
Problem Set 1
Brownian Motion: Construction and Basic Properties

1.1 Let

ϕ : R→ R+, ϕ(x) :=
1√
2π
e−x

2/2, be the standard normal density function,

Φ : R→ [0, 1], Φ(x) :=

∫ x

−∞
ϕ(y)dy, be the standard normal distribution function.

Prove that for any x > 0(
1

x
− 1

x3

)
ϕ(x) < 1− Φ(x) <

1

x
ϕ(x).

Hint: Compare the derivatives.

1.2 Let X(n)
1 , X

(n)
2 , . . . , X

(n)
n be i.i.d. normal random variables with

E
(
X

(n)
j

)
= 0, Var

(
X

(n)
j

)
=

1

n
, j = 1, . . . , n.

Define the stochastic process t 7→ B(n)(t), t ∈ [0, 1] as follows:

B(n)(t) :=

bntc∑
j=1

X
(n)
j .

(a) Compute the expectations and covariances

E
(
B(n)(t)

)
=?, Cov

(
B(n)(t), B(n)(s)

)
=?, s, t ∈ [0, 1],

and their limits as n→∞.

(b) What is the joint distribution of the random variables {B(n)(t) : t ∈ [0, 1]}?

(c) Let
δn := max

{∣∣B(n)(t+)−B(n)(t−)
∣∣ : t ∈ [0, 1]

}
.
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(In plain words: δn is the largest jump discontinuity of the process {B(n)(t) : t ∈
[0, 1]}.)
Prove that for any fixed ε > 0,

lim
n→∞

P (δn ≥ ε) = 0.

Hint: Note that δn = max1≤j≤n

∣∣∣X(n)
j

∣∣∣ and use the upper bound from problem 1.1.

(d) Use your favourite program package (R, Matlab, Mathematica, Maple, ...)
to simulate the process and draw (print) its trajectory for n = 100, 1000, and 10000.

1.3 Let Y (n)
1 , Y

(n)
2 , . . . , Y

(n)
n be i.i.d. Poisson random variables with parameter 1/n. So,

E
(
Y

(n)
j

)
=

1

n
, Var

(
Y

(n)
j

)
=

1

n
, j = 1, . . . , n.

Define the stochastic process t 7→ B(n)(t), t ∈ [0, 1] as follows:

Z(n)(t) :=

bntc∑
j=1

(
Y

(n)
j − 1

n

)
.

(a) Compute the expectations and covariances

E
(
Z(n)(t)

)
=?, Cov

(
Z(n)(t), Z(n)(s)

)
=?, s, t ∈ [0, 1],

and their limits as n→∞.

(b) What is the joint distribution of the random variables {Z(n)(t) : t ∈ [0, 1]}?
Explain in plain words.

(c) Let
δn := max

{∣∣Z(n)(t+)− Z(n)(t−)
∣∣ : t ∈ [0, 1]

}
.

(In plain words: δn is the largest jump discontinuity of the process {Z(n)(t) : t ∈
[0, 1]}.)
Compute, for ε > 0 fixed,

lim
n→∞

P (δn ≥ ε) .

Hint: Note that δn = max1≤j≤n

∣∣∣Y (n)
j

∣∣∣ and use all you know about Poisson random
variables.

(d) Use your favourite program package (R, Matlab, Mathematica, Maple, ...)
to simulate the process and draw (print) its trajectory for n = 100, 1000, and 10000.
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1.4 Interpret the results of problems 1.2, respectively, 1.3.

1.5 (a) Let Y1, Y2, . . . , Yn be random variables with E (Yj) = 0 and Cov
(
Yi, Yj

)
=: ci,j.

Assume that the covariance matrix C := (ci,j)
n
i,j=1 is non-degenerate, det(C) 6=

0. Prove that the random variables Y1, Y2, . . . , Yn are jointly Gaussian if and only
if there exist i.i.d. N (0, 1)-distributed random variables X1, X2, . . . , Xn and real
coefficients (ai,j)

n
i,j=1 such that

Yi =
n∑

j=1

aijXj.

Hint: Express the matrix A = (ai,j)
n
i,j=1 from the covariance matrix C = (ci,j)

n
i,j=1.

(b) Let t 7→ B(t) be standard 1d Brownian motion and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn.
Explain why it follows from the definition of Brownian motion (i.e. independent and
Gaussian increments) that the random variables B(t1), B(t2), . . . , B(tn) have jointly
Gaussian distribution.

(c) Determine the covariance matrix of the random variables B(t1), B(t2), . . . , B(tn).

1.6 Let t 7→ B(t) be standard 1d Brownian motion. Prove that the following processes
are also standard 1d Brownian motions:

(a) The rescaled process: X(t) := a−1/2B(at), where a > 0 is fixed parameter.

(b) The time reversed process: Y (t) := tB(1/t).

(c) The backwards process: Z(t) := B(T ) − B(T − t), where T > 0 is fixed and
t ∈ [0, T ].

Hint: Prove that the processes X(t), Y (t), Z(t) are Gaussian and compute their
covariances.

1.7 For j = 1, . . . , n, let t 7→ Bj(t), be independent 1d Brownian motions with variance
σ2
j , and aj fixed real numbers. Prove that the process t 7→ Z(t) :=

∑n
j=1 ajBj(t) is

also a 1d Brownian motion. Determine the variance of the process Z(t).

1.8 Let t 7→ B(t) be standard 1d Brownian motion. Determine (without painful compu-
tations) the conditional probability

P
(
B(2) > 0

∣∣ B(1) > 0
)
.
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1.9 Show that 1d Brownian motion changes sign infinitely many times in any time in-
terval [0, δ] of positive length δ.

1.10 The Brownian meander process.

(a) Let ε > 0 be fixed. Using the reflection principle prove that for any x > 0, t > 0

P
(
B(t) ≥ x− ε

∣∣ min
0≤s≤t

B(s) ≥ −ε
)

=
Φ((−x+ ε)/

√
t)− Φ((−x− ε)/

√
t)

2Φ(ε/
√
t)− 1

. (*)

(b) Letting ε→ 0 in the previous formula prove that the conditional density of B(t),
given {B(s) ≥ 0 : s ∈ [0, t]} is

x

t
exp{−x2/(2t)}11{x>0}.

Remark: Note that the probability of the condition is zero (see problem 1.9). Brow-
nian motion conditioned to stay positive is called Brownian meander.

1.11 On the Hilbert space L2([0, 1], dx) define the self-adjoint compact (actually: Hilbert-
Schmidt) operator

Kf(t) :=

∫ 1

0

min{t, s}f(s)ds.

Prove that

λn =
4

π2(2n− 1)2
, ψn(t) =

√
2 sin

(
π(2n− 1)

2
t

)
, n = 1, 2, . . .

are eigenvalues and eigenvectors of the operator K.

1.12 Let ξ be a standard normal random variable and define, for λ < 1

ψ(λ) := logE
(
exp{λ(ξ2 − 1)/2}

)
.

Prove that
ψ(λ) = −1

2
(log(1− λ) + λ) ,

and investigate the analytic properties of the function ψ(·) (convexity, minima,
asymptotes, . . . ). Plot the graph of the function λ 7→ ψ(λ).

1.13 Show that the function

φ : R+ × R→ R, φ(t, x) :=
1√
t
ϕ(

x√
t
)

solves the heat equation

∂tφ(t, x) =
1

2
∂2xφ(t, x).
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