
MEASURABILITY IMPLIES CONTINUITY FORSOLUTIONS OF FUNCTIONAL EQUATIONS| EVEN WITH FEW VARIABLES
Antal Járai

Abstract. It is proved that — under certain conditions — measurable solutions f

of the functional equation

f(x) = h(x, y, f(g1(x, y)), . . . , f(gn(x, y))), (x, y) ∈ D ⊂ R
s × R

l

are continuous, even if 1 ≤ l ≤ s. As a tool we introduce new function classes which
— roughly speaking — interpolate between continuous and Lebesgue measurable
functions. Connection between these classes are also investigated.1. Introdu
tionIn 
onne
tion with his �fth problem Hilbert [5℄ suggested that although themethod of redu
tion to di�erential equations makes it possible to solve fun
tionalequations in an elegant way, the inherent di�erentiability assumptions are typi
allyunnatural (see [2℄). Su
h short
omings 
an be over
ome by appealing to regularitytheorems.In this spirit the following general regularity problem of non-
omposite fun
-tional equations with several variables was formulated by the author and in
ludedby A
z�el among the most important open problems on fun
tional equations (seeA
z�el [1℄ and J�arai [7℄):1.1. Problem. Let X and Z be open subsets of Rs and Rm, respe
tively, andlet D be an open subset of X ×X. Let f : X → Z, gi : D → X (i = 1, 2, . . . , n)and h : D × Zn+1 → Z be fun
tions. Suppose that(1)

f(x) = h(x, y, f(y), f(g1(x, y)), . . . , f(gn(x, y))) whenever (x, y) ∈ D;(2) h is analyti
;
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2 A. JÁRAI(3) gi is analyti
 and for ea
h x ∈ X there exists a y for whi
h (x, y) ∈ D and
∂gi
∂y

(x, y) has rank s (i = 1, 2, . . . , n).Is it true that every f whi
h is measurable or has the Baire property is analyti
?The following steps 
an be used:(I) Measurability implies 
ontinuity.(II) Baire property implies 
ontinuity.(III) Continuous solutions are lo
ally Lips
hitz.(IV) Lo
ally Lips
hitz solutions are 
ontinuously di�erentiable.(V) All p times 
ontinuously di�erentiable solutions are p+1 times 
ontinuouslydi�erentiable.(VI) In�nitely many times di�erentiable solutions are analyti
.We note that in order to obtain f ∈ Cp it is usually enough to suppose onlythat the given fun
tions h and gi are in Cp (if 2 ≤ p ≤ ∞) or in Cp+1 (if p = 0or p = 1). The 
omplete answer to the problem above is not known. The authordis
ussed this problem in several papers and solved problems 
orresponding to (I),(II), (IV) and (V) (see [7℄), and under some additional 
ompa
tness 
ondition (III)(see [8℄). Referen
es 
an be found in the survey paper [14℄. There are some partialresults in 
onne
tion with (VI). Moreover, other properties of solutions su
h ashaving lo
ally bounded variation or lo
al H�older 
ontinuity are also dis
ussed (see[12℄ and referen
es in [14℄). It is possible to extend these results to manifolds, andthe C∞-part of the problem is 
ompletely solved on 
ompa
t manifolds [11℄. Themost appli
able results are treated in the booklet [10℄.Regularity theorems of the type \lo
ally integrable solutions are in�nitely manytimes di�erentiable" 
an be obtained using distributions. The essen
e of themethod is to prove that solutions in the distribution sense satisfy a di�erentialequation having only in�nitely many times di�erentiable solutions. This idea wasused by �Swiatak [18℄ to prove general regularity results for the fun
tional equation
n

∑

i=1 hi(x, y)f(gi(x, y)) = h(x, f(gn+1(x)), . . . , f(gm(x))) + h0(x, y),where f is the only unknown fun
tion. Roughly speaking, she applies a partialdi�erential operator in y to the equation in the distribution sense. Of 
ourse, thenonlinear term on the right hand side disappears. If, after substituting a �xed y0,we are fortunate enough to obtain a hypoellipti
 partial di�erential equation, thenby the regularity theory of partial di�erential equations all distribution solutions arein C∞. For the exa
t details of how to over
ome the diÆ
ulties and for appli
ationssee her paper [18℄.
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es about regularity theorems for fun
tional equations 
an befound in the survey paper [14℄. Some other papers 
on
erning the distributionmethod are also referred to there.The above equation of �Swiatak is \almost linear", so, formally, it is mu
h lessgeneral than equation (1). However her theorems 
an be applied even if the rankof ∂gi
∂y

is mu
h smaller than the dimension of the domain of the unknown fun
tion
f . Roughly speaking, the present author's results, quoted above, may be appliedto prove regularity of a solution f having s variables, only if there are at least2s variables in the fun
tional equation. The method of �Swiatak may be appliedeven if there are only s+ 1 variables. This is the minimal number of variables: inHilbert's paper [5℄ there is an example that for \one variable" fun
tional equations(this may mean an s-dimensional ve
tor variable) no regularity theorem holds. Sothe results of �Swiatak suggest that the rank 
ondition in the problem above is toostrong, and the results 
on
erning the above problem 
an be extended for a mu
hmore general 
ase. Generalizing our method we may hope to obtain regularityresults for general nonlinear fun
tional equations; whi
h seems to be impossibleusing the method of �Swiatak based on S
hwartz distributions. We may not hopeto be so lu
ky that with one substitution y = y0 we have gi(x, y0) ≡ x for all i; avery strong 
ondition. The somewhat arti�
ial 
ondition of hypoellipti
ity also hasto disappear. What seems to be most important is to prove \measurability implies
ontinuity" type results, be
ause by the method of �Swiatak we may only start withlo
ally integrable solutions | a 
onsequen
e of the distribution method. To thebest knowledge of the author su
h \measurability implies 
ontinuity" type resultswithout the strong rank 
ondition in (3) or some abstra
t version of it are knownonly for very spe
ial equations su
h as for example the equation

f(x) = m
∑

i=1 µif(x+ yei), x ∈ Rn, y ∈ R(µi ∈ R, ei ∈ Rn are �xed) in the paper of M
Kiernan [15℄. The proof there isbased on algebrai
 properties of the solutions.In this paper we will prove a \measurability implies 
ontinuity" type resultfor the general expli
it nonlinear fun
tional equation (1) without the strong rank
ondition in (3) on the inner fun
tions. In the spirit of the \bootstrap" method
orresponding to steps (I){(VI) we introdu
e a sequen
e of properties, whi
h |roughly speaking | interpolate between measurability and 
ontinuity. This se-quen
e of properties gives a stairway to 
limb up from measurability to 
ontinuity.First we will investigate the basi
 properties of the new notions. Then the reg-ularity theorem will be proved. An example is given how to apply the theoremin nontrivial 
ases. A re�nement of the theorem is also proved. Finally, furtherproperties of the new notions are investigated.



4 A. JÁRAI2. The new notions2.1. Notation. If f is a fun
tion then rng f denotes the range of f . Allnormed spa
es are supposed to be real; the norm is denoted by | |. Only operatornorms will be denoted by ‖ ‖. If f : D → Y is a fun
tion mapping an open subsetof a normed spa
e into a normed spa
e, then f ′ will denote the derivative of f . If
D ⊂ X1 ×X2 × . . .×Xn, we will use the partial sets

Dxi
= {(x1, . . . , xi−1, xi+1, . . . , xn) : (x1, ..., xn) ∈ D

}

.The partial fun
tions fxi
: Dxi

→ Y are de�ned by
fxi

(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xn)whenever (x1, . . . , xn) ∈ D. (Noti
e that xi is held 
onstant in f .) Also Dxi1 ,... ,xirand fxi1 ,... ,xir
are de�ned similarly. Now, if Xi and Y are normed spa
es and

Dx1,... ,xi−1,xi+1,... ,xnis an open subset of Xi we de�ne the partial derivative denoted by
∂if, ∂xi

f or ∂f

∂xias the derivative of fx1,... ,xi−1,xi+1,... ,xn
. Other notions of 
al
ulus are used in theusual way.If x, y are points of a metri
 spa
e and α > 0, we say that x and y are α-near iftheir distan
e is less than α. Similarly, if x and y are points of a uniform spa
e and

α is a relation from the uniformity we say that x and y are α-near if (x, y) ∈ α. Ina metri
 spa
e the 
losed ball having radius r ≥ 0 and 
enter x will be denoted by
Br(x).Con
erning measure theory, we follow the terminology of Federer [4℄. Hen
e ameasure means a 
ountably subadditive extended real valued nonnegative fun
tionde�ned on all subsets of a set; this is 
alled outer measure in other terminology.By a Radon measure we mean a lo
ally �nite measure µ de�ned on a Hausdor�spa
e X , with the following properties:(1) Every open subset V of X is measurable and

µ(V ) = sup{µ(K) : K ⊂ V, K 
ompa
t};(2) If A is any subset of X , then
µ(A) = inf{µ(V ) : A ⊂ V, V open}.
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λn will denote the Lebesgue measure on Rn, and χm will denote the m-dimen-sional Hausdor� measure on a metri
 spa
e.Assuming that µ is a measure on X , A ⊂ X and Y is a topologi
al spa
e, wesay that the fun
tion f is measurable over A if f is de�ned at almost every pointof A, the range of f is 
ontained in Y and A ∩ f−1(W ) is measurable whenever
W is an open subset of Y . If µ is a Radon measure on X and f maps almostall of X into a topologi
al spa
e Y then we say that f is a Lusin fun
tion, if forea
h measurable subset A of X having �nite measure and for ea
h ε > 0 there isa 
ompa
t subset C of A su
h that µ(A\C) < ε and f |C is 
ontinuous. In thissetting Lusin's theorem says that if Y is a se
ond 
ountable topologi
al spa
e and
µ is a Radon measure then every fun
tion whi
h is measurable over X is a Lusinfun
tion. The proof 
an be found in [17℄, 8.2 by Oxtoby.We refer the reader to Federer [4℄ 
on
erning the proof of other measure theo-reti
al results used here.2.2. De�nition. Let X be a set, Y a metri
 spa
e, and f : X → Y be afun
tion. Let U be a Hausdor� spa
e with the Radon (outer) measure µ, and Pa topologi
al spa
e, the \parameter spa
e" with a given point p0 ∈ P . Let ϕ be afun
tion from U × P into X . We will think of ϕ as a surfa
e ϕp : u 7→ ϕ(u, p) forea
h p, depending on the parameter p.Lusin's theorem and generalizations of Steinhaus' theorem [9℄ suggest that thefollowing 
ondition is 
onne
ted with measurability:(L) For ea
h ε > 0, ea
h σ > 0 and for ea
h 
ompa
t subset C ⊂ U there exists aneighborhood P0 of p0 su
h that if p ∈ P0 then

µ {u ∈ C : dist (f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ} ≤ ε.The 
ondition above 
an be reformulated in the following sequential way:(S) For ea
h σ > 0, for ea
h 
ompa
t subset C ⊂ U and for ea
h sequen
e pm → p0
µ {u ∈ C : dist (f(ϕ(u, pm)), f(ϕ(u, p0))) ≥ σ} → 0.In this form the 
ondition strongly resembles 
onvergen
e in measure. Riesz theo-rem suggests the following 
ondition:(R) For ea
h sequen
e pm → p0 there exists a subsequen
e pmi

su
h that for almostall u ∈ U we have
f(ϕ(u, pmi

)) → f(ϕ(u, p0)).



6 A. JÁRAIThis 
ondition resembles the following 
ondition treated by Trautner in a spe
ial
ase for 
hara
teristi
 fun
tions of measurable sets (see remark below):(T) For ea
h sequen
e pm → p0 and for almost all u ∈ U there exists a subsequen
e
pmi

su
h that
f(ϕ(u, pmi

)) → f(ϕ(u, p0)).To investigate the 
onne
tion between these 
onditions we need some kind of mea-surability 
ondition:(M) u 7→ f(ϕ(u, p0)) is µ measurable.It is 
lear that 
onditions (L) and (S) have meaning also if the values of f are ina uniform spa
e Y ; simply σ has to be repla
ed by a re
exive symmetri
 relationfrom the uniformity of Y and we have to 
onsider the set of those points u forwhi
h the two values of f are not σ-near. Condition (R) has the advantage thatit has meaning even if Y is only a topologi
al spa
e. The same is true for (T) and(M). It seems that (T) has no advantage over (R).We will often 
he
k 
ondition (L) [(S), (R), (T), (M)℄ lo
ally. If for ea
h u0 ∈ Uthere is a neighborhood U0 of u0 and P0 of p0 su
h that ϕ|U0×P0 satis�es (L) [(S)℄,then ϕ also satis�es (L) [(S)℄. To see this, we will 
hoose a �nite 
overing of C byopen sets having �nite measure and we will apply (L) [(S)℄ to a suÆ
iently goodinner approximation of these open sets by 
ompa
t sets: Let us 
hoose for ea
h
x ∈ C a neighborhood Ux of x and a neighborhood Px of p0 su
h that ϕ|Ux × Pxsatis�es (L). Shrinking Ux if ne
essary we may suppose that Ux is open and has�nite µ measure. Let Ux1 , . . . , Uxr

be a �nite sub
overing of C, let ε, σ > 0 andlet us 
hoose 
ompa
t sets Ci ⊂ Uxi
for whi
h µ(Uxi

\Ci) < ε/(2r). Choosing aneighborhood P0 of p0 for whi
h P0 ⊂ ∩r
i=1Pxi

su
h that the sets
Ri(p) = {u ∈ Ci : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ}have µ measure less than ε/(2r) for ea
h p ∈ P0, we obtain that
µ{u ∈ Ci : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ} ≤ ε,be
ause this set is 
overed by ∪r

i=1Ri(p) ∪ ∪r
i=1(Uxi

\Ci). Similarly, if pm → p and(S) is satis�ed by ϕ|Ux × Px, then for given ε, σ > 0 for i = 1, . . . , r we obtain an
Mi su
h that for m ≥ Mi we have pm ∈ Pxi

and Ri(pm) has µ measure less than
ε/(2r) for ea
h m ≥Mi. Hen
e for m ≥M = max1≤i≤r Mi we have

µ{u ∈ Ci : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ} ≤ ε.Similarly, if for ea
h u0 ∈ U there is a neighborhood U0 of u0 and P0 of p0 su
hthat ϕ|U0 × P0 satis�es (R) [(T), (M)℄, then supposing that U is a Lindel�of spa
e



MEASURABILITY IMPLIES CONTINUITY . . . 7we have that ϕ satis�es (R) [(T), (M)℄. For (R) this follows using the diagonalpro
ess. Countably many of the sets U0 
over U . Let us enumerate these opensets, and let us 
onsider repeatedly sub-sub-. . . -sequen
es of the sequen
e pm. Thediagonal pro
ess gives a subsequen
e, for whi
h the 
onvergen
e is satis�ed almosteverywhere. In the 
ase of (T) and (M) the statement is trivial.Let X be an open subset of Rn and 0 ≤ k ≤ n. The 
lass of all fun
tions ffor whi
h the 
ondition (L) [(S), (R), (T), (M)℄ is satis�ed whenever U is an opensubset of Rk, µ = λk, P is an open subset of some Eu
lidean spa
e, p0 ∈ P and
ϕ : U ×P → X is a C1-fun
tion for whi
h ϕp is an immersion of U into X for ea
h
p ∈ P , will be denoted by Lk(X,Y ) or shortly by Lk [Sk, Rk, Tk, Mk℄. (Re
all,that a C1 mapping of U into X is an immersion if and only if its derivative isan inje
tive linear mapping for ea
h point of U . For k = 0, take R0 = {0} and
λ0({0}) = 1, i.e. λ0 is the 
ounting measure on R0. A fun
tion ϕ : {0} × P → Xis a C1 fun
tion if and only if p 7→ ϕ(0, p) is a C1 fun
tion. Any fun
tion mappinga subset of R0, i.e. ∅ or {0} into X is 
onsidered an immersion.) In the �rst two
ases we suppose that the values of f are in a uniform spa
e, in the other threethat they are in a topologi
al spa
e. It is 
lear that f ∈ Mk if and only if the
ondition(M′) f ◦ ψ is µ measurableis satis�ed for µ = λk whenever ψ is an immersion of some open subset U of Rkinto X .2.3. Remarks. (1) For our purposes, the fun
tion 
lass Rk(X,Y ) will be themost 
onvenient one, be
ause we want to avoid supposing that Y is a uniform spa
e.It is even more important, that using Rk(X,Y ) we 
an avoid supposing uniform
ontinuity for the given fun
tions in our regularity theorems and it is enough tosuppose 
ontinuity. The 
lasses Mk and Lk will also play a role. Our main resultswill show that, roughly speaking, solutions f of a fun
tional equation from Rk+1are also in Rk. We will prove that R0 is the 
lass of 
ontinuous fun
tions, andthat all measurable fun
tions f : X → Y from the open subset X ⊂ Rn intosome se
ond 
ountable spa
e Y are in Rn. Hen
e, step-by-step, measurability ofsolutions implies their 
ontinuity.(2) In his paper [19℄ Trautner proved that for a Lebesgue measurable subset Mof [a, b℄ ⊂ R with positive Lebesgue measure and for a sequen
e pm ∈ [a, b℄ thereexists an u ∈ R and a subsequen
e pms

su
h that pms
+ u ∈M . This follows fromthe fa
t that a Lebesgue measurable fun
tion is in T1. Indeed, let us repla
e pm witha subsequen
e 
onverging to a point p0 ∈ [a, b℄. Let f = ξM be the 
hara
teristi
fun
tion of M , and let ϕ : R × R → R be ϕ(u, p) = u− p. From ξM ∈ T1 it followsthat for almost all u ∈M + p0 there exists a subsequen
e pms

su
h that
ξM (u− pms

) → ξM (u− p0) = 1.



8 A. JÁRAIThis means that u+ pms
∈M for large enough s.Trautner used his theorem | among others | to give a new proof of the well-known result of Steinhaus, that measurable additive mappings of R into itself are
ontinuous.Trautner's method was generalized to lo
ally 
ompa
t groups and to an evenmore general setting by Grosse-Erdmann [3℄. His results 
an be applied to provethat for the fun
tional equation

f(g(x, y)) = h(y, f1(x))with unknown fun
tions f , f1 | under suitable 
onditions | measurability of
f1 implies the 
ontinuity of f . He applies his abstra
t results for the 
ase where(x, y) ∈ D, some open subset of Rn × Rn, g : D → Rn and det ∂g

∂x and det ∂g
∂y arenonzero. His method has the advantage that one only needs the 
ontinuity of hwith respe
t to the se
ond variable. Note that substituting t = g(x, y) we havelo
ally

f(t) = h(y, f1(g1(t, y)));
ompare this with Problem 1.1. Condition (T) does not seem to be strong enoughfor us to obtain \measurability implies 
ontinuity" type results for the more generalequation in Problem 1.1.(3) The 
lass Lk [Sk, Rk, Tk, Mk℄ remains the same if we suppose only that (L)[(S), (R), (T), (M)℄ is satis�ed whenever U is an open subset of Rk, µ = λk, P is anopen subset of some Eu
lidean spa
e, p0 ∈ P and ϕ : U × P → X is a C1-fun
tionfor whi
h ϕp is an embedding (i.e., an immersion whi
h is a homeomorphism of itsdomain onto its range) of U into X for ea
h p ∈ P . This easily follows from thelo
ality prin
iple mentioned in the de�nition.Similarly, supposing only that ϕp0 is an immersion, the resulting 
lass Lk [Sk,
Rk, Tk, Mk℄ remains the same.(4) In 
ondition (L) [(S)℄ the words \for ea
h 
ompa
t subset C of U" 
an beequivalently repla
ed by \for ea
h σ-�nite measurable subset C of U". This easilyfollows using inner approximation by 
ompa
t sets.We start with the investigation of the simplest 
onne
tions between the 
lasses
Lk, Sk, Rk, Tk and Mk.2.4. Theorem. With the notation of the de�nition above, 
ondition (L) implies
ondition (S). If the point p0 has a 
ountable base of neighborhoods then (L) followsfrom (S). If the uniformity of Y has a 
ountable base and µ is σ-�nite, then (S)implies (R). (R) always implies (T). If Y is a uniform spa
e with a 
ountablebase of topology, (R) is satis�ed, and (M) is satis�ed for all p0 ∈ P , then (S) issatis�ed, too. Hen
e, if Y is a separable metri
 spa
e, then Lk = Sk ⊂ Rk ⊂ Tkand Lk ∩Mk = Sk ∩Mk = Rk ∩Mk.



MEASURABILITY IMPLIES CONTINUITY . . . 9Proof. It is easy to see that (L) implies (S) and if the point p0 has a 
ountablebase of neighborhoods then (L) follows from (S). Condition (R) implies (T) trivially.The proof that if Y is a metri
 spa
e and µ is σ-�nite then (S) implies (R),mimi
s the proof of the 
lassi
al Riesz' theorem: Let C be an arbitrary 
ompa
tsubset of U and let us 
hoose a sequen
e σi ↓ 0. We may 
hoose a subsequen
e pmisu
h that the set
{u ∈ C : dist (f(ϕ(u, pmi

)), f(ϕ(u, p0))) ≥ σi}has µ (outer) measure less than 2−i. Let Ai denote a µ-hull of this set. Now if uis not in the zero set ∩∞
j=1 ∪∞

i=j Ai, thendist (f(ϕ(u, pmi
)), f(ϕ(u, p0))) < σifor all i ≥ j for some j. Let us 
hoose a 
ountable almost 
over of U by 
ompa
t sets

C1, C2, . . . . Let us 
onsider repeatedly sub-sub-. . . -sequen
es of the sequen
e pm.The diagonal pro
ess gives a subsequen
e, for whi
h the 
onvergen
e is satis�edalmost everywhere. The same proof works in the 
ase of a uniform spa
e having a
ountable base of uniformity.Now suppose that Y is a separable metri
 spa
e. If f satis�es (M) for every
p0 ∈ P , then we obtain that u 7→ ϕ(u, p) is µ measurable for all p ∈ P . Usingthat Y is separable, we obtain that for any pair p, p′ ∈ P the mapping u 7→(f(ϕ(u, p)), f(ϕ(u, p′))) of U into Y × Y is measurable too. This implies that forea
h pair p, p′ ∈ P the mapping

u 7→ dist (f(ϕ(u, p)), f(ϕ(u, p′)))is measurable. Now suppose that (S) is not satis�ed by ϕ with p0 ∈ P . This meansthat there is a sequen
e pm → p0, σ > 0, ε > 0, and a 
ompa
t set C ⊂ U su
hthat the measure of the measurable sets
{u ∈ C : dist (f(ϕ(u, pm)), f(ϕ(u, p0))) ≥ σ}is greater than ε for in�nitely many m. Let us 
hoose a subsequen
e pmi

for whi
hea
h of the measurable sets
Ai = {u ∈ C : dist (f(ϕ(u, pmi

)), f(ϕ(u, p0))) ≥ σ}has measure ≥ ε. Then for an arbitrary subsequen
e pmij
for any u from themeasurable set ∩∞

k=1 ∪∞
j=k Aij

having measure ≥ ε we have
f(ϕ(u, pmij

)) 6→ f(ϕ(u, p0)).This 
ontradi
ts to that f satis�es (R). Hen
e we have
µ {u ∈ C : dist (f(ϕ(u, pm)), f(ϕ(u, p0))) ≥ σ} → 0.The same proof works for se
ond 
ountable uniform spa
es.



10 A. JÁRAI2.5. Theorem. Let Y be a topologi
al spa
e and X an open subset of Rn. Then
M0(X,Y ) = Y X and R0(X,Y ) = T0(X,Y ) = C(X,Y ), the 
lass of 
ontinuousfun
tions from X into Y . If Y is a uniform spa
e then also L0(X,Y ) = S0(X,Y ) =
C(X,Y ).Proof. We will use the notation of the de�nition. It is trivial that M0 
ontainsall fun
tions from X into Y .Now let us prove that any 
ontinuous fun
tion f : X → Y is in R0, hen
e alsoin T0. There are only two 
ases, U = ∅ or U = {0}. In the �rst 
ase, there isnothing to prove; in the se
ond 
ase we may 
hoose pmk

= pk.The 
onverse is proved indire
tly: if f ∈ T0, but not 
ontinuous, then thereexists an x0 ∈ X , a sequen
e xn → x0, and a neighborhood W of f(x0) su
h that
f(xn) /∈ W . Let U = {0}, P = X , p0 = x0, ϕ(0, p) = p for p ∈ P . Choosing asubsequen
e of the sequen
e pm = xm for whi
h

f(ϕ(0, pmk
)) = f(xmk

) → f(x0) = f(ϕ(0, p0)),we obtain a 
ontradi
tion.If Y is a uniform spa
e, f is 
ontinuous, and C = {0} then every p0 ∈ P hasa neighborhood P0 su
h that if p ∈ P0, then f(ϕ(0, p)) and f(ϕ(0, p0)) are 
loseenough, when
e f ∈ L0 ⊂ S0.Supposing f is dis
ontinuous at an x0 ∈ X , and 
hoosing U = C = {0}, P = X ,
p0 = x0, ϕ(0, p) = p for p ∈ P , we obtain a sequen
e pm → p0 su
h that f(ϕ(0, pm))and f(ϕ(0, p0)) are not 
lose, whi
h shows that f is not in S0.We will prove that Lebesgue measurable fun
tions over an open subset X of Rnare in Rn. To make the 
onne
tion with earlier results in [7℄ 
lear, we do the mainpart of the proof in the following abstra
t setting:2.6. Theorem. Let P be a topologi
al spa
e, U and X Hausdor� spa
es with�nite Radon (outer) measures µ and ν, respe
tively. Suppose that ϕ : U × P → Xis a 
ontinuous fun
tion with the following property:(1) For ea
h ε > 0 there exists a δ > 0 su
h that if p ∈ P , B ⊂ U , µ(B) ≥ ε then

ν(ϕp(B)) ≥ δ.Suppose, moreover, that p0 ∈ P and f is a Lusin fun
tion on X with values in atopologi
al spa
e. Then for U , P , p0, ϕ and f the 
onditions (M), (R) and (T) aresatis�ed. If, moreover, Y is a uniform spa
e then (L) and (S) are also satis�ed.Proof. Let us �rst prove that (M) is satis�ed. Let us 
hoose a sequen
e of
ompa
t sets Ki, i = 1, 2, . . . in X su
h that f |Ki is 
ontinuous and ν(X\Ki) → 0.Let V be any open subset of Y . Sin
e (f |Ki)−1(V ) is relatively open in Ki, it is aBorel subset of X . With the notation K = ∪∞
i=1Ki we see that B = (f |K)−1(V )



MEASURABILITY IMPLIES CONTINUITY . . . 11is a Borel subset of X . The set E = X\K has ν measure zero, hen
e the set
N = (f |E)−1(V ) is also a zero set. Now let us observe that(f ◦ ϕp)−1(V ) = ϕ−1

p (B) ∪ ϕ−1
p (N).On the left hand side, ϕ−1

p (B) is a Borel set and by 
ondition (1), the set ϕ−1
p (N)has measure zero. This means that (M) is satis�ed.Now we suppose that Y is a uniform spa
e and we will show that (L) is satis�ed.Let C be a 
ompa
t subset of U , and let K = ϕp0 (C). Let ε > 0 and let us 
hoosea δ > 0 
orresponding to ε/2 by (1). Let us 
hoose an open subset V 
ontaining

K su
h that ν(V \K) < δ/2. Sin
e f is a Lusin fun
tion, there exists a 
ompa
tsubset K0 of K su
h that ν(K\K0) < δ/2 and f |K0 is 
ontinuous. Let us 
hoose auniformity on the 
ompa
t Hausdor� spa
eK0 
ompatible with the topology. Sin
e
f |K0 is also uniformly 
ontinuous, for ea
h re
exive symmetri
 relation α from theuniformity of Y there exists a re
exive symmetri
 relation β from the uniformityof K0 su
h that f(x) and f(x′) are α-near in Y whenever x and x′ are β-near in
K0. Let us 
hoose a re
exive symmetri
 relation γ from the uniformity of K0 forwhi
h γ ◦ γ ⊂ β. For ea
h u ∈ C there exists an open neighborhood Uu ⊂ U of uand an open neighborhood Pu of p0 su
h that Uu ×Pu is mapped by ϕ into V andea
h point of ϕ(Uu × Pu) whi
h is in K0, is γ-near to ϕ(u, p0). Choosing a �nitesub
over Uu1 , Uu2 , . . . , Uun

of C, for P0 = ∩n
i=1Pui

we obtain that for ea
h p ∈ P0the mapping ϕp maps C into V and for any u ∈ C, if ϕ(u, p) is in K0 then it is
β-near to ϕ(u, p0). Let p ∈ P0 and let us 
onsider the set C ∩ϕ−1

p (K0)∩ϕ−1
p0 (K0).This set is mapped into K0 by ϕp and by ϕp0 too, and for any u from it, ϕ(u, p)and ϕ(u, p0) are β-near in K0, hen
e f(ϕ(u, p)) and f(ϕ(u, p0)) are α-near in Y .If we prove that the 
omplement of this set has measure less than ε, then we aredone. Sin
e the 
omplement of this set with respe
t to C is 
overed by the unionof C\ϕ−1

p (K0) and C\ϕ−1
p0 (K0), it is enough to estimate the measure of these sets.The �rst set is mapped by ϕp into V \K0, hen
e it 
annot have measure greaterthan or equal to ε/2. The se
ond set is mapped by ϕp0 also into V \K0, hen
e,similarly, it has measure less than ε/2.In the remaining part of the proof we use the observation that whenever K ′is a 
ompa
t subset of X and C′ = ϕ−1

p0 (K ′) has �nite µ measure, then for ea
h
ε > 0 there exists a neighborhood P0 of p0 su
h that for ea
h p ∈ P0 we have
µ(C′\ϕ−1

p (K ′)) < ε. To prove this, let us 
hoose a 
ompa
t subset C′′ of the Borelset C′ for whi
h µ(C′\C′′) < ε/2 and let K ′′ = ϕp0(C′′). Let us 
hoose an open set
V 
ontaining K ′′ su
h that ν(V \K ′′) < δ, where δ 
orresponds to ε/2 by (1). Forea
h u ∈ C′′ there exist open neighborhoods Uu and Pu of u and p0, respe
tively,su
h that ϕ(Uu × Pu) ⊂ V . Let us 
hoose a �nite sub
overing Uu1 , . . . , Uun

of the
overing Uu, u ∈ C′′, and let P0 = ∩n
i=1Pui

. Then for p ∈ P0 the set C′′\ϕ−1
p (K ′′) ismapped by ϕp into V \K ′′, hen
e has µ measure less than ε/2. Now sin
e K ′′ ⊂ K ′and C′\ϕ−1

p (K ′) ⊂ (C′\C′′) ∪ (C′′\ϕ−1
p (K ′′)) we obtain that µ(C′\ϕ−1

p (K ′)) < ε.



12 A. JÁRAINow let us suppose only that Y is a topologi
al spa
e. We will prove that(R) is satis�ed, whi
h implies (T). Let again C be a 
ompa
t subset of U and
K = ϕp0(C), moreover let pm → p0 be a sequen
e in P . Let εi = 2−i and let δi > 0be the 
orresponding sequen
e of numbers δ by (1). Let us 
hoose a 
ompa
t subset
K1 ⊂ K su
h that f |K1 is 
ontinuous and ν(K\K1) < δ1 and let C1 = ϕ−1

p0 (K1).Then µ(C\C1) < ε1. By indu
tion, using the statement of the previous paragraph,we may �nd a sequen
e of indi
es m1 < m2 < . . . su
h that µ(C1\ϕ−1
pj
(K1)) < εi+1whenever j ≥ mi. This implies that µ(C1\ ∩∞

r=1 ϕ−1
pmr

(K1)) < ε1. Now let K2 bea 
ompa
t subset of K su
h that f |K2 is also 
ontinuous and ν(K\K2) < δ2. Let
C2 = ϕ−1

p0 (K2), then µ(C\C2) < ε2. Let us apply indu
tion again, but using thenew subsequen
e instead of the original sequen
e. Then we obtain a subsequen
esu
h that µ(C2\ ∩∞
s=1 ϕ−1

pmrs
(K2)) < ε2. Continuing this pro
ess and taking thediagonal sequen
e, we arrive at a subsequen
e pmt

of pm su
h that the measure ofthe set
Ei = (C\Ci) ∪ (

∪∞
t=i(Ci\ϕ−1

pmt
(Ki)))is less than 2εi. Now let E = ∩∞

k=1 ∪∞
i=k Ei. Clearly, µ(E) = 0. If u ∈ C\E thenthere exists a k su
h that u /∈ Ei for i ≥ k. This means on one hand that u /∈ C\Cifor i ≥ k, that is, u ∈ Ci for i ≥ k. This implies that ϕp0(u) ∈ Ki for i ≥ k, inparti
ular ϕp0 (u) ∈ Kk. On the other hand, if i ≥ k then for ea
h t ≥ i we have

u /∈ Ci\ϕ−1
pmt

(Ki). We will apply this only for i = k to obtain that ϕpmt
(u) ∈ Kkwhenever t ≥ k. Sin
e f |Kk is 
ontinuous, we obtain that f(ϕpmt

(u)) → f(ϕp0(u)).2.7. Theorem. Let X be an open subset of Rn. If Y is a topologi
al spa
ehaving 
ountable base then every measurable fun
tion f : X → Y is 
ontained in
Rn(X,Y ), Tn(X,Y ) and Mn(X,Y ). If moreover Y is a uniform spa
e then f is
ontained in Ln(X,Y ) and Sn(X,Y ).Proof. By Lusin's theorem, f is a Lusin fun
tion. Let U ⊂ Rn be open, P anopen subset of some Eu
lidean spa
e, p0 ∈ P , ϕ : U×P → X a C1 fun
tion for whi
hea
h ϕp, p ∈ P is an embedding. We will apply the previous theorem for ϕ lo
ally.Let u0 ∈ U and let us 
hoose a c > 0 su
h that | det(ϕ′

p0(u0))| > c. Choosing aneighborhood U0 of u0 having 
ompa
t 
losure and P0 of p0 having 
ompa
t 
losuresu
h that ϕp is one-to-one on U0 for ea
h p ∈ P0 and | det(ϕ′
p(u))| > c whenever

u ∈ U0 and p ∈ P0, by the transformation formulae of integrals we have for anymeasurable subset B ⊂ U0 that
λn(ϕp(B)) = ∫

B

∣

∣det(ϕ′
p(u))∣∣ dλn(u) ≥ cλn(B).The inequality λn(ϕp(B)) ≥ cλn(B) is also satis�ed for nonmeasurable sets B, be-
ause otherwise we 
an �nd a Borel hull A ⊃ ϕp(B) for whi
h λn(A) < cλn(ϕ−1

p (A))
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ontradi
tion, be
ause ϕ−1
p (A) is a Borel set, hen
e mea-surable.Now, the previous theorem 
an be applied for ϕ|U0 × P0. As it was mentionedat the de�nition of (L), et
., this is enough to prove that (L) [(S), (R), (T), (M)℄is satis�ed for U , P , p0, ϕ, λn.3. The main results3.1. Theorem. Let Z, Zi (i = 1, 2, . . . , n) be topologi
al spa
es. Let Xi(i = 1, 2, . . . , n) and X be open subsets of Eu
lidean spa
es and let Y ⊂ Rl beopen. Let D be an open subset of X × Y . Consider the fun
tions f : X → Z,

fi : Xi → Zi, h : D×Z1× . . .×Zn → Z, gi : D → Xi (i = 1, 2, . . . , n). Let U ⊂ Rkbe open, P be an open subset of some Eu
lidean spa
e, p0 ∈ P , ϕ : U × P → X a
C1-fun
tion, for whi
h ϕp is an immersion of U into X for all p ∈ P , and supposethat the following 
onditions hold:(1) For ea
h (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for ea
h �xed y ∈ Y , h is 
ontinuous in the other variables;(3) the fun
tion fi is in Rk+l on Xi (i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for ea
h u0 ∈ U there exists a y0 su
h that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p0), y)at (u0, y0) is k + l for ea
h 1 ≤ i ≤ n.Then 
ondition (R) is satis�ed for f , U , P , p0, ϕ, λk.Proof. Suppose that pm → p0. Let us 
hoose an open neighborhood U0 of
u0, P0 of p0, and Y0 of y0 su
h that (ϕ(u, p), y) is in D whenever u ∈ U0, p ∈ P0,
y ∈ Y0, moreover, the rank of the derivative of the mapping (u, y) 7→ gi(ϕ(u, p), y)is equal to k + l for all u ∈ U0, p ∈ P0, y ∈ Y0 and for 1 ≤ i ≤ n. This is possible,be
ause D is open, gi and ϕ are C1-fun
tions, the rank is lower semi
ontinuous and
U × Y has dimension k + l, hen
e the rank 
annot in
rease above k + l.Sin
e the fun
tion f1 is in Rk+l, there is a subsequen
e pmr

of pm su
h thatex
ept for pairs (u, y) ∈ U0 × Y0 from a set E1 having λk+l measure zero we have
f1(g1(ϕ(u, pmr

), y)) → f1(g1(ϕ(u, p0), y)).Now using for the subsequen
e pmr
that f2 is in Rk+l we obtain a subsequen
e

pmrs
for whi
h, ex
ept for pairs (u, y) ∈ U0×Y0 from a set E2 having λk+l measurezero we have

f2(g2(ϕ(u, pmrs
), y)) → f2(g2(ϕ(u, p0), y)),
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. Finally, we obtain a subsequen
e pmt
of pm su
h that ex
ept for a set E =

∪n
i=1Ei of pairs (u, y) ∈ U0 × Y0 having λk+l measure zero we have

fi(gi(ϕ(u, pmt
), y)) → fi(gi(ϕ(u, p0), y))for i = 1, 2, . . . , n. By Fubini's theorem, for almost all y ∈ Y0 we have for almostall u ∈ U0 that (u, y) /∈ E. Fixing any su
h y, from the fun
tional equation andfrom the 
ontinuity of h for �xed y we obtain that

f(ϕ(u, pmt
)) → f(ϕ(u, p0)),whi
h is 
ondition (R) with the fun
tion ϕ|U0 × P0.Hen
e we have proved that for ea
h u0 ∈ U there is an open neighborhood U0of u0 su
h that for a subsequen
e pmt
of pm and for almost all u ∈ U0 we have

f(ϕ(u, pmt
)) → f(ϕ(u, p0)).Sin
e U is a Lindel�of spa
e, by the remark in the de�nition we obtain that (R) issatis�ed.3.2. Example. Let us 
onsider the following example:

n
∑

i=0 ai(x, y)f(x + gi(y)) = 0whenever x ∈ Rm, y ∈ R. Suppose that the fun
tions ai : Rm × R → R \ {0}are 
ontinuous and the fun
tions gi : R → Rm are in C1. Introdu
ing the variable
xj = x+ gj(y) instead of x, we obtain(1) f(xj) = −

∑

i6=j

ai(xj − gj(y), y)
aj(xj − gj(y), y)f(xj − gj(y) + gi(y)).To see that 
ondition (5) is satis�ed we have to 
he
k the rank of the matrix













∂ϕ(1)p0
∂u1 (u) . . .

∂ϕ(1)p0
∂uk

(u) d g
(1)
i
d y

(y)− d g
(1)
j

d y
(y)... ... ...

∂ϕ(m)
p0

∂u1 (u) . . .
∂ϕ(m)

p0
∂uk

(u) d g
(m)
i
d y

(y)− d g
(m)
j

d y
(y) ,where ϕ(r)p and g(r)i are the 
oordinate fun
tions of ϕp and gi, respe
tively. If thisis k + 1, then we may apply our theorem with l = 1. This means, geometri
ally,that the ve
tor g′i(y) − g′j(y) is not 
ontained in the range of the linear operator
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ϕ′
p0(u) (whi
h is known to be k-dimensional). This range 
an be any k-dimensionallinear subspa
e in Rm. It may happen that for ea
h k-dimensional linear subspa
e,there exists a y ∈ R su
h that none of the ve
tors g′i(y)− g′j(y), i 6= j is 
ontainedin the linear subspa
e. Then our theorem 
an be applied dire
tly and proves that
f ∈ Rk+1 implies f ∈ Rk. If this is the 
ase for k = m− 1,m− 2, . . . , 0 then weobtain that every measurable solution is 
ontinuous. But there are situations whenthis is not the 
ase. If, for example, the derivative of the fun
tions gi is 
onstant,i. e. if gi(y) = bi + yci, then for any �xed j, equation (1) 
annot be applied toget f ∈ Rk from f ∈ Rk+1, be
ause for some fun
tions ϕ the range of ϕ′

p0(u) will
ontain some of the ve
tors g′i(y) − g′j(y) = ci − cj . But we have the possibilityto use any of the equations (1). Using that to be in Rk is a lo
al property, it isenough to prove that for any k-dimensional linear subspa
e of Rm there exists a
j su
h that none of the ve
tors ci − cj , i 6= j is 
ontained in the given subspa
e.For example this is the situation if n ≥ m and the ve
tors c0, . . . , cn are in generalposition. If this 
ondition is not satis�ed, then it is still possible that our theorem
an be applied. A similar (but somewhat simpler) situation was studied in thepaper [13℄, in the proof of Theorem 2.3.3.3. Remark. Although, as the example above shows, Theorem 3.1 
an beapplied in several 
ases, it is not satisfying be
ause 
ondition (5) is too strong.If we want to apply theorem 3.1 to prove that f ∈ Rk then ϕ 
an be arbitrary.Hen
e 
ondition (5) impli
itly means that the rank of ∂gi

∂x
has to be large, evenif ∂gi

∂y
has a large rank. This in pra
ti
e means that the gi have to depend onall 
oordinates of x, whi
h is not 
omfortable. We want to relax this 
ondition.Instead of supposing that (u, y) 7→ gi(ϕ(u, p0), y)has maximal possible rank k + l at (u0, y0) we will only suppose that it has a
onstant rank ki (depending on i) on a neighborhood of (u0, p0, y0). But in this
ase we have to work with fun
tions from Rk ∩ Mk, and, roughly speaking, ourtheorem says that solutions in Rk+1 ∩Mk+1 are also in Rk ∩Mk.First we deal only with the measurability 
ondition (M). We will use the fol-lowing lemma to prove that 
ondition (M) for the unknown fun
tions fi implies
ondition (M) for f .3.4. Lemma. Let X be an open subset of Rn, Y a topologi
al spa
e, 0 ≤ k ≤ nand f ∈ Mk(X,Y ). If ψ is a C1 mapping of the open subset U of Rm into X forwhi
h the rank of the derivative is k everywhere, then f ◦ ψ is λm measurable.Proof. The lemma dire
tly follows from the rank theorem. Indeed, the ranktheorem implies, that for ea
h u0 ∈ U there exists an open neighborhood U0 su
h



16 A. JÁRAIthat ψ|U0 
an be written as α ◦ p ◦ β. Here, with the notation I = (−1, 1), themapping β is a di�eomorphism of U0 onto Im su
h that β(u0) = 0, the proje
tion
p of Im into In has the form p(x1, x2, . . . , xm) = (x1, x2, . . . , xk, 0, . . . , 0), and
α is a di�eomorphism of In onto an open set X0 mapping 0 into x0 = ψ(u0).Identifying the set Ik × {0} ⊂ In with Ik we have that α|Ik is an immersion,hen
e (

f ◦ (α|Ik))−1 (V ) is λk measurable for ea
h open subset V of Y . Sin
e
p−1(A) is λm measurable for ea
h λk measurable subset A of Ik, and β−1(B) is
λm measurable for ea
h λm measurable subset B of Im, we obtain that f ◦ (ψ|U0)is λm measurable. Now using that U is a Lindel�of spa
e, we get the general 
ase.3.5. Theorem. Let Z be a topologi
al spa
e and let Zi (i = 1, 2, . . . , n)be separable metri
 spa
es. Let Xi (i = 1, 2, . . . , n) and X be open subsets ofEu
lidean spa
es and let Y ⊂ Rl be open. Let D be an open subset of X × Y .Consider the fun
tions f : X → Z, fi : Xi → Zi, h : D × Z1 × . . . × Zn → Z,
gi : D → Xi (i = 1, 2, . . . , n). Let U ⊂ Rk be open, ψ : U → X be a C1 immersionof U into X, and suppose that the following 
onditions hold:(1) For ea
h (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for ea
h �xed y ∈ Y , h is 
ontinuous in the other variables;(3) the fun
tion fi is in Mki
on Xi (i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for ea
h u0 ∈ U there exists a y0 su
h that (ψ(u0), y0) ∈ D and the rank of thederivative of (u, y) 7→ gi(ψ(u), y)is ki on a neighborhood of (u0, y0) for ea
h 1 ≤ i ≤ n.Then u 7→ f(ψ(u)) is measurable.Proof. Let us 
hoose an open neighborhood U0 of u0 and Y0 of y0 su
h that(ψ(u), y) is in D whenever u ∈ U0, y ∈ Y0, moreover, the rank of the derivativeof the mapping (u, y) 7→ gi(ψ(u), y) is equal to ki for all u ∈ U0, y ∈ Y0 andfor 1 ≤ i ≤ n. This is possible by 
ondition (5). By the previous lemma weobtain that the mapping (u, y) 7→ fi(gi(ψ(u), y)) is λk+l measurable. By Fubini'stheorem ex
ept for a set Ei of points y from Y0 with λl measure zero the mapping

u 7→ fi(gi(ψ(u), y)) is λk measurable on U0. Hen
e, ex
ept for the set E = ∪n
i=1Ei,for all y ∈ Y0 the mapping

u 7→ (ψ(u), f1(g1(ψ(u), y)), . . . , fn(gn(ψ(u), y)))



MEASURABILITY IMPLIES CONTINUITY . . . 17of U0 into Dy ×Z1× · · · ×Zn is measurable. Sin
e for any �xed y the fun
tion h is
ontinuous in other variables, we obtain that for any �xed y ∈ Y0\E the mapping
u 7→ h(ψ(u), y, f1(g1(ψ(u), y)), . . . , fn(gn(ψ(u), y)))is measurable. This means that u 7→ f(ψ(u)) is measurable on U0.Sin
e U is a Lindel�of spa
e, the statement follows.The following theorem is the key to the generalization 3.7 of theorem 3.1.3.6. Theorem. Let U ⊂ Rm, X and P be open subsets of Eu
lidean spa
es,

p0 ∈ P , Y a separable metri
 spa
e, ϕ : U × P → X a C1 fun
tion, for whi
hrankϕ′
p(u) = k for ea
h u ∈ U , p ∈ P . If f ∈ Mk(X,Y )∩Lk(X,Y ) then 
ondition(L) is satis�ed for f , U , P , p0, ϕ and λm.Proof. Let u0 ∈ U . Sin
e the rank of ϕ′

p0(u0) is equal to k, we may write u as
u = (u1, u2) ∈ Rk × Rm−k su
h that the determinant of

∂ϕ

∂u1 (u0, p0)is not equal to 0. Hen
e there exists a neighborhood U1×U2 of u0 and a neighbor-hood P0 of p0 su
h that the 
losure ≤ U1 of U1 is 
ompa
t, ≤ U1 × U2 ⊂ U , andthe mapping
u1 7→ ϕ(u1, u2, p)is an immersion of U1 for ea
h u2 ∈ U2, p ∈ P0. We may suppose that λk(U1) and

λm−k(U2) are �nite. Sin
e f ∈ Lk, for ea
h ε, σ > 0 and for ea
h u2 ∈ U2 thereexists a δ > 0 su
h that if |u′2 − u2| < δ, |p− p0| < δ, then u′2 ∈ U2 and
λk{u1 ∈ U1 : dist(f(ϕ(u1, u′2, p)), f(ϕ(u1, u2, p0))) ≥ σ/2} ≤ ε2λm−k(U2) .Applying this for p = p0, too, and 
ombining the two inequalities, we obtain that(1) λk{u1 ∈ U1 : dist(f(ϕ(u1, u′2, p)), f(ϕ(u1, u′2, p0))) ≥ σ} ≤ ε

λm−k(U2)for ea
h u′2 for whi
h |u′2 − u2| < δ and for ea
h p for whi
h |p − p0| < δ. For a�xed ε, σ > 0, let δu2 be the δ 
orresponding to u2 ∈ U2.Let C be an arbitrary 
ompa
t subset of U1×U2 and let C2 = {u2 : (u1, u2) ∈ C}be the proje
tion of C. The 
losed balls with 
enter u2 ∈ C2 and radius < δu2gives a Vitali 
overing of C2, and hen
e it is possible to �nd a disjoint sequen
e Bi,
i = 1, 2 . . . of them whi
h λm−k almost 
overs C2.
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e f ∈ Mk, by the previous lemma the mappings u 7→ f(ϕ(u, p)) are λmmeasurable for ea
h p ∈ P0. Hen
e the mapping
u 7→ dist(f(ϕ(u, p)), f(ϕ(u, p0)))is measurable, too, i. e. the sets(2) {u ∈ U1 ×Bi : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ}are λm measurable too. Using (1) and Fubini's theorem we obtain that the λmmeasure of the set (2) is at most λm−k(Bi)ε/λm−k(U2). Sin
e the sets Bi are adisjoint almost 
over of C2, we have that

λm{u ∈ C : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ} ≤ ε.Hen
e we have proved that ea
h u0 ∈ U has a neighborhood U0 = U1 × U2 su
hthat (L) is satis�ed on this. By the remark in the de�nition of (L) the statementfollows.3.7. Theorem. Let Z be a topologi
al spa
e and let Zi (i = 1, 2, . . . , n)be separable metri
 spa
es. Let Xi (i = 1, 2, . . . , n) and X be open subsets ofEu
lidean spa
es and Y ⊂ Rl be open. Let D be an open subset of X×Y . Considerthe fun
tions f : X → Z, fi : Xi → Zi, h : D × Z1 × . . . × Zn → Z, gi : D → Xi(i = 1, 2, . . . , n). Let U ⊂ Rk be open, P an open subset of some Eu
lidean spa
e,
p0 ∈ P , ϕ : U × P → X a C1-fun
tion, for whi
h ea
h ϕp, p ∈ P is an immersionof U into X, and suppose that the following 
onditions hold:(1) For ea
h (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for ea
h �xed y ∈ Y , h is 
ontinuous in the other variables;(3) the fun
tion fi is in Rki
∩Mki

, (i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for ea
h u0 ∈ U there exists a y0 su
h that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p), y)is ki on a neighborhood of the point (u0, p0, y0) for ea
h 1 ≤ i ≤ n.Then the 
onditions (R) and (M) are satis�ed for f , U , P , p0, ϕ, λk.



MEASURABILITY IMPLIES CONTINUITY . . . 19Proof. From Theorem 3.5 it follows that 
ondition (M) is satis�ed by f , U , P ,
p0, ϕ, λk. Let us �x an u0 ∈ U and let us 
hoose a y0 for u0 by (5). Let us 
hooseopen neighborhoods U0, P0 and Y0 of u0, p0 and y0 su
h that (ϕ(u, p), y) ∈ Dwhenever u ∈ U0, p ∈ P0 and y ∈ Y0, moreover the rank of the derivative of(u, y) 7→ gi(ϕ(u, p), y)is ki on U0 × P0 × Y0 for ea
h 1 ≤ i ≤ n. Now the proof that 
ondition (R) is alsosatis�ed is exa
tly the same as in Theorem 3.1, but we have to use the previoustheorem instead of the de�nition.4. Further investigation of the new notions4.1. Conditions. In what follows we will only investigate the situation, where
X is a nonvoid open subset of Rn and f maps X into a separable metri
 spa
e,be
ause we want to avoid any diÆ
ulties arising only from the poor topology ofthe range Y .4.2. Remark. There is a kind of lo
ality other than the one treated afterDe�nition 2.2. We have f ∈ Lk(X,Y ) if and only if ea
h x0 ∈ X has an openneighborhood X0 ⊂ X su
h that f |X0 ∈ Lk(X0, Y ). The \only if" part is trivial.To prove the \if" part we will use the notation of De�nition 2.2. Let us note thatfor ea
h point u0 ∈ U there exist open neighborhoods U0 and P0 of u0 and p0,respe
tively, su
h that for x0 = ϕ(u0, p0) the set ϕ(U0, P0) is 
ontained in X0.This means that (L) is satis�ed for ϕ|U0 × P0. Now from the lo
ality prin
iple inthe de�nition we have that f ∈ Lk(X,Y ). The same lo
ality is true (and the sameproof works) for Sk, Rk, Tk and Mk.4.3. The 
lass Mk. Let

Ak = {A ⊂ X : ξA ∈ Mk(X, {0, 1})}where {0, 1} is taken as dis
rete spa
e. It is easy to see that Ak is a σ-algebra,and a fun
tion f : X → Y is in Mk(X,Y ) if and only if f−1(V ) is in Ak forea
h open subset V of Y . Hen
e the investigation of Mk(X,Y ) is redu
ed to theinvestigation of the σ-algebra Ak. It is easy to see that An is the 
lass of all λnmeasurable subsets of X and A0 is the 
lass of all subsets of X . We will prove that
A ∈ Ak if and only if for ea
h open set U ⊂ Rk and for ea
h immersion ψ : U → Xthe set A ∩ rngψ is χk measurable.For ea
h u ∈ U , there exists a 
ompa
t neighborhood C of u su
h that therestri
tion of ψ to C is one-to-one. By the transformation formulae of integrals,if ψ−1(A) ∩ C is Lebesgue measurable, then ψ(C) ∩ A is Hausdor� measurable.In the other dire
tion, if ψ(C) ∩ A is Hausdor� measurable, then, using that the



20 A. JÁRAIHausdor� measure of ψ(C) is �nite, there exist Borel sets B,N ⊂ ψ(C) su
h that
B ⊂ A, (A∩ψ(C))\B ⊂ N and χk(N) = 0. The sets (ψ|C)−1(B) and (ψ|C)−1(N)are Borel sets, and the later may only have measure 0. This means that the λkmeasure of (ψ|C)−1(A \B) is zero, too, and hen
e (ψ|C)−1(A) is λk measurable.Now for ea
h u ∈ U 
hoosing a 
ompa
t neighborhood C as above, 
ountablymany of them 
overs U . If A ∩ rngψ is χk measurable, then the sets (ψ|Ci)−1(A)are all λk measurable, and hen
e ψ−1(A) is λk measurable. In the other dire
tion,if ψ−1(A) is λk measurable, then the sets ψ−1(A) ∩ Ci are measurable, too, andhen
e A ∩ rngψ = (∪iψ(Ci)) ∩A is a χk measurable set.What we have proved until now implies that every χk measurable set is in Ak,be
ause rngψ is always χk measurable. A 
ountably (χk, k) re
ti�able set is in
Ak if and only if it is χk measurable. We have only to prove that if A ∈ Ak is
ountably (χk, k) re
ti�able, i. e. if A is χk almost subset of a 
ountable union ofLips
hitz images of bounded subsets of Rk, then A is χk measurable. By Theorem3.2.29 from [4℄, A ⊂ N ∪ (∪∞

i=1Si), where χk(N) = 0 and ea
h Si is a k-dimensional
C1 submanifold of X . Dividing Si into smaller parts, if ne
essary, we may supposethat ea
h Si is the image of some open subset of Rk by a C1 immersion ψi. Sin
e
ψ−1

i (A) is λk measurable, the set A ∩ rngψi = A ∩ Si is χk measurable for ea
h i.Hen
e
A = (A ∩N) ∪ (∪∞

i=1(A ∩ Si))is χk measurable.There are χk nonmeasurable sets in Ak. Any non χk measurable subset ([4℄,2.2.4) of a purely unre
ti�able 
ompa
t subset with �nite χk measure is an example.For su
h a set A, the set ψ−1(A) has measure 0 for ea
h immersion ψ from an opensubset of Rk into X . Example of a purely unre
ti�able set 
an be found in [4℄,3.3.20. See moreover [16℄, 3.17.4.4. Conne
tions between Mk, Lk, Sk, Rk and Tk. One of the simplestquestions is, whether f ∈ Mk implies f ∈ Lk, Sk, Rk or Tk. We know that thisis true for k = n. If k < n then the 
hara
teristi
 fun
tion of the interse
tion of
X and an appropriate k-dimensional plane is in Mk but 
ontained in none of the
lasses Lk, Sk, Rk, Tk.In the other dire
tion, suppose, that f ∈ Lk = Sk ⊂ Rk ⊂ Tk. The questionis, whether f ∈ Mk is satis�ed. This is trivial for k = 0. We will show that this
annot be proved in ZFC for 0 < k ≤ n. Namely, we will give an example f underthe 
ontinuum hypothesis for whi
h f ∈ Lk but f /∈ Mk. By the famous resultsof G�odel and Cohen, the 
ontinuum hypothesis is independent from the axioms ofZFC. This means that Mk ⊂ Lk 
annot be proved in ZFC.Another question is whether Sk = Rk. This is trivial for k = 0. We will showby a 
ounterexample under the 
ontinuum hypothesis that for 0 < k < n this isnot a theorem in ZFC. I do not know anything about the 
ase k = n.



MEASURABILITY IMPLIES CONTINUITY . . . 21Similarly, we may ask whether Rk = Tk or at least Mk ∩Rk = Mk ∩ Tk. Thisis also true for k = 0. For 0 < k < n we will prove that Mk ∩ Rk $ Mk ∩ Tkhen
e Rk $ Tk. For k = n we know that Mn ⊂ Rn ⊂ Tn hen
e of 
ourse
Mn ∩Rn = Mn ∩ Tn. I do not know whether Rn = Tn.4.5. Hierar
hy of fun
tion 
lasses belonging to di�erent dimensions.Let us �x dimensions 0 ≤ k < l ≤ n and let us investigate the 
onne
tion betweenthe 
lasses Mk, Lk, et
. and 
lasses Ml, Ll, et
.We may hope that de
reasing the dimension 
onditions (L), (S), et
. be
omestronger. One of the only two positive results in this dire
tion is that this is truefor the 
onditions (L), (S) and (R) under measurability:

Mk ∩Ml ∩ Lk ⊂ Ll.The proof of this statement is very similar to the proof of Theorem 3.6, thereforewe do not repeat the argument.We will show by a 
ounterexample under the 
ontinuum hypothesis that for
k > 0 ZFC 2 Mk ∩ Lk ⊂ Ml ∪ Tl.(� indi
ates that the right hand side is a theorem in the system on the left.)Similarly we will show by a 
ounterexample under the 
ontinuum hypothesisthat ZFC 2 Mk ∩ Lk ∩ Ll ⊂ Mlex
ept for the trivial 
ase k = 0.It is mu
h easier to see that in
lusions in the other dire
tion do not hold ingeneral. Although

Ml ⊂ M0is satis�ed trivially, in general
Ml 6⊂ Mk if k > 0.This is shown by the 
hara
teristi
 fun
tion of a non χk measurable subset of theinterse
tion of X and an appropriate k dimensional plane. The same exampleshows that

Ml ∩ Ll 6⊂ Mk ∪ Tk.If we take the 
hara
teristi
 fun
tion of the interse
tion of X and an appropriate
k dimensional plane, then we see that

Ml ∩ Ll ∩Mk 6⊂ Tk.We will show that
Ml ∩Rk ⊂ Mk.I do not know whether Rk may be repla
ed here by Tk ex
ept for the trivial 
ase

k = 0.



22 A. JÁRAILet us see the proofs.4.6. Theorem. Under the 
onditions of 4.1 for 0 ≤ k < l ≤ n we have
Ml ∩Rk ⊂ Mk.Proof. This is trivial for k = 0. Otherwise, let ψ be an immersion of an opensubset U ⊂ Rk into X . Let u0 ∈ U and let V be an l−k dimensional subspa
e of Rnorthogonal to rngψ′(u0). Let π : Rl−k → V be a linear isometry, and let us de�ne
ϕ by ϕ(u, p) = ψ(u) + π(p). Then for p0 = 0 we have ϕp0 = ψ. Let us 
hoose openneighborhoods U0 and P0 of u0 and p0, respe
tively, su
h that ϕ(U0, P0) ⊂ X and ϕis an immersion of U0×P0 into X . Sin
e f ∈ Ml, the mapping (u, p) 7→ f(ϕ(u, p))is λl measurable. Hen
e for λl−k almost all p ∈ P0 the mapping u 7→ f(ϕ(u, p)) is
λk measurable. Let us 
hoose a sequen
e pm → p0 su
h that ea
h u 7→ f(ϕ(u, pm))is measurable. By f ∈ Rk it is possible to 
hoose a subsequen
e pms

su
h that
f(ϕ(u, pms

)) → f(ϕ(u, p0))for λk almost all u ∈ U0. Hen
e u 7→ f(ψ(u)) is measurable over U0, i. e. lo
ally.This implies that f ∈ Mk.4.7. Counterexample. Under the 
onditions of 4.1 we will show by a 
oun-terexample that for 0 < k < n we have Mk ∩Rk $ Mk ∩ Tk.Proof. For simpli
ity, we will work with a nonvoid k-dimensional plane in Xhaving the form V = X ∩W where W = {(x1, x2, . . . , xk, x
0
k+1, . . . , x0n) ∈ Rn} forsome �xed x0k+1, . . . , x0n. Without loss of generality we may suppose that x0k+1 =

· · · = x0n = 0. Our fun
tion f will depend only on x1, . . . , xk and on the distan
e
r = √

x2k+1 + · · ·x2n from the subspa
e W . Let f(x) = 0 whenever r = 0. Let g(y)be 0 or 1 on Rk depending whether the sum of the integer parts of the 
oordinates of
y ∈ Rk is even or odd, respe
tively. We will use a smoothing h of this \
hessboard"fun
tion g to de�ne f . The 
ontinuous fun
tion h is obtained taking the mean of gfor a bri
k around y, namely, on the set of all z ∈ Rk for whi
h the di�eren
e zi−yiof all 
oordinates is between −1/4 and 1/4. Now for any nonnegative integer m if
r = α2−m + (1− α)2−m−1 for some 0 < α ≤ 1 then let us de�ne

f(y, xk+1, . . . , xn) = αh(2my) + (1− α)h(2m+1y).For r > 1 let
f(y, xk+1, . . . , xn) = h(y).Sin
e f is 
ontinuous on the two parts V and X\V of X , it is a Borel fun
tion,hen
e it is in Mm for any 0 ≤ m ≤ n.



MEASURABILITY IMPLIES CONTINUITY . . . 23First we will prove that f /∈ Rk. Let π be the embedding
y 7→ (y1, . . . , yk, 0, . . . , 0)of Rk into Rn. Let us 
hoose a K ∈ N and a ve
tor y0 from 2−KZk su
h that if U isthe set of all points y for whi
h all 
oordinates of y−y0 are greater than zero and lessthan 2−K , then the 
losure of π(U) is in V . For p ∈ R let ϕ(u, p) = π(u)+pen where

en is the unit ve
tor (0, . . . , 0, 1) ∈ Rn. For an appropriateM we have ϕ(u, p) ∈ Xwhenever u ∈ U and p ∈ P = {p : |p| < 2−M}. Let p0 = 0 and pm = 2−m whenever
m > M . For any subsequen
e pms

of pm it holds that if for a given u ∈ U forin�nitely many s we have f(ϕ(u, pms
)) = 1 then f(ϕ(u, pms

)) 6→ f(ϕ(u, p0)) = 0.Hen
e with the notation Um = {u ∈ U : f(ϕ(u, pm)) = 1} 
onvergen
e 
an o

uronly if there exists an S su
h that for ea
h s ≥ S we have u /∈ Ums
, i. e. if

u /∈ ∩∞
S=1 ∪∞

s=S Ums
. Hen
e 
onvergen
e almost everywhere may happen only if

λk (∩∞
S=1 ∪∞

s=S Ums
) = 0.This means that for 
onvergen
e almost everywhere λk(Ums

) → 0 is ne
essary. Butthis does not hold be
ause λk(Ums
) = λk(U)/2k whenever ms > K.It is mu
h harder to prove that f ∈ Tk. Let U be an open subset of Rk, let

P be an open subset of some Eu
lidean spa
e, p0 ∈ P and ϕ : U × P → X a C1fun
tion for whi
h ea
h ϕp, p ∈ P is an immersion. Let pm → p0 be a 
onvergentsequen
e in P . Sin
e the fun
tion f is 
ontinuous on X\V , if ϕ(u, p0) /∈ V then
f(ϕ(u, pm)) → f(ϕ(u, p0)). Hen
e we have to deal only with the set Z = {u ∈ U :
ϕ(u, p0) ∈ V }. Let us introdu
e the notation Uε

m = {u ∈ Z : f(ϕ(u, pm)) ≥ ε}. Wehave to prove that for almost all u ∈ Z there exists a subsequen
e pms
of pm forwhi
h f(ϕ(u, pmk

)) → f(ϕ(u, p0)) = 0. This means that for ea
h ε > 0 and for ea
h
M there exists an m ≥M su
h that u /∈ Uε

m, i. e., that u /∈ ∪ε>0 ∪∞
M=1 ∩∞

m=MUε
m.Hen
e we have to prove that this set has λk measure zero. Sin
e de
reasing εthe set ∪∞

M=1 ∩∞
m=M Uε

m in
reases, if we take a sequen
e εs > 0 tending to 0 andrestri
t the union for only these numbers εs, the union does not 
hange. Hen
e it isenough to prove that for ea
h ε > 0 the set ∪∞
M=1 ∩∞

m=M Uε
m has measure zero, or,equivalently, that for ea
h ε > 0 and for ea
hM the set ∩∞

m=MUε
m has λk measurezero. If this is not the 
ase, then there exists an ε > 0 and an M for whi
h thereexists a density point u0 of this set. Suppose for 
ontradi
tion that this is the 
aseand let us �x ε, M and u0. Moreover, we may suppose that u0 ∈ ∩∞

m=MUε
m.Let us write ϕ = (ϕ1, ϕ2) where ϕ1(u, p) is the �rst k 
oordinates of ϕ(u, p)and ϕ2(u, p) is the last n − k ones. Sin
e u0 is a density point of Z, too, wehave ϕ′2,p0(u0) = 0 and detϕ′1,p0(u0) 6= 0. Using the proof of the inverse fun
tiontheorem, it is possible to �nd a c > 0, an open ball U0 with 
enter u0 and aneighborhood P0 of p0 su
h that whenever Bδ(u0) is 
ontained in U0 and p ∈ P0then Bcδ(ϕ1,p(u0)) is 
ontained in ϕ1,p(Bδ(u0)). Furthermore we may suppose that

‖ϕ′2,p(u)‖ ≤ c/(16√k) whenever (u, p) ∈ U0×P0. Shrinking U0 and P0, if ne
essary,



24 A. JÁRAIwe may also suppose that for some positive 
onstant C we have J(ϕ1,p)(u) ≤ Cwhenever (u, p) ∈ U0 × P0, where J is the absolute value of the Ja
obian.Let α(k) denote the λk measure of balls having radius 1 in Rk. Then, of 
ourse,the λk measure of any ball having radius δ is α(k)δk. Sin
e u0 is a density point,there exists a δ0 > 0 su
h that for the 
losed ball Bδ(u0) we have
λk (Bδ(u0)\(∩∞

m=MUε
m)) < ckδk

Ckk/223kwhenever 0 < δ ≤ δ0. For this δ0 let us 
hoose an s0 > 1 for whi
h 2−s0+1 ≤
cδ0/√k. Let us 
hoose an M0 su
h that for m ≥ M0 we have pm ∈ P0 and thedistan
e of ϕ(u0, pm) from W is less than 2−s0−2. Let us �x an m ≥ max{M,M0}.Sin
e u0 ∈ Uε

m, the distan
e of ϕ(u0, pm) from W is greater than 0 but less than2−s0−2. Let us 
hoose an s su
h that this distan
e is not less than 3 · 2−s−3 butless than 3 · 2−s−2. Clearly s ≥ s0. Let √
k2−s/c < δ ≤

√
k2−s+1/c. Then wehave 0 < δ ≤ δ0. Let S denote the set of all those y ∈ Rk for whi
h all 
oordinatesof 2sy has the same integer part as the 
orresponding 
oordinate of 2sy0 where

y0 = ϕ1(u0, pm). The set S is the 
artesian produ
t of intervals having length 2−s.Hen
e the diameter of S is √
k2−s and be
ause y0 ∈ S, the set S is 
ontained in

ϕ1,pm
(Bδ(u0)). Using the estimate of ‖ϕ′2,pm

(u)‖ valid for all u ∈ Bδ(u0) we obtainthe estimate
|ϕ2(u, pm)− ϕ2(u0, pm)| ≤ cδ/(16√k) ≤ 2−s−3.This implies that the distan
e of ϕ(u, pm) fromW is between 2−s−2 and 2−s. Let S0denote those points y of S for whi
h all of the three fun
tions h(2sy), h(2s+1y) and

h(2s+2y) take the value zero. A y ∈ S is in S0 if and only if the fra
tional part of allthe 
oordinates of 2sy, 2s+1y and 2s+2y is between 1/4 and 3/4. This means thatthe fra
tional part of all the 
oordinates of 2sy is in [5/16, 6/16℄∪ [10/16, 11/16℄.Hen
e the λk measure of S0 is 2−sk−3k. If u ∈ Bδ(u0) and y = ϕ1(u, pm) ∈ S0,then u /∈ \Uε
m. But J(ϕ1,pm

)(u) ≤ C, hen
e by the transformation formulae ofintegrals we have
λk(Bδ(u0)\Uε

m) ≥ 2−sk−3k
C

≥ ckδk

Ckk/223k .This 
ontradi
ts the 
hoi
e of δ0. This 
ontradi
tion proves that f ∈ Tk.For the following 
ounterexamples we need a lemma. The 
ounter examples arerelated to the existen
e of the so-
alled almost invariant sets. These sets were usedby Kakutani and Oxtoby to prove that the Lebesgue measure on the 
omplex unit
ir
le 
an be extended to an invariant measure su
h that the Hilbert spa
e dimen-sion of the 
orresponding L2 spa
e be
omes 2
, where 
 is the 
ardinal number
ontinuum. The 
onstru
tion below is a re�nement of the 
onstru
tion from thepaper [6℄ of the author, where the result of Kakutani and Oxtoby was extended



MEASURABILITY IMPLIES CONTINUITY . . . 25| among others | to arbitrary lo
ally 
ompa
t groups. The ideas there are 
om-bined with the well-known ideas of Sierpinski to 
onstru
t under the 
ontinuumhypothesis a subset of the unit square with outer measure 1 and 
ontaining at mosttwo points on ea
h line. To understand the typi
al appli
ation of this abstra
t settheoreti
 lemma, we may think of the 
ase when X is the plane, T is the 
lassof all di�eomorphisms mapping some open subset of the plane onto some otheropen subset of the plane, F is the 
lass of all 
ompa
t plane sets having positiveLebesgue measure, G is the 
lass of all one-dimensional C1 submanifolds of theplane and n = 
 = ℵ1.4.8. Lemma. Let X be a set and T a 
lass of one-to-one transformations ea
hmapping a subset of X into X and let F , G be 
lasses of subsets of X. Supposethat there exists a 
ardinal number n > ℵ0 with the following properties:(1) 
ard(X) = n;(2) 
ard(T ) ≤ n;(3) 
ard(F) ≤ n and for every F ∈ F we have 
ard(F ) = n;(4) 
ard(G) ≤ n and for every F ∈ F and G0 ⊂ G for whi
h 
ard(G0) < n we have
ard(F\ ∪ G0) = n;(5) The 
lass G is T invariant, i. e. if G ∈ G, τ ∈ T then τ(G) ∈ G and τ−1(G) ∈ G.Then there exists a family {Xγ}γ∈� of subsets Xγ of X with the following proper-ties:(6) 
ard(�) = n;(7) the sets Xγ , γ ∈ � are pairwise disjoint;(8) for ea
h γ ∈ � and G ∈ G we have 
ard(Xγ ∩G) < n;(9) 
ard(F ∩Xγ) = n whenever γ ∈ � and F ∈ F ;(10) for every subset �0 of � and for every τ ∈ T
ard(τ(∪γ∈�0Xγ)△ (τ(X) ∩ (∪γ∈�0Xγ))) < n.Proof. Let 
 be the smallest ordinal having 
ardinality n. We may supposethat F is nonvoid, be
ause otherwise we may repla
e it with {X}. Let Y be anarbitrary set with 
ardinality n. Sin
e 
ard(Y × F) = n, there exists a one-to-one mapping α 7→ (yα, Fα) of the set of ordinals {α : 0 ≤ α < 
} onto Y × F .The trans�nite sequen
e F0, . . . , Fα, . . . , 0 ≤ α < 
 
ontains every element F of Fexa
tly n times. Similarly, we may suppose that G is nonvoid, be
ause otherwise wemay repla
e it with {∅}, and we may 
hoose a trans�nite sequen
e G0, . . . , Gα, . . . ,0 ≤ α < 
 
ontaining all elements of G. Let us 
hoose a mapping α 7→ τα of theset {α : 0 ≤ α < 
} onto the set {1X} ∪ T for whi
h τ0 = 1X where 1X is theidenti
al mapping of X onto itself. For ea
h x ∈ X and ea
h ordinal α < 
 let
Cα(x) denote the set of all points of X that 
an be written as

τε1
β1 ◦ · · · ◦ τεn

βn
(x)



26 A. JÁRAIwhere n = 1, 2, . . . , k = 1, 2, . . . , n, 0 ≤ βk ≤ α and εk is 1 or −1. Here τ1 meansthe mapping τ and τ−1 means the inverse of τ . Clearly, we have x ∈ Cα(x) and for
x ∈ X and 0 ≤ β ≤ α < 
 we have Cβ(x) ⊂ Cα(x) and τβ (Cα(x)) = τβ(X)∩Cα(x).We also have 
ard (Cα(x)) ≤ max{
ard(α),ℵ0} < n.If A ⊂ X then we will use the notation Cα(A) for ∪x∈ACα(x). We will show thatthere exists a trans�nite double sequen
e

{xα
β : 0 ≤ β ≤ α < 
}of elements of X su
h that:

xα
β ∈ Fα if 0 ≤ β ≤ α < 
;the sets {Cα(xα
β ) : 0 ≤ β ≤ α < 
} are pairwise disjoint;

Cα(xβ
α) is disjoint from any Cα(Gγ), γ ≤ α.If we agree that (γ, δ) < (α, β) whenever γ < α or γ = α and δ < β (lexi
ographi
ordering), then {(α, β) : 0 ≤ β ≤ α < 
 } is a well ordered set. We will de�ne thesequen
e {xα

β : 0 ≤ β ≤ α < 
} by trans�nite indu
tion. Let x00 be an arbitrarypoint of F0\G0. Suppose that 0 ≤ β ≤ α < 
 and that xγ
δ have already beende�ned for all pairs (γ, δ) < (α, β), 0 ≤ δ ≤ γ. Consider the union D(α, β) of thesets Cα(xγ

δ ) as (γ, δ) runs over all pairs (γ, δ) < (α, β). Then
ard (D(α, β)) ≤ (
ard(α))2max{
ard(α),ℵ0} < n.Let E(α) be the union of all sets Cα(Gγ), γ ≤ α. By (5), E(α) is the union of some
Gα ⊂ G with 
ard(Gα) < n. By (4) the 
ardinal number of Fα\E(α) is n, hen
e(Fα\E(α))\D(α, β) is nonvoid. Let xα

β be an arbitrary point of (Fα\E(α))\D(α, β).Then Cα(xα
β ) is disjoint from every Cζ(x) where x = xγ

δ for some (γ, δ) < (α, β) or
x ∈ Gζ for some ζ ≤ α. Otherwise we would have

τε1
β1 ◦ · · · ◦ τεn

βn
(xα

β ) = τη1
δ1 ◦ · · · ◦ τηm

δm
(x),where βk ≤ α, δj ≤ α, εk is 1 or −1, and ηj is 1 or −1, k = 1, 2, . . . , n, j =1, 2, . . . ,m. Hen
e

xα
β = τ−εn

βn
◦ · · · ◦ τ−ε1

β1 ◦ τη1
δ1 ◦ · · · ◦ τηm

δm
(x),and this 
ontradi
ts the 
hoi
e of xα

β .Now let � = {ζ : ζ is an ordinal and 0 ≤ ζ < 
};
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Xζ = ⋃

{

Cα(xα
ζ ) : ζ ≤ α < 
}

, ζ ∈ �.Properties (6) and (7) are obvious. Sin
e xα
ζ ∈ F and xα

ζ ∈ Cα(xα
ζ ) ⊂ Xζ whenever

ζ ≤ α < 
 and Fα = F , we have that F ∩Xζ has at least n elements. Hen
e (9)is satis�ed.To prove (8) let us observe that
Cα(xα

ζ ) ∩Gγ = ∅whenever α ≥ γ. Hen
e, if G = Gγ then
Xζ ∩G ⊂ ∪{Cα(xα

ζ ) : ζ ≤ α < γ}and the right hand side has 
ardinality less than n.To prove (10) let �0 ⊂ � and τ ∈ T . Suppose that 0 ≤ γ < 
 and τγ = τ .Using that
τγ

(

Cα(xα
ζ )) = τγ(X) ∩ Cα(xα

ζ ) if γ ≤ α < 
and
⋃

ζ∈�0Xζ = ⋃

{

Cα(xα
ζ ) : ζ ∈ �0, ζ ≤ α < 
}

,we have that
τγ(∪ζ∈�0Xζ)△(

τγ(X) ∩ (∪ζ∈�0Xζ))
⊂

⋃

{

τγ
(

Cα(xα
ζ )) ∪ Cα(xα

ζ ) : ζ ∈ �0, ζ ≤ α < γ
}

.Sin
e 
ard (

Cα(xα
ζ ) ∪ τγ (

Cα(xα
ζ ))) ≤ max {
ard(α),ℵ0} ,the right hand side has 
ardinality less than n. Hen
e (10) is proved.4.9. Counterexample. Using the 
onditions of 4.1, under the 
ontinuumhypothesis for 0 < k ≤ n we have Lk 6⊂ Mk.Proof. We will give a fun
tion f ∈ Lk for whi
h f /∈ Mk. We want to applythe previous lemma. We will use only that the fun
tions ϕ in the de�nition of

Lk are 
ontinuous and that by Remark 2.3.(3) we may suppose that the fun
tions
ϕp are one-to-one. Let T denote the 
lass of all one-to-one fun
tions τ whi
h 
anbe represented in the form ϕp ◦ ϕ−1

p′ , where U is an open subset of Rk, P is anopen subset of some Eu
lidean spa
e and ϕ : U × P → X is a 
ontinuous fun
tionfor whi
h all ϕp, p ∈ P is one-to-one. Sin
e the 
ardinality of all pairs U , P is
ontinuum and any 
ontinuous fun
tion ϕ is uniquely determined by the values ona 
ountable dense subset, the 
ardinality of the 
lass T is 
ontinuum.
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lass of all 
ompa
t k re
ti�able subsets of X having positive
χk measure. Sin
e ea
h 
ompa
t set is uniquely determined by its 
omplement,and the open 
omplement is determined by its subsets from a �xed 
ountable base,it follows that the 
lass F has 
 elements, and all elements have 
ardinality 
.Applying the previous lemma with G = ∅ we obtain a 
lass of subsets Xγ , γ ∈ Rof X . Our 
ounterexample will be the 
hara
teristi
 fun
tion f of X0 i.e. Xγ for
γ = 0.Let U be a bounded open subset of Rk and ψ : U → X be an immersion forwhi
h the re
ti�able and χk measurable set M = ψ(U) has positive but �nite χkmeasure. Let us observe that if X0 ∩ M were of χk measure zero, then M\X0would 
ontain some F ∈ F , whi
h is impossible be
ause F ∩X0 6= ∅. If X0 ∩Mwere χk measurable with positive χk measure then it would 
ontain some F ∈ F .But this is impossible be
ause F ∩Xγ 6= ∅ and Xγ ∩X0 = ∅ for any γ 6= 0. Hen
e
X0 ∩M is non χk measurable. By 4.3 this implies that f /∈ Mk.We will prove that f ∈ Lk. Let C be a 
ompa
t subset of U . The set

{u ∈ C : f(ϕp0(u)) 6= f(ϕp(u))}is equal to the set
ϕ−1

p0 (

{x ∈ ϕp0(C) : x ∈ X0△(ϕp0 ◦ ϕ−1
p )(X0)}) .For the mapping τ = ϕp0 ◦ ϕ−1

p this set is a subset of the set
ϕ−1

p0 ((τ(X) ∩X0)△τ(X0)) .If we suppose that the 
ontinuum hypothesis holds then this set is 
ountable.4.10. Counterexample. Using the 
onditions of 4.1, for 0 < k < n under the
ontinuum hypothesis Sk $ Rk.Proof. We apply the 
onstru
tion of the previous lemma, 
hoosing for T , Fand G the same 
lasses as above to obtain the sets Xγ , γ ∈ R. If m ∈ N and m ≥ 2,let fm(x) = gm(x)hm(x), where gm(x) is the 
hara
teristi
 fun
tion of the set Xm,and
hm(x) = 





























0, if dist(x,D) ≤ 1
m+1 ;0, if dist(x,D) ≥ 1
m−1 ;

m(m+ 1)(dist(x,D)− 1
m+1) if 1

m+1 ≤ dist(x,D) ≤ 1
m ;

m(m− 1)( 1
m−1 − dist(x,D)) if 1

m ≤ dist(x,D) ≤ 1
m−1 ,
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losed disk 
ontained in the interse
-tion of X with a k dimensional plane. Let f = ∑∞
m=1 fm. (As in the previous
ounterexample we 
an prove that f /∈ Mk.) As in the previous 
ounterexample itfollows that ea
h gm is in Lk = Sk, hen
e in Rk, too. The same is trivial for the
ontinuous fun
tion hm. From this it follows for the produ
t gmhm that it is alsoin Rk. Sin
e everywhere on the open set X\D the fun
tion f is lo
ally the �nitesum of su
h produ
ts, we have that f |X \D ∈ Rk. Let ϕ : U × P → X and let

F = {u : ϕ(u, p0) ∈ D}.Clearly F is a 
losed set. Let C be a 
ompa
t subset of F . For pm → p0, let
Rm,j denote the set of all points u for whi
h ϕ(u, pm) ∈ Xj but ϕ(u, p0) /∈ Xj or
ϕ(u, pm) /∈ Xj but ϕ(u, p0) ∈ Xj . Under the 
ontinuum hypothesis, the sets Rm,jand their union R = ∪∞

m,j=1Rm,j are 
ountable and hen
e have λk measure zero.Let us observe that for ea
h i there exists an mi su
h that if m > mi then forea
h u ∈ C we have
|ϕ(u, pm)− ϕ(u, p0)| < 1

i+ 1 .Hen
e, if u ∈ C but u /∈ R and u /∈ ∪∞
j=iϕ

−1
p0 (Xj), then ϕ(u, pm) /∈ Xj whenever

j ≥ i. Hen
e gj(ϕ(u, pm)) = 0 for j ≥ i. On the other hand, dist(ϕ(u, pm), D) <1
i+1 , hen
e hj(ϕ(u, pm)) = 0 whenever j ≤ i. So we obtain that f(ϕ(u, pm)) = 0whenever u /∈ R, u /∈ ∪∞

j=iϕ
−1
p0 (Xj) and m > mi. Sin
e the sets Xj are disjoint,

f(ϕ(u, pm)) → f(ϕ(u, p0)) for m → ∞ whenever u /∈ R, i. e. almost everywhere.Taking union for 
ountably many sets C we obtain that f ∈ Rk.On the other hand, if e 6= 0 is orthogonal to D and ϕ(u, p) = ψ(u)+pe, where ψis an isometri
 immersion mapping some nonvoid open subset of Rk into D, p0 = 0,then, for pm = 1/m we have that
{u ∈ C : |f(ϕ(u, pm))− f(ϕ(u, p0))| ≥ 1} ⊃ ψ−1(Xm) ∩ C,if m is large enough, ex
ept for a 
ountable set. The set on the left hand side hasthe same λk measure as C. This shows that f /∈ Sk.4.11. Counterexample. Using the 
onditions of 4.1, under the 
ontinuumhypothesis for 0 < k < l ≤ n we have Mk ∩ Lk ∩ Ll 6⊂ Ml.Proof. We will give an example of a fun
tion f ∈ Mk ∩ Lk ∩ Ll but f /∈ Ml.We want to apply Lemma 4.8. We will use that by Remark 2.3.(3) we may supposethat the fun
tions ϕp in the de�nition of Ll are one-to-one immersions. Let Tdenote the 
lass of all one-to-one fun
tions τ whi
h 
an be represented in the form

ϕp ◦ ϕ−1
p′ , where U is an open subset of Rl, P is an open subset of some Eu
lideanspa
e and ϕ : U × P → X is a C1 fun
tion for whi
h all ϕp, p ∈ P are one-to-one.
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lass of all 
ompa
t l re
ti�able subsets of X having positive χlmeasure. Let G be the 
lass of all k-re
ti�able Borel subsets of X . It is not hardto prove that the 
lass G is T invariant. Moreover all G ∈ G has χl measure zero,hen
e the same is true for the union of 
ountably many G ∈ G. This means that
F\ ∪ G0 has positive χl measure, hen
e 
ardinality 
 for any 
ountable subfamily
G0 ⊂ G and for any F ∈ F . Other 
onditions of Lemma 4.8 has already been
he
ked at 4.9.Applying Lemma 4.8 we obtain a 
lass Xγ , γ ∈ R where ea
h Xγ 
ontains only
ountably many points from ea
h G ∈ G, but Xγ ∩ F 6= ∅ for ea
h F ∈ F , hen
e
Xγ ∩ F is not χl measurable for any F ∈ F .Let f be the 
hara
teristi
 fun
tion of X0. Along the same lines as in 4.9 weget that f ∈ Ll but f /∈ Ml. Sin
e for any C1 embedding ψ of an open subset of
Rk into X the fun
tion f ◦ψ is zero ex
ept for a 
ountable set, we get that f ∈ Mkand f ∈ Lk, too. Hen
e the statement is proved.4.12. Counterexample. Using the 
onditions of 4.1, under the 
ontinuumhypothesis for 0 < k < l ≤ n we have Mk ∩ Lk 6⊂ Ml ∪ Tl.Proof. Let us apply Lemma 4.8 for the same T , F and G as in the previous
ounterexample. We obtain a 
lass Xγ , γ ∈ R where ea
h Xγ 
ontains only 
ount-ably many points from ea
h G ∈ G, but Xγ ∩F 6= ∅ for ea
h F ∈ F , hen
e Xγ ∩Fnot χl measurable for any F ∈ F .Let Z be an l dimensional plane whi
h has a nonempty interse
tion with X andlet f be the 
hara
teristi
 fun
tion of the set Z∩X0. Then f ∈ Mk∩Sk = Mk∩Lk,but f /∈ Tl and f /∈ Ml.A
knowledgment. I am greatly indebted to one of the referees who has 
on-tributed to several details in this paper by an unusually 
areful reading.
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