Problem Set 1

Brownian Motion: Construction and Basic Properties

1.1

1.2

Let
1 2
v:R=>Ry,  ox):= \/2_6_1 /2. be the standard normal density function,
T
¢:R—[0,1], P(z):= / ©(y)dy, be the standard normal distribution function.

Prove that for any x > 0

(l _ i) pl) <1-d(x) < é&(w)-

x a3

Hint: Compare the derivatives.

Let Xf"), Xén), ..., X be i.id. normal random variables with

1

)\ _ (n)y _ -

E(Xj )—O, Var(Xj )_ﬁ’ j7=1...,n.

Define the stochastic process ¢t — B™(t), t € [0, 1] as follows:
|nt]

B™M(t) =" X"
j=1

(a) Compute the expectations and covariances
E (B™M(t)) =, Cov(B™(t), B™(s)) =7, s, t €10,1],
and their limits as n — oo.
(b) What is the joint distribution of the random variables {B™ () : t € [0,1]}?

(c) Let
8, = max { | B™(t+) — BM(t—) |:te[0,1]}.
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1.3

(In plain words: 6, is the largest jump discontinuity of the process {B™(t) : t €

[0,1]}.)

Prove that for any fixed ¢ > 0,

lim P (6, > ¢) = 0.

n—oo

Hint: Note that 0, = max;<j<, | X;

x™ ’ and use the upper bound from problem 1.1.

(d) Use your favourite program package (R, Matlab, Mathematica, Maple, ...)
to simulate the process and draw (print) its trajectory for n = 100, 1000, and 10000.

Let Yl(”), YQ("), ..., Y™ be ii.d. Poisson random variables with parameter 1 /n. So,
E(y™) =1 v (™) _ 1 =1
)= ar(v;") = -, j=1,...,n.

Define the stochastic process ¢t — B™(t), t € [0, 1] as follows:

(a) Compute the expectations and covariances
E(ZM(@1) =?,  Cov(ZzM(t),Zz"(s)) =?,  ste[0,1],
and their limits as n — oo.

(b) What is the joint distribution of the random variables {Z(™(¢) : t € [0,1]}?

Explain in plain words.

(c) Let
6, = max {| Z"(t+) — ZMW(t=) | : t € [0,1]} .

(In plain words: &, is the largest jump discontinuity of the process {Z™(t) : t €

[0,1]}.)
Compute, for € > 0 fixed,
lim P (6, > ¢).

n—oo

y ™ ‘ and use all you know about Poisson random

Hint: Note that 9,, = maxi<j<, f

variables.

(d) Use your favourite program package (R, Matlab, Mathematica, Maple, ...)
to simulate the process and draw (print) its trajectory for n = 100, 1000, and 10000.
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1.4

1.5

1.6

1.7

1.8

Interpret the results of problems 1.2, respectively, 1.3.

(a) Let Y1, Y5,...,Y, be random variables with E (Y;) = 0 and COV(Y;, Y}) =: ¢
Assume that the covariance matrix C' := (c¢;;)7;=; is non-degenerate, det(C) #
0. Prove that the random variables Y7, Y5, ... Y, are jointly Gaussian if and only
if there exist i.i.d. A(0,1)-distributed random variables X7, Xs,..., X, and real

n
7;7

coefficients (a;;); ;_, such that

Y;; = i Cl,inj.
j=1

n n
7:7

Hint: Express the matrix A = (a;;); ;_, from the covariance matrix C' = (¢;;); ;-

(b) Let t — B(t) be standard 1d Brownian motion and 0 < t; < ty < -+ < £,
Explain why it follows from the definition of Brownian motion (i.e. independent and
Gaussian increments) that the random variables B(t;), B(ts), ..., B(t,) have jointly

Gaussian distribution.
(c) Determine the covariance matrix of the random variables B(t1), B(ta), ..., B(t,).

Let ¢t — B(t) be standard 1d Brownian motion. Prove that the following processes

are also standard 1d Brownian motions:
(a) The rescaled process: X (t) := a~'/2B(at), where a > 0 is fixed parameter.
(b) The time reversed process: Y (t) := tB(1/t).

(c) The backwards process: Z(t) := B(T) — B(T —t), where T" > 0 is fixed and
te0,7].

Hint: Prove that the processes X (t),Y (t),Z(t) are Gaussian and compute their

covariances.
For j=1,...,n,let t = Bj(t), be independent 1d Brownian motions with variance
o3, and a; fixed real numbers. Prove that the process ¢ > Z(t) := Y77, a;B;(t) is

also a 1d Brownian motion. Determine the variance of the process Z(t).

Let t — B(t) be standard 1d Brownian motion. Determine (without painful compu-

tations) the conditional probability

P(B(2) >0 B(1) > 0).



1.9

1.10

1.11

1.12

1.13

Show that 1d Brownian motion changes sign infinitely many times in any time in-

terval [0, d] of positive length 4.
The Brownian meander process.

(a) Let € > 0 be fixed. Using the reflection principle prove that for any = > 0, ¢ > 0

;) = O((— +¢)/Vt) — P((—z — ) /V1)
20 (e /v/t) — 1

(b) Letting € — 0 in the previous formula prove that the conditional density of B(t),

given {B(s) > 0:s € [0,t]} is

x
7 GXP{_$2/(2t)}ﬂ{z>o}-

P(B(t) >z —¢ | min B(s) > —

0<s<t

- M)

Remark: Note that the probability of the condition is zero (see problem 1.9). Brow-

nian motion conditioned to stay positive is called Brownian meander.

On the Hilbert space £2([0, 1], dx) define the self-adjoint compact (actually: Hilbert-
Schmidt) operator

1
Kf(t) = / min{t, s} f(s)ds.
0
Prove that

B 4 B . [(m(2n—1) B
)\n—m, wn(t)—ﬂsm <—2 t) s n = 1,2,...

are eigenvalues and eigenvectors of the operator K.
Let £ be a standard normal random variable and define, for A < 1
() = log E (exp{A(€2 — 1)/2}).
Prove that
V() =~ (log(1 = X) + ).

and investigate the analytic properties of the function (-) (convexity, minima,
asymptotes, ...). Plot the graph of the function \ — ().

Show that the function
bRy xRR,  t2) = —=p(

solves the heat equation

0u0(t, ) = 3021, 7).





