BÁLINT TÓTH
 (U of Bristol and TU Budapest)

Relaxed Sector Condition and Random Walk in Divergence Free Random Drift Field
based on joint work with
(older) Illés Horváth, Bálint Vető
(recent) Gady Kozma

Oberwolfach, 28 Oct - 1 Nov 2013

Notation:

$$
\begin{aligned}
\left(\Omega, \pi, \tau_{z}: z \in \mathbb{Z}^{d}\right) & \text { probability space } \\
& \text { with ergodic } \mathbb{Z}^{d} \text {-action } \\
\mathcal{E}=\left\{k \in \mathbb{Z}^{d}:|k|=1\right\} & \text { possible steps of the rw } \\
v_{k}: \Omega \rightarrow[-1,1], \quad k \in \mathcal{E} & \\
\circ \quad v_{k}(\omega)+v_{-k}\left(\tau_{k} \omega\right) \equiv 0 & \text { vector field } \\
\circ \quad \sum_{k \in \mathcal{E}} v_{k}(\omega) \equiv 0 & \text { divergence-free } \\
\circ \int_{\Omega} v_{k}(\omega) d \pi(\omega)=0, & \text { no overall drift }
\end{aligned}
$$

Lift it to a stationary and divergence free vector field over \mathbb{Z}^{d} :

$$
\begin{gathered}
V_{k}(\omega, x):=v_{k}\left(\tau_{x} \omega\right) \\
V_{-k}(x+k)+V_{k}(x) \equiv 0, \quad \sum_{k \in \mathcal{E}_{d}} V_{k}(x) \equiv 0, \quad \mathrm{E}\left(V_{k}(x)\right)=0 .
\end{gathered}
$$

The random walk:
$\mathbf{P}_{\omega}(X(t+d t)=x+k \mid X(t)=x)=\left(1+V_{k}(\omega, x)\right) d t+\mathcal{O}\left((d t)^{2}\right)$.

The diffusion analogue: $V: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ stationary, divergencefree vector field,

$$
d X(t)=d B(t)+V(X(t)) d t
$$

Question: Diffusive asymptotics of $X(T) / \sqrt{T}$ as $T \rightarrow \infty$?

Drift field and its covariances:

$$
\begin{gathered}
\varphi(\omega):=\sum_{k \in \mathcal{E}_{d}} k v_{k}(\omega), \quad \Phi(\omega, x):=\varphi\left(\tau_{x} \omega\right) \\
C_{i, j}(x):=\mathrm{E}\left(\Phi_{i}(x) \Phi_{j}(0)\right), \quad \widehat{C}_{i, j}(p):=\sum_{x \in \mathbb{Z}^{d}} e^{\sqrt{-1} p \cdot x} C_{i, j}(x)
\end{gathered}
$$

H_{-1}-condition - assumed:

$$
(2 \pi)^{-d} \int_{[-\pi, \pi]^{d}} \frac{\sum_{i=1}^{d} \widehat{C}_{i, i}(p)}{\sum_{i=1}^{d}\left(1-\cos \left(p \cdot e_{i}\right)\right)} d p<\infty
$$

Equivalently:

$$
\lim _{T \rightarrow \infty} T^{-1} \mathrm{E}\left(\left(\int_{0}^{T} \Phi(S(t)) d t\right)^{2}\right)<\infty
$$

The environment process: $\eta_{n}:=\tau_{X_{n}} \omega$. Stationary and ergodic pure jump Markov process on (Ω, π). (Stationarity due to divfreeness.)

Martingale decomposition of the walk: $X(t)=Y(t)+Z(t)$,

$$
Y(t):=X(t)-\int_{0}^{t} \varphi(\eta(s)) d s, \quad Z(t):=\int_{0}^{t} \varphi(\eta(s)) d s
$$

$Y(\cdot)$ and $X(\cdot)$ are uncorrelated (easy), and

$$
\mathbf{E}\left(X_{i}(t) X_{j}(t)\right)=\delta_{i, j}(2 d) t+\mathbf{E}\left(Z_{i}(t) Z_{j}(t)\right)
$$

Diffusive bounds:

$$
2 d \leq \varlimsup_{T \rightarrow \infty} T^{-1} \mathbf{E}\left(|X(T)|^{2}\right) \leq 2 d+\sum_{i=1}^{d} \widetilde{C}_{i, i}<\infty
$$

Upper bound from H_{-1}.

Theorem. If the H_{-1}-condition holds then the asymptotic covariance matrix

$$
\left(\sigma^{2}\right)_{i, j}:=\lim _{T \rightarrow \infty} T^{-1} \mathbf{E}\left(X_{i}(T) X_{j}(T)\right)
$$

exists, and is bounded as follows

$$
2 d I_{d} \leq \sigma^{2} \leq 2 d I_{d}+\widetilde{C}
$$

For any $m \in \mathbb{N}, t_{1}, \ldots, t_{m} \in \mathbb{R}_{+}$and $f: \mathbb{R}^{m d} \rightarrow \mathbb{R}$ continuous and bounded
$\int_{\Omega}\left|\mathbf{E}_{\omega}\left(f\left(\ldots, T^{-1 / 2} X\left(T t_{j}\right), \ldots\right)\right)-\mathbf{E}\left(f\left(\ldots, W\left(t_{j}\right), \ldots\right)\right)\right| d \pi(\omega) \rightarrow 0$,
as $T \rightarrow \infty$, where $t \mapsto W(t) \in \mathbb{R}^{d}$ is a Brownian motion with

$$
\mathbf{E}\left(W_{i}(t)\right)=0, \quad \mathbf{E}\left(W_{i}(s) W_{j}(t)\right)=\min \{s, t\}\left(\sigma^{2}\right)_{i, j}
$$

Historical comments:

[Kozlov (1985)] claims similar result for $V(x)$ finitely dependent.

Historical comments:

[Kozlov (1985)] claims similar result for $V(x)$ finitely dependent.
[Komorowski, Olla (2003)]: proof of [Kozlov (1985)] incomplete. (From MR: "... The paper fills a gap existing in [Kozlov (1985)] ")

Historical comments:

[Kozlov (1985)] claims similar result for $V(x)$ finitely dependent.
[Komorowski, Olla (2003)]: proof of [Kozlov (1985)] incomplete. (From MR: ". . . The paper fills a gap existing in [Kozlov (1985)] ")
[Komorowski, Olla (2003)] claims essentially the same result.

Historical comments:

[Kozlov (1985)] claims similar result for $V(x)$ finitely dependent.
[Komorowski, Olla (2003)]: proof of [Kozlov (1985)] incomplete. (From MR: ". . . The paper fills a gap existing in [Kozlov (1985)]
.. " ${ }^{\prime}$)
[Komorowski, Olla (2003)] claims essentially the same result.
[Komorowski, Landim, Olla (2012)]: proof of [Komorowski, Olla (2003)] incomplete. (p 134: "...The result formulated there claims a CLT The proof is however incomplete. ..."')

Historical comments:

[Kozlov (1985)] claims similar result for $V(x)$ finitely dependent.
[Komorowski, Olla (2003)]: proof of [Kozlov (1985)] incomplete. (From MR: ". . The paper fills a gap existing in [Kozlov (1985)] ...")
[Komorowski, Olla (2003)] claims essentially the same result.
[Komorowski, Landim, Olla (2012)]: proof of [Komorowski, Olla (2003)] incomplete. (p 134: "...The result formulated there claims a CLT The proof is however incomplete. ..."')
[Komorowski, Landim, Olla (2012)]: Same result - now fully proved - with restrictive conditions: $H_{-1}\left(\mathcal{L}^{2}\right.$-condition on streamfield) replaced by $\mathcal{L}^{\max \{2+\varepsilon, d\}}$. More later . . . Proof very technical.
\mathcal{L}^{∞} stream-field: [Komorowski, Olla (2003)]
\mathcal{L}^{∞} stream-field: [Komorowski, Olla (2003)]
The continuous space diffusion problem: \mathcal{L}^{∞} stream-field: [Papanicolaou, Varadhan (1981)], [Osada (1983)]; \mathcal{L}^{2} stream-field: [Oelschläger (1988)] - very technical proof.

Helmholtz's Theorem, stream field: $\mathbb{Z}_{*}^{d}:=\mathbb{Z}^{d}+(1 / 2, \ldots, 1 / 2)$
$d=2$:
There exists a scalar field (height function): $H: \Omega \times \mathbb{Z}_{*}^{2} \rightarrow \mathbb{R}$ with stationary increments such that

$$
V=\operatorname{curl} H, \quad V_{k}(x)=H\left(x+\frac{k+\widetilde{k}}{2}\right)-H\left(x+\frac{k-\widetilde{k}}{2}\right)
$$

$\mathrm{d}=3$:
There exists a vector field (stream field) $H_{k}: \Omega \times \mathbb{Z}_{*}^{3} \rightarrow \mathbb{R}, k \in \mathcal{E}$, with stationary increments such that

$$
V=\operatorname{curl} H, \quad V_{k}(\omega, x)=\ldots \text { explain in plain words }
$$

The H_{-1} condition equiv.: The height function/stream field is stationary (not just of stationary increments!) and \mathcal{L}^{2}.

Examples and essentially different cases:

- H stationary + ergodic + bounded [S.M. Kozlov (1985)]:

$$
h \in \mathcal{L}^{\infty}, \quad H(\omega, x)=h\left(\tau_{x} \omega\right)-h(\omega)
$$

- H stationary + ergodic + unbounded + curl H bounded:

$$
h \in \mathcal{L}^{2} \backslash \mathcal{L}^{\infty}, \quad H(\omega, x)=h\left(\tau_{x} \omega\right)-h(\omega)
$$

this is the case discussed today. H_{-1}-condition

- H \{stationary + ergodic $\}$ increments (but not stationary). + curl H bounded. No H_{-1}-condition, superdiffusive.
oo randomly oriented Manhattan-lattice
oo six-vertex / square ice $(d=2)$
$\circ \circ$ dimer tiling $(d=2)$

Some operators on the Hilbert space $\mathcal{L}^{2}(\Omega, \pi)$:

$$
\begin{array}{ll}
\mathcal{L}^{2}(\Omega, \pi) \text {-gradient : } & \nabla_{k} f(\omega):=f\left(\tau_{k} \omega\right)-f(\omega) \\
& \nabla_{k}^{*}=\nabla_{-k} \\
\mathcal{L}^{2}(\Omega, \pi) \text {-Laplacian : } & \Delta f(\omega):=\sum_{k \in \mathcal{E}}\left(f\left(\tau_{k} \omega\right)-f(\omega)\right) \\
& \Delta^{*}=\Delta \leq 0 \\
\text { multiplication ops. : } & M_{k} f(\omega):=v_{k}(\omega) f(\omega) \\
& M_{k}^{*}=M_{k}
\end{array}
$$

A commutation relation - due to div-freeness of v :

$$
\sum_{k \in \mathcal{E}} M_{k} \nabla_{k}+\sum_{k \in \mathcal{E}} \nabla_{-k} M_{k}=0
$$

The infinitesimal generator of the environment process:

$$
L=P-I=\frac{1}{2} \Delta+\sum_{k \in \mathcal{E}} M_{k} \nabla_{k}=:-S+A
$$

Relaxed Sector Condition [I. Horváth, B. Tóth, B. Vető (2012)]

Theorem: Efficient martingale approximation (a la Kipnis-Varadhan) holds for $\int_{0}^{t} \varphi\left(\eta_{s}\right) d s$ if
" $S^{-1 / 2} A S^{-1 / 2}$ " is skew self-adjoint (not just skew symmetric).
(2) $\varphi \in \operatorname{Ran}\left(S^{-1 / 2}\right) \quad H_{-1}$-condition

Remarks:

(1) Extends Varadhan et al.'s Graded Sector Condition.
(2) Proof: partly reminiscent of Trotter-Kurtz.

Two possible definitions of " $S^{-1 / 2} A S^{-1 / 2}$ ":

$$
B:=\sum_{k \in \mathcal{E}}\left((-\Delta)^{-1 / 2} \nabla_{-k}\right) M_{k}(-\Delta)^{-1 / 2}=" S^{-1 / 2} A S^{-1 / 2} "
$$

on

$$
\mathcal{C}:=\operatorname{Dom}(-\Delta)^{-1 / 2}=\operatorname{Ran}(-\Delta)^{1 / 2}
$$

$$
\tilde{B}:=(-\Delta)^{-1 / 2} \sum_{k \in \mathcal{E}} M_{k}\left((-\Delta)^{-1 / 2} \nabla_{k}\right)=" S^{-1 / 2} A S^{-1 / 2} "
$$

on

$$
\tilde{\mathcal{C}}:=\left\{f \in \mathcal{L}^{2}: \sum_{k \in \mathcal{E}} M_{k}\left((-\Delta)^{-1 / 2} \nabla_{k}\right) f \in \operatorname{Dom}(-\Delta)^{-1 / 2}\right\}
$$

Facts (easy): (1) B is skew symmetric on \mathcal{C}.
(2) $\mathcal{C} \subset \tilde{\mathcal{C}}$ and $\left.\widetilde{B}\right|_{\mathcal{C}}=B$.
(3) $\widetilde{B}=\widetilde{B}$ and $\widetilde{B}=-B^{*}$.

Wanted:

$$
\bar{B}=\widetilde{B}, \text { or, equivalently } \bar{B}=-B^{*}
$$

What is missing from skew self-adjointmess of " $S^{-1 / 2} A S^{-1 / 2 " ?}$

von Neumann's criterion:

$$
\left(\begin{array}{cc}
B & \text { skew symmetric, and } \\
& \overline{\operatorname{Ran}(B \pm I)}=\mathcal{H}
\end{array}\right) \Leftrightarrow\binom{B \text { essentially }}{\text { skew self-adjoint }}
$$

Needed:

$$
\sum_{k \in \mathcal{E}} M_{k}\left((-\Delta)^{-1 / 2} \nabla_{k}\right) \psi=(-\Delta)^{1 / 2} \psi \quad \Rightarrow \quad \psi=0
$$

Warning: Formal manipulation deceives: $\psi \notin \operatorname{Dom}(-\Delta)^{-1 / 2}$!

Raise it to the lattice \mathbb{Z}^{d} : change of notation: from now on: $\nabla, \Delta, \ldots=$ lattice gradient, lattice Laplacian, ...

Wanted:

NO nontrivial scalar field $\psi: \Omega \times \mathbb{Z}^{d} \rightarrow \mathbb{R}$ with stationary increment, and $\mathrm{E}(\Psi)=0$ solves the PDE

$$
\begin{equation*}
\Delta \Psi=V \cdot \nabla \Psi \tag{1}
\end{equation*}
$$

$$
" \Psi=(-\Delta)^{-1 / 2} \psi^{"}, \quad \nabla \psi(\omega, x)=(-\Delta)^{-1 / 2} \nabla \psi\left(\tau_{x} \omega\right)
$$

Note similarity: No sublinearly growing harmonic function on \mathbb{Z}^{d}.

Let Ψ be solution of (1). Then $t \mapsto R(t):=\Psi(X(t))$ is a martingale with stationary and ergodic increments.

$$
\varrho^{2}:=t^{-1} \mathrm{E}\left(R(t)^{2}\right)=\cdots=2\|\psi\|^{2} .
$$

and

$$
t^{-1 / 2} R(t) \Rightarrow \mathcal{N}\left(0, \rho^{2}\right)
$$

We prove $\varrho=0$, and hence $\psi=0$.

Let $\delta>0$ and $K<\infty$. Then

$$
\begin{aligned}
\mathbf{P}(|R(t)|>\delta \sqrt{t}) \leq & \mathbf{P}(\{|R(t)|>\delta \sqrt{t}\} \wedge\{|X(t)| \leq K \sqrt{t}\}) \\
& +\mathbf{P}(\{\{|X(t)|>K \sqrt{t}\})
\end{aligned}
$$

By diffusive upper bound (due to H_{-1}):

$$
\lim _{K \rightarrow \infty} \overline{\lim }_{t \rightarrow \infty} \mathbf{P}(\{|X(t)|>K \sqrt{t}\})=0
$$

Remains to prove:

$$
\lim _{t \rightarrow \infty} \mathbf{P}(\{|R(t)|>\delta \sqrt{t}\} \wedge\{|X(t)| \leq K \sqrt{t}\})=0
$$

$\mathrm{d}=2$ (with bare hands):

$$
\lim _{N \rightarrow \infty} N^{-1} \max _{x \in[-N, N]^{2}}|\Psi(x)|=0 \quad \text { in probeb. }
$$

Maximum principle:

$$
\max _{x \in \Lambda}|\Psi(x)|=\max _{x \in \partial \Lambda}|\Psi(x)|
$$

By ergodic thm $\ldots: \quad N^{-1} \max _{x \in \partial[-N, N]^{2}}|\Psi(x)| \xrightarrow{\mathrm{P}} 0$,
Thus:

$$
N^{-1} \max _{x \in[-N, N]^{2}}|\Psi(x)| \xrightarrow{\mathrm{P}} 0,
$$

$\mathrm{d} \geq 2$, using heat kernel (upper) bound of [Morris, Peres (2005)]:
$\mathbf{P}(\{|R(t)|>\delta \sqrt{t}\} \wedge\{|X(t)| \leq K \sqrt{t}\}) \leq \delta^{-2} t^{-1} \mathbf{E}\left(|R(t)|^{2} \mathbf{1}_{\{|X(t)| \leq K \sqrt{t}\}}\right)$ [Morris, Peres (2005)]: There exists $C=C(d)<\infty$ such that if $X(t)$ is nearest neighbour bi-stochastic rw on \mathbb{Z}^{d} with total jump rate 1 , then

$$
\sup _{x \in \mathbb{Z}^{d}} \mathbf{P}(X(t)=x) \leq C t^{-d / 2}
$$

Also: for $\Psi(x)$ with stationary increments

$$
\lim _{|x| \rightarrow \infty}|x|^{-2} \mathbf{E}\left(|\Psi(x)|^{2}\right)=0
$$

From these two:
$t^{-1} \mathbf{E}\left(|R(t)|^{2} \mathbb{1}_{\{|X(t)| \leq K \sqrt{t}\}}\right) \leq C t^{-d / 2-1} \sum_{|x| \leq K \sqrt{t}} \mathbf{E}\left(|\Psi(x)|^{2}\right) \rightarrow 0$,
as $t \rightarrow \infty$.

