrals. Notation: $B(t)$ denotes standard 1-dimensional Brownian motion, $\left(B_{1}(t), \ldots, B_{n}(t)\right)$ denotes standard n-dimensional Brownian motion (that is: n independent standard 1-dimensional Brownian motions).
(a) $X(t)=B(t)^{2}$
(b) $X(t)=2+t+e^{B(t)}$
(c) $X(t)=B_{1}(t)^{2}+B_{2}(t)^{2}$
(d) $X(t)=(t, B(t))$
(e) $X(t)=\left(B_{1}(t)+B_{2}(t)+B_{3}(t), B_{2}(t)^{2}-B_{1}(t) B_{3}(t)\right)$
3.6 Use Itô's formula to prove that

$$
\int_{0}^{t} B(s)^{2} d B(s)=\frac{1}{3} B(t)^{3}-\int_{0}^{t} B(s) d s
$$

3.7 Suppose $\theta(t)=\left(\theta_{1}(t), \ldots, \theta_{n}(t)\right) \in \mathbb{R}^{n}$ with $t \mapsto \theta_{j}(t), j=1, \ldots, n$, progressively measurable and a.s. bounded in any compact interval $[0, T]$. Define

$$
Z(t):=\exp \left\{\int_{0}^{t} \theta(s) d B(s)-\frac{1}{2} \int_{0}^{t}|\theta(s)|^{2} d s\right\},
$$

where $t \mapsto B(t)$ is standard Brownian motion in \mathbb{R}^{n} and $|\theta|^{2}=\theta_{1}^{2}+\cdots+\theta_{n}^{2}$.
(a) Use Itô's formula to prove that

$$
d Z(t)=Z(t) \theta(t) d B(t)
$$

(b) Deduce that $t \mapsto Z(t)$ is a martingale.
3.8 Let $t \mapsto B(t)$ be a standard 1-dimensional Brownian motion with $B(0)=0$, and

$$
\beta_{k}(t):=\mathbf{E}\left(B(t)^{k}\right) .
$$

Use Itô's formula to prove that

$$
\beta_{k+2}(t)=\frac{1}{2}(k+2)(k+1) \int_{0}^{t} \beta_{k}(s) d s
$$

Compute explicitly $\beta_{k}(t)$ for $k=0,1,2, \ldots, 6$.
3.9 Let $t \mapsto B(t)$ be a standard one-dimensional Brownian motion and $r, \alpha \in \mathbb{R}$ constants. Define

$$
X(t):=\exp \{\alpha B(t)+r t\} .
$$

Prove that

$$
d X(t)=\left(r+\frac{\alpha^{2}}{2}\right) X(t) d t+\alpha X(t) d B(t)
$$

3.10 Let $t \mapsto B(t) \in \mathbb{R}^{m}$ be standard m-dimensional Brownian motion, $t \mapsto v(t) \in \mathbb{R}^{n \times m}$ progressively measurable and a.s. bounded. Define

$$
X(t)=\int_{0}^{t} v(s) d B(s) \in \mathbb{R}^{n}
$$

Prove that

$$
M(t):=|X(t)|^{2}-\int_{0}^{t} \operatorname{tr}\left\{v(s) v(s)^{T}\right\} d s
$$

is a martingale.
3.11 Use Itô's formula to prove that the following processes are $\left(\mathcal{F}_{t}^{B}\right)$-martingales.
(a) $X(t)=e^{t / 2} \cos B(t)$
(b) $X(t)=e^{t / 2} \sin B(t)$
(c) $X(t)=(B(t)+t) \exp \{-B(t)-t / 2\}$
3.12 Let $t \mapsto u(t)$ be progressively measurable and almost surely bounded. Define

$$
\begin{aligned}
X(t) & :=\int_{0}^{t} u(s) d s+B(t) \\
M(t) & :=\exp \left\{-\int_{0}^{t} u(s) d B(s)-\frac{1}{2} \int_{0}^{t} u(s)^{2} d s\right\}
\end{aligned}
$$

(Note that according to the statement of problem 7 the process $t \mapsto M(t)$ is a martingale.) Prove that the process

$$
t \mapsto Y(t):=X(t) M(t)
$$

is a $\left(\mathcal{F}_{t}^{B}\right)$-martingale.
3.13 In each of the cases below find a process $t \mapsto v(t)$ such that $v \in \mathcal{V}_{T}$ and the random variable X is written as

$$
X=\mathbf{E}(X)+\int_{0}^{T} v(s) d B(s)
$$

(a) $X=B(T)$,
(b) $X=\int_{0}^{T} B(s) d s$,
(c) $\quad X=B(T)^{2}$,
(d) $B(T)^{3}$,
(e) $e^{B(T)}$,
(f) $\sin B(T)$.
3.14 Let $x \geq 0$ and define the process

$$
X(t):=\left(x^{1 / 3}+\frac{1}{3} B(t)\right)^{3} .
$$

Show that

$$
d X(t)=\frac{1}{3} \operatorname{sgn}(X(t))|X(t)|^{1 / 3} d t+|X(t)|^{2 / 3} d B(t), \quad X(0)=x
$$

