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An exact method for determining the eritical percolation probability, p,, for a number of two-
dimensional site and bond problems is described. For the site problem on the plane triangular lattice
Po = }. For the bond problem on the triangular, simple quadratic, and honeycomb lattices, Do =
2 sin (+4~), 3,1 — 2sin (%), respectively. A matching theorem for the mean number of finite clusters
on certain two-dimensional lattices, somewhat analogous to the duality -transformation for the

partition function of the Ising model, is described.

1. INTRODUCTION

PERCOLATION processes and their applica-

tions have been discussed by many authors,"™®
and for a general introduction, reference should be
made to the recent review by Frisch and Ham-
mersley® who give an extensive bibliography. In
this paper we shall derive some exact critical percola~-
tion probabilities for site and bond problems in
two dimensions.

A study of the series expansions for the mean
number of finite clusters on the plane triangular
lattice leads to the discovery of a “matching”
property somewhat analogous to the duality trans-
formation for the partition function of the Ising
model introduced by Kramers and Wannier’ and
interpreted geometrically by Onsager.® We shall
introduce the series method, notice the matching
property, and show that it depends essentially on a
result sometimes known as Euler's Law of the
Edges. We have been able to define a general class
of two-dimensional lattices for which a matching
property can be established. In certain special cases
the property suffices to locate the critical probability.
More generally we establish that the critical proba-
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bilities of certain pairs of lattices (matching pairs)
are complementary. We shall locate the critical
probability for one such matching pair, the bond
problem on the triangular and honeycomb lattices,
by a star-triangle substitution analogous to that
introduced by Onsager for the corresponding Ising
problem.

Apart from the theoretical interest of these exact
results, a knowledge of p, is an invaluable aid in
the interpretation of power series that arise in a
study of these problems.® We shall examine the
general problem of deriving such expansions in g
subsequent paper. A brief outline of the salient
results in this paper has already been given.'’

2. MEAN NUMBER OF CLUSTERS ON A
FINITE GRAPH

We consider the site problem on a general linear
graph G whose sites are colored at random, being
black with probability » and white with probability
¢ = 1 — p. For some purposes it is convenient to
emphasise the symmetry of the problem and we
shall then write

P=ps =1 pw, 2.1

¢4 =7pPw=1-—ps. 2.2)

In most applications our interest in the problem
will be asymmetric in that we shall consider the
black sites as the primary species and refer to small
p as low density and large p as high density. We
shall adopt the convention of coloring a bond joining
two nearest-neighbor black sites black (black bond),
* M. F. Sykes and J. W, Essam, Phys. Rev. 133, A 310

(1964).
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TaBLe 1. TFinite clusters on the octahedron.
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and that joining two nearest-neighbor white sites
white (white bond). Bonds joining sites of opposite
color will be called uncolored. A connected linear
graph formed by sites and bonds of one color is
called a cluster.

Any particular realization K of the probability
distribution on G defines two further linear graphs
Ry and Ry which are, respectively, the ensemble of
black and white clusters. If we denote the number
of black clusters in R by n(Rz) and the probability
of occurrence of Bg by P(Ry; @) then we shall define
the mean number of black clusters as the weighted
average ' A

K(ps; @) = (n(Bp)) = gr:‘ P(Rs; Gn(Rs),  (2.3)

and by symmetry the mean number of white
clusters is

K(pw; G) = (n(Bw)). 2.9
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For a finite graph of N sites the 2" realizations
are enumerable and for small N the function K (p; @)
can readily be obtained explicitly. We illustrate the
perimeter method described by Domb" by applying
it to the octahedron. If we denote the mean number
of clusters of size r (that is, with r sites) by a sub-
script, then

K=} K, (2.5)
In Table I. we list all the possible connected clusters
on the octahedron and group them according to
size and topology together with their respective
probabilities of occurrence. It will be seen that
there are six possible unit clusters each with proba-
bility pg*, and therefore

Kl = 6pq4. (2.6)
Likewise, .

K, = 12p°¢". 2.7

For clusters of size 3 there are two possible types
but the classification is mutually disjoint. By col-
lecting all the contributions from Table I and
substituting in (2.5), we obtain the mean number
of black clusters as a polynomial in p and ¢ and we
shall denote this polynomial by K(p, q; ). We find

K(p, ¢; @) = 6pg* + 12p°q" + 20p°¢
+ 15p'¢" + 6p'q + p°,  (2.8)

where of course G is the octahedron. It is implicit
in (2.8) that ¢ = 1 — p. We thus obtain the mean
number of the primary or black species by substi-
tution'? as a function of p only,

K(p; G) = 6p — 12p° + 8p°
+3p' — 6p° +2%°.  (2.9)

By symmetry the mean number for the secondary
or white species is obtained by writing ¢ for p in (2.9).

For some applications it is convenient to express
K(p; @) as a function of ¢; that is, to express the
mean number of black clusters in terms of the proba-
bility for white sites. This substitution is particularly
appropriate to an investigation of the high-density
region where ¢ is small, and a suitable variable for

1t G. Domb, Nature 184, 509 (1959). (Report of the
Physical Society Conference on Fluctuation Phenomena and
Stochastic Processes held at Birkbeck College, Londen.)

22 The function K(p; G) can be written as a polynomial
in p and ¢ in more than one way since these are dependent
variables. We shall reserve the symbol K(p, ¢; G) to denote
the polynomial that results from application of the perimeter
method and which will be fundamental to our subsequent
treatment of series expansions. By reversing the roles of p and
q l:m boi(;lh sides of (2.8), the mean number of white clusters is
obtained.
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the derivation of series developments. We shall write
Kip,1 —p;G) as K.lp; @ = K(p; @),

K(l1—4q,¢;6) as Ki(g; @,

and in general we shall omit the specification of G
in the brackets unless it contributes anything es-
sential to the argument. We have chosen the sub-

2.10)

(2.11)

K.(p) = 6p — 12p* + 8p° + 3p* — 6p° + 2°,

Ku(g) =1
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scripts because K, is most appropriate to low densi-
ties and Ky to high densities. It is clear that for
any finite graph these two functions are finite poly-
nomials in p and g, respectively, and

K.(p) = Ku(1l — D), ,(2-12)
Ku(g) = K. (1 — g). (2.13)
For the octahedron we have
(2.14)
+ 3¢ — 6¢° + 2¢°. (2.15)

It will be seen that the last three coefficients in (2.14) and (2.15) are identical. A similar phenomenon
is found for the corresponding functions for the icosahedron for which the last eight coefficients are identical:

Ku(p) = 12p — 30p” + 20p° + 12p° + 28p° — 120p" + 75p° + 80p° — 126p™° + 60p'' — 10p", (2.16)

Ku(g) =1

This “matching” property of K; and Ky, which
remains to be defined precisely, is not found to be
a general property of all finite graphs. We interpret
the property in the next section.

3. MEAN NUMBER OF CLUSTERS ON AN
INFINITE GRAPH

It is convenient on an infinite lattice to define
the mean number of clusters per site, and we shall
write for a lattice of NV sites

K(p, 9) = k(, ON, @3.1)

and generally write k for K where required through
all the equations of the previous section. When we
apply Eq. (2.5) to an infinite crystal lattice, such
as the plane triangular lattice, the summation can-
not be performed. However, when p is small the
mean number of very large black clusters will be
very small and, following Domb, we shall suppose
that the double series in p and g that replaces the
right-hand side of (2.5) will converge to k(p, ¢)

k@) =p—3p"+20"+ 9" —p +3p° — " + 9 — 15p" + .-,
qﬁ_q7+3q8_4q9+9q10_15q11+....

kn(‘l) =

These two series are valid in two separate regions
(3.3) defining k,, for p < p,, and (3.4) defining kx

+ 12¢° + 28¢° — 120¢" + 75¢° + 80¢° — 1264 + 60¢™ — 10¢™.

2.17)

for small enough p. A similar observation holds
when p is close to unity, for in the limit there is
only one cluster, of infinite size, which fills the whole
lattice. For ¢ > 0 there will be a few finite black
clusters surrounded by white sites, and again we
shall suppose that k(p, ¢) converges. The problem
is now characterized by the existence of a critical
probability p, above which there is a nonzero prob-
ability of a site being a member of the cluster of
infinite extent. For an infinite structure, “edge
effects” may be supposed negligible and we find by
direct enumeration of the possible clusters on the
triangular lattice:

kv =p%, ko =3p"¢", ks =p"2¢" + 9¢"),
k4 — p4(3q10 + lqul + 29q12)’
ks — p5(6qll + 21q12 + 66ql3 + 93ql4).

We have derived further &k, and by substitution
obtained the low- and high-density expansions for
the number of finite black clusters as

(3.2

3.3)
3.4)

for p > p,. Again we shall suppose that these ex-
pansions converge for small values of their argu-
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ment.*® The remarkable matching of the coefficients
suggests that we may write for this lattice

k.(p) = (@) + ka(®), (3.5
¢(p).=p — 3" + 20 (3.6)

We shall call ¢(p) the matching polynomial, and the
interpretation of (3.5) is the following:

At density p the mean number of black
clusters differs from the mean number of (3.7)
white clusters by ¢(p).

The importance of this result lies in the observa-
tion that ¢(p) is a finite polynomial. We show in
Sec. 7 that the property (3.5) which we shall de-
scribe as a self-matching enables the critical prob-
ability to be located as p, = 3. Self-matching is a
very special property confined to a very limited
class of infinite lattices. It is noticed to occur on any
infinite 2-dimensional lattice that is fully triangul-
ated'* and the fitting together of the triangular
faces need not form a regular pattern. We illustrate
one such lattice for which the triangles do form a
regular pattern in Fig. 1(a). It is also noticed for
the lattice illustrated in Fig. 1(b). This lattice,
which is two-dimensional but not planar, yields a
site problem that, by the well known bond-to-site
transformation,'® is isomorphic with the bond prob-
lem on the simple quadratic lattice. We shall usually
find it convenient to regard bond problems as site
problems on the corresponding covering laitice. (We
give a short account of the bond-on-site transforma-
tion in Appendix IL.) In this way we avoid the

(a

.

‘b) %

F1c. 1. Self-matching lattices. (2) Fully triangulated
planar lattice; (b) covering lattice of the bond problem on
the simple quadratic lattice.

complication of a special notation to distinguish
the two problems. For the simple quadratic bond
problem we find

ku(p) = p — 3p° + 29° +p° — p' + 3p° — 6p° + 14p™° — 27p" + 5T — 118p" + -+, (3.8)

ka(Q) =

and thus for this problem also

¢ =p — 3p" + 2p°.

¢ — ¢ + 33¢° — 6¢° + 14¢° — 27¢" + 573¢" — 118¢° + -+, (B.9)

(3.10)

When the mean number of clusters is expanded for the simple quadratic lattice we find

k) =p— 20"+ 9 +9° — 2 +2° — 4p" + 11p7 + -,
q4_q5+2q6+2q8_3q9+20q10+ _..’

kn(g) =

13 Tt must not be assumed however that the radii of
comllergence of these expansions are p, and 1 — p., respec-
tively.

®An infinite multiply connected planar graph all of
whose finite faces are triangular.

1 J) W. Essam and M. E. Fisher, J. Math. Phys. 2, 609
(1961). .
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3.11)
(3.12)

and these two expansions do not match. However,
if we also expand the mean number of clusters on
the simple quadratic lattice with first- and second-
neighbor bonds, we find, denoting the quantities
for this case by an asterisk,

Sty
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K@) =p— 49 +40° + (0" + ) — 2"+ 20" + 20" — 3" +20p° + -+,
qs_ q9+2q10_4q11+11q12+ e,

kf(q) =

and again these expansions do not match. However,
it seems that (3.14) matches (3.11) and (3.13)
matches (3.12). This suggests that we may write

k() = ¢(p) + ki), (3.15)

ki) = ¢*(@) + ka(0), (3.16)

¢®) =p — 2p" + 7', (3.17)

¢*®) = p — 4p° + 4p° — 2", (3.18)
The statement equivalent to (3.7) is now
At density p the mean number of black
clusters on the simple quadratic lattice dif-
fers from the mean number of white clusters
on the stmple quadratic lattice with first and

second neighbors by ¢(p). (3.19)

We show in Sec. 7 that this property which we
shall call a cross-matching enables the critical prob-
bilities of the matching pair p,, p* to be related by

P+ = 1. (3.20)

We shall show in a subsequent paper that the
coefficients in the series expansions of k. and kx
can be related to certain enumerative problems on
the lattice. By a closer examination of these enumer-
ative problems, the matching properties illustrated
in this section can be proved to hold term by term.
In the following sections we develop a proof of
the matching theorems that is more direct and
derive them from certain simple results of the
theory of linear graphs.

4. APPLICATION OF THE THEORY OF LINEAR
GRAPHS TO THE SITE PROBLEM ON THE
ICOSAHEDRON

In this section we establish the matching poly-
nomial for the icosahedron as

126(p) = 12p — 30p* + 20" — 1.  (4.1)

We have already obtained this polynomial in Sec. 2
by a method that requires a complete enumeration
of all possible clusters.

An account of the theory of linear graphs should
be sought in-the literature and, in particular, in
the book of Berge.'® We simply recall here by means
of an example the results we require and illustrate
our terminology. For a precise treatment, reference

18 C. Berge, Theorie des Graphes et ses Applications (Dunod
Cie., Paris, 1958).
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(3.13)
(3.14)

should be made to Berge, Chap. 4 (Cyclomatic
Index), and Chap. 21 (Euler’s Law of the Edges).
In Fig. 2 we illustrate a typical planar linear graph
(@). It has 12 sites, 11 bonds, and 2 finite faces.
There is also an infinite face and there are 3 con-
nected components. Denoting the number of sites
by s, of bonds by b, of finite faces by f, and of
the total number of faces including the infinite face
by F (= f 4+ 1), and the number of connected com-
ponents by 7, then the cyclomatic index of the graph
is defined to be

Cl@) =b—s+n. 4.2

In our example C(G) = 11 — 12 + 3 = 2. The
definition is not restricted to planar graphs, but for
these we have an important result often known as
Euler’s Law of the Edges, which in its modern form
states that, for a planar graph, the cyclomatic
index is equal to the number of finite faces. For a
planar graph we can thus write

f=b—s+n, 4.3)
and we shall use this result in the form
n=s—b-+4+F —1. 4.4)

In Fig. 3. we draw the icosahedron as a planar graph.
It has one infinite (triangular) face and 19 finite
triangular faces. The faces are all polygons but for
a more general planar graph we have seen that
this is not necessarily the case. For example, in
the particular realization in which the four sites
A, B, C, D are black and all the others white, the
planar graph Ry has one finite face which is not a
simple polygon. We shall call the sites adjacent to
the face contour sites of that face, and the bonds
joining two contour sites the contour bonds. In our
example Ry, the points A, B, C, D are contour sites
and AB, BD, AC, BD are contour bonds. To exploit
the result (4.4) we require the following important
Lemma:

For any realization Ry on the icosahe-
drom, every face is either empty or contains
one and only one comnected component

(white cluster) of Ry. (4.5)

For the present we shall regard this lemma as
proved by an examination of all the possible realiza-
tions. A more general result, of which the present
lemma is a particular case, is proved in Appendix I.
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Fra. 2. Typical planar
linear graph with 12 sites,
11 bonds, 2 finite faces, and
3 connected components.
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Applying Euler’s Law to the two graphs Rs and
R« we have from (4.4) :

nB=SB"‘bB+F3—1, (4.6)
nw=8w‘—'bw+Fw'—1. (4.7)

To apply the lemma, we observe that it follows
that the number of white clusters is equal to the
number of faces of Rx (black faces) that are not
empty. Denoting the number of empty faces by
Fx(0), we can thus write

npg = sg — bp + Fs(0) — 1 + nw. 4.8

This result holds for all realizations, and we can
therefore write the average sign through it and
substitute

(so) = 12p; (b} = 305%5 (ma) = K@), ()
(nw) = K(q); (Fp(0)) = 201’3-

The last entry results from the observation that
there are 20 faces (all triangles and including the
infinite face) that could be empty. We obtain

K(p) = 12p — 30p° + 20" — 1 4+ K(¢9).  (4.10)

Thus the difference between the mean number of
black and white clusters is the matching poly-
nomial (4.1).

The method of this section can be applied with-
out modification to the tetrahedron and the octahe-
dron for which the lemma holds. For the tetrahedron

4@ =4p—6p +45F — 1. (@11)

For any finite section of the plane triangular
lattice the lemma will be found to hold except for
the infinite face. The general treatment of the next
section enables a proper account of the infinite face
to be taken if required, but for our present purposes
we assume, as it is certainly reasonable to do, that,
as we require the mean number per site, we may
neglect these edge effects. We then have at once

.
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(ss/N)y =p, (bs/N) = 3",

and therefore for this lattice,"”

¢p) = p — 3" + 29°,
as already surmised in Sec. 3.
We observe that this polynomial vanishes at

p = 0, 3, and 1—a result that is readily understood
from (3.7).

(Fx(0)/N) = 2p°,

4.12)

5. GENERAL MATCHING PROPERTY FOR
DECORATED MOSAICS

We shall use the term mosaic’® to describe a
planar graph or infinite planar lattice which is con-
nected and has no articulation points. Such a graph
has finite faces whose contour bonds form non-self-
intersecting polygons. For such a graph the infinite
face also has a polygonal contour, and we shall use
the term face without qualifications to include the
infinite face.

We now choose a mosaic M (the parent mosaic)
and “‘decorate’ it by drawing in all the possible
diagonals on some of its polygonal faces, inside
those faces, to form a new graph L (which is not
necessarily planar). We shall call the operation of
drawing in all the possible diagonals of a selected
face close packing, and it results in the polygonal
cluster formed by the n, contour sites becoming the
complete graph’® of n, sites or a close-packed cluster
of n, sites.”® The graph L will be called a decorated
mosaic. ' ‘

We define the matching graph® L* of the graph
L to be the decorated mosaic graph which results
from close packing all those faces of the parent
mosaic M of L which were not close-packed to
form L.2* It follows from the symmetry of the defi-

Fi16. 3. The Icosahedron drawn as
a planar graph.

7 On an infinite lattice we shall write ¢ for the matchin
polynomials per site.

is A mosaic is simply a multiply-connected planar graph.
We shall find the word mosaic conveniently short.

1 C. Domb, Phil. Mag. Suppl. 9, 149 (1960).

20 We anticipate in these definitions the results of previous
sections.

2 Triangular faces remain invariant under close packing.
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nition that if L* is the matching graph of L then L
is also the matching graph of L*. We shall call L
and L* a matching pair.

We shall take it as obvious that no bond of L
crosses any bond of L* and the converse. For the
infinite face the diagonals that result from close
packing will be supposed drawn in the infinite face.
A mosaic M can usually give rise to a variety of
matching pairs. For example, the mosaic formed by
the infinite simple -quadratic lattice yields two im-
portant matching pairs™:

(i) L = Simple quadratic lattice.
L* = Simple quadratic matching lattice
or simple quadratic lattice with
first- and second-neighbor bonds.

(5.1)

(ii) L = Simple quadratic lattice in which
alternate squares are replaced by
tetrahedra [Sec. 3, Fig. 1 (b)].
L* = L. ‘
In this last example the two lattices are topologically
identical and will be described as self-matching. (For
our present purpose of examining percolation on
graphs all of whose sites are occupied with equal
probability, this definition will suffice. A slightly
more detailed examination is required if the proba-
bilities are not distributed equally and the sites are
therefore labeled).

At this juncture we notice that all bond problems
on mosaic lattices without multiple bonds can be
made to correspond by the well known bond-to-
site transformation to a site problem on a “covering
lattice” which is a decorated mosaic. We notice
further that the covering lattices of a lattice and
its dual lattice form a matching pair of decorated
mosaics. The proof of this is elementary.

As an example, the bond problem on the simple
quadratic lattice is isomorphic with the site problem
on the lattice L of (5.2). The property L* = I
corresponds to the self-dual property of the simple
quadratic lattice. We further illustrate these proper-
ties in Appendix II.

For a particular realization of the probability
distribution on the parent mosaic M and the cor-
responding realizations on L and L*, we have four
graphs,

Ry and Ry on L, Rf and R¥% on L*
and these graphs are not necessarily planar. How-
“ever any realization, Rp say, will be made up of
connected components some of which may contain
subsets of points forming complete close-packed
2 We neglect the infinite face.

(5.2)
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graphs. We shall extend our definition of a face to
include these complete graphs as faces (close-packed
faces). It is clear that these complete graphs con-
tain no white sites and are therefore always empty.

We now state an important property of a matching
pair of decorated mosaics.

Any two while sites in a face of Ry on L are
connected on R¥ on L* and conversely tf two
white sites are connected on R¥ on L* then

they both lie in the same face of Ry on L. (5.3)

The reader will readily satisfy himself of the truth
of this statement by drawing a few examples. We
relegate the rather tedious proof to the Appendix I.

For a decorated mosaic, Euler’s Law of the Edges
is not immediately applicable since the graph is not
planar. In general, a realizetion R on a decorated
mosaic will contain some close-packed faces. The
result (4.4) will hold for the graph formed by un-
packing all the close-packed faces of Ry. If we close-
pack the faces in turn, each face of a points will
increase the number of bonds by 1« (e — 3) without
alteration of the total number of faces. We must
therefore write

n=8s—b+ D’ —32x+2)+F—1, (54
where the summation is taken over all the faces
that are close-packed and F is the number of faces
that are not close-packed. We shall make the
substitution

F = FQ0) + F', (5.5)

where F(0) is the number of empty faces (i.e., con-
tain no white sites) that are not close-packed and
write the resulting rather cumbersome expression as

n=%-4 F. (5.6)

This equation is the modified form of Euler’s Law
of the Iidges applicable to realizations on decorated
mosaics.

6. GENERAL MATCHING THEOREM FOR A
DECORATED MOSAIC

We now combine the results (5.3) and (5.6) of the
previous section for the four graphs

Ry and Ry on L, R} and R} on L*

and the argument is simply a generalization of that
used for the icosahedron in Sec. 4. Applying first
Euler’s Law (5.6) we have

Np = q>B +F;3)
a8 + Py,

(6.1)
6.2)

n}

I
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Tasie II. Matching polynomials for the more usual lattices.

Triangular lattice
(self-matching)

Simple quadratic lattice

Simple quadratic
matching lattice

(S.Q. with first- and
second-neighbor bonds)

Honeycomb lattice

Honeycomb matching lattice
(honeycomb with first-,
second- and third-neighbor
bonds)

\
Kagomé lattice
(the covering lattice of
the honeycomb bond problem)

Kagomé matching lattice
(the covering lattice of the
triangular bond problem)

Kagomé covering lattice
(covering lattice of the
Kagomsé bond problem)

Matching lattice for _

Kagomé covering lattice

Scovering lattice of the
ice lattice bond problem)

Covering lattice for the
simple quadratic bond
problem
(self-matching)

#(p) = p.— 3p* + 2p*
#(p) =p — 2p* + p*

#(p) = p — 4p* + 4p* — p!

#(p) = 3(2p — 3p* + 1%

&(p) = 3(2p — 12p* + 20p* — 15p* + 6p° — %)
#(p) = ¥(3p — 6p* + 2p% + %)
#(p) = ¥(3p — 15p* + 22p* — 15p* + 6p° — p*)

#(p) = ¥6p — 18p* + 14p* — 3p* + p°)

&(p) = ¥(6p — 21p* + 22p* — 12p* + 6p° — p%)

#(p) =p — 8p* +2p°

and from the matching property (5.3), we have

n¥ = Fi, 6.3)

nwy = Fg*. 6.4)

By substitution of (6.3) in (6.1), and (6.4) in (6.2),
ns = @5 + ¥, (6.5)

nt = &% + nw. (6.6)

On averaging over all the possible realizations and
writing

(®s) = No(D), 6.7
(2%) = N¢*(@), (6.8)
we obtain
K(p; L) = N¢(p) + K(g; L*), (6.9)
K(p; L*) = N¢*(p) + K(¢; L),  (6.10)
or

Ki(p; L) = Né(p) + Kulp; L*), (6.11)
K.u(lp; L*) = N¢*(p) + Kxlp; L).  (6.12)
The result is conveniently expressed in words:

At density p the mean number of black clus-
ters on L differs from the mean number of
white clusters on L* by ¢(p).

The polynomial ¢(p) we have called the matching
polynomial of L. It follows from the relations (2.12)
and (2.13) that for a matching pair

¢(@) = —¢*(1 — ). (6.13)

The matching polynomial is readily obtained from
the definitive equation

Né(p) = (s — b+ F(0)
+ D3 —3a+2)—1). (614

For example, for the simple quadratic covering lat-
tice (5.2) we have, working per site, (s/N) = p
(b/N) = 3p*, and the possible empty faces are a
quadrilateral (3N) which has expectation ip', a
tetrahedron (4N) which has weight 3 and therefore
contributes 13p*, or a triangle which does not occur
in a tetrahedron and this has expectation 2p* — 2p*.
Thus

. ¢ =p — 3 + 2, (6.15)
and we notice that for this lattice, which is self
matching, '

¢l —p) = —p+3p°—2p3 (6.16)

as required by (6.13).
We summarize in Table II the matching poly-
nomials for the more usual lattices.
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7. CRITICAL PERCOLATION PROBABILITIES

The matching property (6.11-12) makes it pos-
sible to derive a property of the critical percolation
probabilities of certain infinite lattices. Suppose first
that the lattice is self-matching. Then from (6.9)

kp; L) = ¢(p) + k(g; L). (7.1)

Since ¢(p) is a finite polynomial, its behavior is
nonsingular. We shall suppose, without offering
proof, that for real p (0 < p < 1) the function K
is singular at p = p,, but nowhere else. This is to
be expected in the light of exact results for closely
related problems, and in particular, for percolation
problems on lattices of the Bethe type for which K
has been given exactly.'” Now following closely the
method of Kramers and Wannier in their derivation
of the critical temperature of the Ising model we
argue as follows.

From (7.1), if K is singular at p, then it is also
singular at 1 — p,, and if there is only one singularity
these must be identical points, or

Do = . (7.2)
This establishes two important percolation proba-
bilities as 3—that for the site problem on the tri-
angular lattice and that for the bond problem on
the simple quadratic lattice. The result (7.2) holds
for any fully triangulated lattice.

For a matching pair we observe that if k(L) is
singular at p,, then k(L*) is singular at 1 — p,.
Thus if k(L*) has only one singularity at p*, we
must have

P + p¥f = 1, (7.3)

or the critical points are complementary.

To determine p,, p* we need a second relation.
We have been able to find such a relation in only
one case—the matching pair formed by the bond
problem on the honeycomb and triangular lattices.
To derive this relation we shall depart from our
practice hitherto and study this pair directly as a
bond problem. (This is not essential but is visually
simpler.) We suppose that the bonds of the tri-
angular lattice are occupied with probabilities £t
along the usual three directions and that those of
the honeycomb are occupied with probabilities z,
Y, z so orientated that ¢ crosses z on the dual, ete.
By an obvious extension of the preceding argument,
if we assume there is only one critical locus for the
honeycomb

U(x; Y,2) = 0, (7.4)

then the corresponding locus for the triangular lat-
tice must be

Fiq. 4. Star-triangle overlapping
of the triangular and honeycomb
lattices with the probabilities as
assigned in the text.

Ul —t1—19,1—9 =0. (7.5)
We can satisfy this condition in the treatment that
follows by supposing the bonds of the triangular
lattice to be occupied with the complementary prob-
abilities 1 — z, 1 — y, 1 — ¢, respectively.

In Fig. 4 we draw the well known star-triangle
overlapping of the two lattices. We calculate for
one individual “star—triangle’’ the - probabilities
(a) of A being connected to neither B nor C; (b) of
A being connected to B but not C; (c) of A being
connected to C but not B; (d) of A being connected
to both B and C. We find

Honeycomb Triangular
(@) 1—2y—yz+ 2yz 2z (7.6)
®) zy(l — 2) zy(l — 2)
(c) zy(l — z) zy(l — z)
d Yz 1 -2y —yz — a2 + 2zy2

We notice that the conditions (b) and (c) are satis-
fied with equal probabilities on the two lattices as
a result of our choice of complementary probabilities.
We can obtain equality for both the remaining con-
ditions if we select z, y, z to satisfy

l—xy—yz— a2+ 2yz = 0. 7.7
On this locus the connectivity of each individual
star-triangle will be identical. Thus the occurrence
of an infinite cluster on one lattice would imply
such an occurrence on the other, and by (7.5) and
(7.4) these are mutually exclusive events except on
the critical locus. Thus (7.7) is the critical locus and
by substitution we obtain it as a function of the
probabilities on the triangular lattice:

l—¢—n—¢+&¢=0. (7.8)

From (7.8) by setting { = 0 we obtain for the

simple quadratic bond problem with two different
probabilities at right angles the locus™

E+ 7 =1 (7.9)

3 The result for the asymmetric simple quadratic may be
obtained directly by exploiting the self-dual property but, as
remarked earlier, the matching lattice must be carefully
defined and is the same lattice with the roles of £ and »
reversed. i




o e AR R~ S R 5 S, o O A - s

——— . =

1126

For this case the matching polynomial factorizes as

$& M =0 —t—nE+n— 2, (7.10

and this vanishes along the critical locus. Thus K
is continuous there. The result can be established
for any self-matching lattice.

For the symmetric triangular lattice we obtain
from (7.8) the cubic

1—3p+9p*=0, (7.11)
which has only one root between 0 and 1 and yields
P. = 2sin Yer = 0.347296 (triangular),
Pp. = 0.652704 (honeycomb).

We notice that these results apply equally to the
isomorphic site problem on the Kagomé lattice for
which p, = 0.652704.

(7.12)

8. CONCLUSIONS

We have defined a class of two-dimensional lat-
latices (decorated mosaics) and proved a matching
theorem which relates the mean number of black
clusters on such a mosaic to the mean number of
white clusters on another mosaic, the matching
mosaic. The mean number of clusters for a matching
pair is related by the results (6.9-12) which can
be summarized symmetrically as

k; L) — 36(0) = k(g; L*) — 3¢*(9). (8.1)

When the matching pair are identical the critical
probability is a 4, and we have established this
result for the site problem on the plane triangular
lattice and the bond problem on the simple quadratic
lattice.

We have also found that the mean number of
clusters is continuous at p, for a self-matching lat-
tice. We shall examine the continuity of higher
derivatives of K, and the continuity of K for cross-
matching lattices in a subsequent paper.

The class of decorated mosaics for which 3.1
applies includes all bond problems on multiply-
connected planar graphs without multiple bonds.
This can be proved separately by repeating the argu-
ments of this paper directly for the bond problem
on a graph and its dual. We have preferred to work
on the covering lattice so as to include the more
general class of matching decorated mosaics, some
of which do not correspond to bond problems.
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APPENDIX I. PROOF OF THE MATCHING
PROPERTY (5.3)

Any individual face of Bz on L is an area which
we shall regard as made up of smaller units of ares
which can be classified as follows:

(1) Primary units, which are faces of the parent
mosaic, and which arise from undecorated faces of
M occurring in faces of Ry on L.

(2) Secondary units, which correspond to deco-
rated faces of M or fractions thereof.

Each unit will have a polygonal contour which we
shall call its edge, and we shall refer to the bonds
and sites that form the polygonal boundary as its
edge bonds and edge sites. These edge bonds can
be black, white or uncolored for a particular realiza-
tion Ry, Ry on L. Edge bonds that are white or
uncolored for a particular realization will be called
internal edges. We shall assume without proof that
if two units A and B are units of the same face of Ry,
then it is possible to find at least one path from
A to B in the plane which crosses only internal
edges. (This is equivalent to the elementary defini-
tive property that a face has a connected interior).

We now show that it follows that any white edge
site of A is connected to any white edge site of B
on R¥. It will suffice to prove the result for two
adjacent units (i.e., units having at least one in-
ternal edge in common).

In Fig. 5 let PQ be a common internal edge of
A and B. Then at least one of P and Q must be
white. Suppose P is white. Now suppose that X
and Y are white edge sites of A and B, respectively.
(We shall assume X = P, Y # P; if X = P and
or Y = P then the proof is shorter).

Now

(1) if A is a primary unit, then on L* this face
will be close-packed and therefore X conneected
to P on L*. Since both X and P are white, X is
connected to P on R¥ on L*.

(2) If A is a secondary unit, then X must be
connected to P along the edge sites of A. For if not
then there is at least one black site along each of
the two possible routes, and since the unit is second-
ary, these black sites must be connected on L which
vitiates our assumption that A is a unit of one face.
The connection along the edge will not be destroyed

Al
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F1a. 5. Two adjacent units
of area with a common internal
edge PQ.

by ‘“‘unpacking’’ the face.** Therefore X is connected
to P on L*. Likewise, Y is connected to P on L*,
and therefore X is connected to Y on L*; and since
X, Y, P and any sites employed on secondary units
are white, X is connected to Y on R¥.

Thus any two while sites in a face of Ry on L are
connected on R¥ on L*,

To establish the converse we notice that if two
white sites X, Y are in different faces of Rz on L
and are connected on B* on L* then at least one
bond on R¥ must cross a black contour. But no
bond of L* crosses any bond of L.

Thus tf two white sites are connected on R¥ on L*
they both lie in the same face of Ry on L.

This completes the proof of (5.3).

APPENDIX II. ILLUSTRATION OF THE BOND-TO-
SITE TRANSFORMATION AND THE MATCHING
CLUSTER FOR THE TRIANGULAR PRISM

The bond-to-site transformation introduced by
Fisher and Essam' has also been described by
Fisher,® who introduced the term covering lattice,

2 This is true because the edge bonds of the secondary
face used for the connection are also bonds of the parent
mosaic.

* M. E. Fisher, J. Math. Phys. 4, 620 (1961).

te}

F1a. 6. Illustration of the bond-to-site transformation
and the matching cluster for the triangular prism. (a) Bond
problem on prism; (b) covering cluster (site problem); (¢) bond
problem on dual of prism; (d) covering cluster of dual of
prism [this is the matching cluster for (b)]; (e) site problem
on prism; (f) matching cluster for the site problem on prism.

and also by Dean’® and Hammersley and Frisch.®
The covering graph for the bond problem on a
graph is constructed by replacing each bond of the
graph by a site (placed at its center) and linking
these sites together by sufficient new bonds to en-
sure that if two bonds of the original graph meet,
then the corresponding two sites of the covering
graph are joined by a direct bond and vice versa.
We illustrate the transformation in Fig. 6.

26 P, Dean, Proc. Cambridge Phil. Soc. 59, 397 (1963).




