
BÁLINT TÓTH
(U of Bristol and TU Budapest)

Relaxed Sector Condition and
Random Walk in Divergence Free Random Drift Field

based on joint work with
(older) Illés Horváth, Bálint Vető
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Notation:

(Ω, π, τz : z ∈ Zd) probability space

with ergodic Zd-action

E = {k ∈ Zd : |k| = 1} possible steps of the rw

vk : Ω→ [−1,1], k ∈ E

◦ vk(ω) + v−k(τkω) ≡ 0 vector field

◦
∑
k∈E

vk(ω) ≡ 0 divergence-free

◦
∫

Ω
vk(ω)dπ(ω) = 0, no overall drift
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Lift it to a stationary and divergence free vector field over Zd:

Vk(ω, x) := vk(τxω)

V−k(x+ k) + Vk(x) ≡ 0,
∑
k∈Ed

Vk(x) ≡ 0, E
(
Vk(x)

)
= 0.

The random walk:

Pω
(
X(t+ dt) = x+ k

∣∣∣ X(t) = x
)

= (1 + Vk(ω, x)) dt+O((dt)2).

The diffusion analogue: V : Rd → Rd stationary, divergence-
free vector field,

dX(t) = dB(t) + V (X(t))dt,

Question: Diffusive asymptotics of X(T )/
√
T as T →∞?
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Drift field and its covariances:

ϕ(ω) :=
∑
k∈Ed

kvk(ω), Φ(ω, x) := ϕ(τxω)

Ci,j(x) := E
(

Φi(x)Φj(0)
)
, Ĉi,j(p) :=

∑
x∈Zd

e
√
−1p·xCi,j(x)

H−1-condition – assumed:

(2π)−d
∫

[−π,π]d

∑d
i=1 Ĉi,i(p)∑d

i=1(1− cos(p · ei))
dp <∞

Equivalently:

lim
T→∞

T−1E
( (∫ T

0
Φ(S(t))dt

)2 )
<∞,
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The environment process: ηn := τXnω. Stationary and ergodic
pure jump Markov process on (Ω, π). (Stationarity due to div-
freeness.)

Martingale decomposition of the walk: X(t) = Y (t) + Z(t),

Y (t) := X(t)−
∫ t

0
ϕ(η(s))ds, Z(t) :=

∫ t
0
ϕ(η(s))ds,

Y (·) and X(·) are uncorrelated (easy), and

E
(
Xi(t)Xj(t)

)
= δi,j(2d)t+ E

(
Zi(t)Zj(t)

)
.

Diffusive bounds:

2d ≤ lim
T→∞

T−1E
(
|X(T ) |2

)
≤ 2d+

d∑
i=1

C̃i,i <∞

Upper bound from H−1.
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Theorem. If the H−1-condition holds then the asymptotic co-
variance matrix

(σ2)i,j := lim
T→∞

T−1E
(
Xi(T )Xj(T )

)
exists, and is bounded as follows

2dId ≤ σ2 ≤ 2dId + C̃.

For any m ∈ N, t1, . . . , tm ∈ R+ and f : Rmd → R continuous and
bounded∫

Ω

∣∣∣Eω(f(. . . , T−1/2X(Ttj), . . . )
)
− E

(
f(. . . ,W (tj), . . . )

) ∣∣∣ dπ(ω)→ 0,

as T →∞, where t 7→W (t) ∈ Rd is a Brownian motion with

E
(
Wi(t)

)
= 0, E

(
Wi(s)Wj(t)

)
= min{s, t}(σ2)i,j
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Historical comments:

[Kozlov (1985)] claims similar result for V (x) finitely dependent.
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Historical comments:

[Kozlov (1985)] claims similar result for V (x) finitely dependent.

[Komorowski, Olla (2003)]: proof of [Kozlov (1985)] incomplete.
(From MR: ”. . . The paper fills a gap existing in [Kozlov (1985)]
. . . ”)

[Komorowski, Olla (2003)] claims essentially the same result.

[Komorowski, Landim, Olla (2012)]: proof of [Komorowski, Olla
(2003)] incomplete. (p 134: ”. . . The result formulated there
claims a CLT . . . . The proof is however incomplete. . . . ”)

[Komorowski, Landim, Olla (2012)]: Same result – now fully
proved – with restrictive conditions: H−1 (L2-condition on stream-

field) replaced by Lmax{2+ε,d}. More later . . . . Proof very tech-
nical.
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L∞ stream-field: [Komorowski, Olla (2003)]



L∞ stream-field: [Komorowski, Olla (2003)]

The continuous space diffusion problem: L∞ stream-field: [Pa-
panicolaou, Varadhan (1981)], [Osada (1983)]; L2 stream-field:
[Oelschläger (1988)] – very technical proof.
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Helmholtz’s Theorem, stream field: Zd∗ := Zd+ (1/2, . . . ,1/2)

d = 2:
There exists a scalar field (height function): H : Ω×Z2

∗ → R with
stationary increments such that

V = curlH, Vk(x) = H(x+
k + k̃

2
)−H(x+

k − k̃
2

)

d = 3:
There exists a vector field (stream field) Hk : Ω×Z3

∗ → R, k ∈ E,
with stationary increments such that

V = curlH, Vk(ω, x) = . . . explain in plain words

The H−1 condition equiv.: The height function/stream field is
stationary (not just of stationary increments!) and L2.
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Examples and essentially different cases:

◦ H stationary + ergodic + bounded [S.M. Kozlov (1985)]:

h ∈ L∞, H(ω, x) = h(τxω)− h(ω)

◦ H stationary + ergodic + unbounded + curlH bounded:

h ∈ L2 \ L∞, H(ω, x) = h(τxω)− h(ω)

this is the case discussed today. H−1-condition X
◦ H {stationary + ergodic} increments (but not stationary).

+ curlH bounded. No H−1-condition, superdiffusive.

◦◦ randomly oriented Manhattan-lattice

◦◦ six-vertex / square ice (d = 2)

◦◦ dimer tiling (d = 2)
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Some operators on the Hilbert space L2(Ω, π):

L2(Ω, π)-gradient : ∇kf(ω) := f(τkω)− f(ω)

∇∗k = ∇−k

L2(Ω, π)-Laplacian : ∆f(ω) :=
∑
k∈E

(f(τkω)− f(ω))

∆∗ = ∆ ≤ 0

multiplication ops. : Mkf(ω) := vk(ω)f(ω)

M∗k = Mk
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A commutation relation – due to div-freeness of v:∑
k∈E

Mk∇k +
∑
k∈E
∇−kMk = 0

The infinitesimal generator of the environment process:

L = P − I =
1

2
∆ +

∑
k∈E

Mk∇k =: −S +A
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Relaxed Sector Condition [I. Horváth, B. Tóth, B. Vető (2012)]

Theorem: Efficient martingale approximation (a la Kipnis-Varadhan)
holds for

∫ t
0ϕ(ηs)ds if

(1) ” S−1/2AS−1/2 ” is skew self-adjoint

(not just skew symmetric).

(2) ϕ ∈ Ran(S−1/2) H−1-condition

Remarks:

(1) Extends Varadhan et al.’s Graded Sector Condition.

(2) Proof: partly reminiscent of Trotter-Kurtz.
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Two possible definitions of ” S−1/2AS−1/2 ”:

B :=
∑
k∈E

(
(−∆)−1/2∇−k

)
Mk (−∆)−1/2 = ” S−1/2AS−1/2 ”

on C := Dom(−∆)−1/2 = Ran(−∆)1/2

B̃ := (−∆)−1/2 ∑
k∈E

Mk

(
(−∆)−1/2∇k

)
= ” S−1/2AS−1/2 ”

on C̃ := {f ∈ L2 :
∑
k∈E

Mk

(
(−∆)−1/2∇k

)
f ∈ Dom(−∆)−1/2}

Facts (easy): (1) B is skew symmetric on C.

(2) C ⊂ C̃ and B̃
∣∣∣
C

= B.

(3) B̃ = B̃ and B̃ = −B∗.

Wanted: B = B̃, or, equivalently B = −B∗

18



What is missing from skew self-adjointmess of ” S−1/2AS−1/2 ”?

von Neumann’s criterion:B skew symmetric, and

Ran(B ± I) = H

⇔
 B essentially

skew self-adjoint



Needed:∑
k∈E

Mk

(
(−∆)−1/2∇k

)
ψ = (−∆)1/2ψ ⇒ ψ = 0.

Warning: Formal manipulation deceives: ψ /∈ Dom(−∆)−1/2!
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Raise it to the lattice Zd: change of notation: from now on:
∇,∆, . . . = lattice gradient, lattice Laplacian, . . .

Wanted:
NO nontrivial scalar field Ψ : Ω × Zd → R with stationary
increment, and E

(
Ψ
)

= 0 solves the PDE

∆Ψ = V · ∇Ψ. (1)

” Ψ = (−∆)−1/2ψ ”, ∇Ψ(ω, x) = (−∆)−1/2∇ψ(τxω)

Note similarity: No sublinearly growing harmonic function on Zd.
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Let Ψ be solution of (1). Then t 7→ R(t) := Ψ(X(t)) is a
martingale with stationary and ergodic increments.

%2 := t−1E
(
R(t)2

)
= · · · = 2 ‖ψ ‖2 .

and

t−1/2R(t)⇒ N (0, ρ2)

We prove % = 0, and hence ψ = 0.
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Let δ > 0 and K <∞. Then

P
(
|R(t) | > δ

√
t
)
≤ P

(
{|R(t) | > δ

√
t} ∧ {|X(t) | ≤ K

√
t}
)

+ P
(
{{|X(t) | > K

√
t}
)
.

By diffusive upper bound (due to H−1):

lim
K→∞

lim
t→∞

P
(
{|X(t) | > K

√
t}
)

= 0.

Remains to prove:

lim
t→∞

P
(
{|R(t) | > δ

√
t} ∧ {|X(t) | ≤ K

√
t}
)

= 0.
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d = 2 (with bare hands):

lim
N→∞

N−1 max
x∈[−N,N ]2

|Ψ(x) | = 0 in probeb.

Maximum principle: max
x∈Λ
|Ψ(x) | = max

x∈∂Λ
|Ψ(x) |

By ergodic thm . . . : N−1 max
x∈∂[−N,N ]2

|Ψ(x) | P−→ 0,

Thus: N−1 max
x∈[−N,N ]2

|Ψ(x) | P−→ 0,
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d ≥ 2, using heat kernel (upper) bound of [Morris, Peres (2005)]:

P
(
{|R(t) | > δ

√
t} ∧ {|X(t) | ≤ K

√
t}
)
≤ δ−2t−1E

(
|R(t) |2 11{|X(t) |≤K

√
t}
)

[Morris, Peres (2005)]: There exists C = C(d) <∞ such that if
X(t) is nearest neighbour bi-stochastic rw on Zd with total jump
rate 1, then

sup
x∈Zd

P
(
X(t) = x

)
≤ Ct−d/2.

Also: for Ψ(x) with stationary increments

lim
|x |→∞

|x |−2 E
(
|Ψ(x) |2

)
= 0.

From these two:

t−1E
(
|R(t) |2 11{|X(t) |≤K

√
t}
)
≤ Ct−d/2−1 ∑

|x |≤K
√
t

E
(
|Ψ(x) |2

)
→ 0,

as t→∞.
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