Problem Set 2
 Filtrations, Stopping Times, Markov Property, Martingales, ...

2.1 Let $t \mapsto X(t)$ be a stochastic process in a complete separable metric space S. Prove that the following two formulations of the Markov property are actually equivalent. (Note that formulation (b) is a priori stronger than (a).)
(a) For any $0 \leq t, 0 \leq u$ and $F: S \rightarrow \mathbb{R}$ bounded and measurable

$$
\mathbf{E}\left(F(X(t+u)) \mid \mathcal{F}_{t}^{X}\right)=\mathbf{E}\left(F(X(t+u)) \mid \sigma\left(X_{t}\right)\right)
$$

(b) For any $0 \leq t, n \in \mathbb{N}, 0 \leq u_{1} \leq u_{2} \leq \cdots \leq u_{n}$ and $F: S^{n} \rightarrow \mathbb{R}$ bounded and measurable

$$
\begin{aligned}
& \mathbf{E}\left(F\left(X\left(t+u_{1}\right), X\left(t+u_{2}\right), \ldots, X\left(t+u_{n}\right)\right) \mid \mathcal{F}_{t}^{X}\right)= \\
& \\
& \mathbf{E}\left(F\left(X\left(t+u_{1}\right), X\left(t+u_{2}\right), \ldots, X\left(t+u_{n}\right)\right) \mid \sigma\left(X_{t}\right)\right) .
\end{aligned}
$$

Hint: Apply successive conditioning (i.e. the "tower rule") of conditional probabilities.
2.2 (a) Prove that $t \mapsto B(t)$ is a martingale and $t \mapsto B(t)^{2}$ is a submartingale (with respect to the filtration $\left.\left(\mathcal{F}_{t}^{B}\right)_{t \geq 0}\right)$.
(b) Let $t \mapsto M(t)$ be a martingale (w.r.t. a filtration $\left.\left(\mathcal{F}_{t}\right)_{t \geq 0}\right)$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ a convex function. Let

$$
Y(t):=\psi(M(t)) .
$$

Assuming that $\mathbf{E}(|\psi(M(t))|)<\infty$ for all $t \geq 0$, prove that $t \mapsto Y(t)$ is a submartingale.

Hint: Use Jensen's inequality.
2.3 Show that the processes $t \mapsto B(t), t \mapsto B(t)^{2}-t$ and $t \mapsto B(t)^{3}-3 t B(t)$ are martingales adapted to the filtration $\left\{\mathcal{F}_{t}^{B}\right\}_{t \geq 0}$.
2.4 Check whether the following processes are martingales with respect to the filtration $\left(\mathcal{F}_{t}^{B}\right)_{t \geq 0}:$
(a) $\quad X(t)=B(t)+4 t$,
(b) $\quad X(t)=B(t)^{2}$,
(c) $\quad X(t)=t^{2} B(t)-2 \int_{0}^{t} s B(s) d s$,
(d) $\quad X(t)=B_{1}(t) B_{2}(t)$,
where B_{1} and B_{2} are two independent Brownian motions.
2.5 Let $-a<0<b$ and denote
$\tau_{\text {left }}:=\inf \{s>0: B(s)=-a\}, \quad \tau_{\text {right }}:=\inf \{s>0: B(s)=b\}, \quad \tau:=\min \left\{\tau_{\text {left }}, \tau_{\text {right }}\right\}$.
(a) By applying the Optional Stopping Theorem compute $\mathbf{P}\left(\tau_{\text {left }}<\tau_{\text {right }}\right)$ and $\mathbf{E}(\tau)$.
(b) By "applying" the Optional Stopping Theorem it would "follow" that $\mathbf{E}\left(B\left(\tau_{a}\right)\right)=$ 0 . However, clearly $B\left(\tau_{a}\right)=a$ by definition (and continuity of the Brownian motion). What is wrong with the argument?
2.6 (a) Let $\theta \in \mathbb{R}$ be a fixed parameter. Show that the processes $t \mapsto \exp \left\{\theta B(t)-\theta^{2} t / 2\right\}$ is a martingale with respect to the filtration $\left\{\mathcal{F}_{t}^{B}\right\}_{t \geq 0}$.
(b) By differentiating with respect to θ and letting then $\theta=0$ derive a martingale which is a fourth order polynomial expression of $B(t)$
(c) For any $n \in \mathbb{N}$ let

$$
H_{n}(x):=e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2}
$$

Show that $H_{n}(x)$ is a polynomial of order n in the variable x. (It is called the Hermite polynomial of order n.). Compute $H_{n}(x)$ for $n=1,2,3,4$.
(d) Show that for any $n \in \mathbb{N}$ the process $t \mapsto t^{n / 2} H_{n}(B(t) / \sqrt{t})$ is a martingale.
2.7 Let $t \mapsto B(t)$ be standard $1 d$ Brownian motion and $\tau:=\inf \{t>0:|B(t)|=1\}$. Prove that

$$
\mathbf{E}\left(e^{-\lambda \tau}\right)=\cosh (\sqrt{2 \lambda})^{-1}, \quad \lambda \geq 0
$$

Hint: Apply the Optional Stopping Theorem to the exponential martingale defined in problem 2.6.

2.8 Denote

$$
J: \mathbb{R} \rightarrow \mathbb{R}, \quad J(\lambda):=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} e^{\lambda \cos \theta} d \theta
$$

Let $B(t)=\left(B_{1}(t), B_{2}(t)\right)$ be a two-dimensional Brownian motion and

$$
\tau:=\inf \{t:|B(t)|=1\} .
$$

That is: τ is the first hitting time of the circle centred at the origin, with radius 1 . Prove that

$$
\mathbf{E}\left(e^{-\lambda \tau}\right)=J(\sqrt{2 \lambda})^{-1}, \quad \lambda \geq 0
$$

Hint: Apply the Optional Stopping Theorem to the martingale $t \mapsto \exp \{\theta \cdot B(t)-$ $\left.|\theta|^{2} t / 2\right\}$, where $\theta \in \mathbb{R}^{2}$, with the stopping time τ.

