MEASURABILITY IMPLIES CONTINUITY FOR
SOLUTIONS OF FUNCTIONAL EQUATIONS
— EVEN WITH FEW VARIABLES

ANTAL JARAI

ABSTRACT. It is proved that — under certain conditions — measurable solutions f
of the functional equation

f(:l)) = h(xvyvf(gl(xvy))v s 7f(gn(x,y)))7 (x,y) €D CR*x Rl

are continuous, even if 1 <[ < s. As a tool we introduce new function classes which
— roughly speaking — interpolate between continuous and Lebesgue measurable
functions. Connection between these classes are also investigated.

1. Introduction

In connection with his fifth problem Hilbert [5] suggested that although the
method of reduction to differential equations makes it possible to solve functional
equations in an elegant way, the inherent differentiability assumptions are typically
unnatural (see [2]). Such shortcomings can be overcome by appealing to regularity
theorems.

In this spirit the following general regularity problem of non-composite func-
tional equations with several variables was formulated by the author and included

by Aczél among the most important open problems on functional equations (see
Aczél [1] and Jérai [7]):

1.1. Problem. Let X and Z be open subsets of R® and R™, respectively, and
let D be an open subset of X x X. Let f : X — Z,¢9;: D — X (i=1,2,...,n)
and h: D x Z*!' — Z be functions. Suppose that

(1)
f(@) = nhz,y, f(y), F(g1(z,9)), ..., flgn(x,y))) whenever (x,y) € D;
(2) h is analytic;
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2 A. JARAI

(8) g is analytic and for each x € X there exists a y for which (x,y) € D and

%gi(z,y) has rank s (i =1,2,...,n).

Is it true that every f which is measurable or has the Baire property is analytic?

The following steps can be used:
(I)  Measurability implies continuity.
(I
(IIT) Continuous solutions are locally Lipschitz.
(
(

~—

Baire property implies continuity.

IV) Locally Lipschitz solutions are continuously differentiable.

V) All p times continuously differentiable solutions are p + 1 times continuously
differentiable.

(VI) Infinitely many times differentiable solutions are analytic.

We note that in order to obtain f € CP it is usually enough to suppose only
that the given functions h and g; are in C? (if 2 < p < o0) or in CP*! (if p = 0
or p = 1). The complete answer to the problem above is not known. The author
discussed this problem in several papers and solved problems corresponding to (I),
(IT), (IV) and (V) (see [7]), and under some additional compactness condition (III)
(see [8]). References can be found in the survey paper [14]. There are some partial
results in connection with (VI). Moreover, other properties of solutions such as
having locally bounded variation or local Holder continuity are also discussed (see
[12] and references in [14]). It is possible to extend these results to manifolds, and
the C*°-part of the problem is completely solved on compact manifolds [11]. The
most applicable results are treated in the booklet [10].

Regularity theorems of the type “locally integrable solutions are infinitely many
times differentiable” can be obtained using distributions. The essence of the
method is to prove that solutions in the distribution sense satisfy a differential
equation having only infinitely many times differentiable solutions. This idea was
used by Swiatak [18] to prove general regularity results for the functional equation

n

Zh’l(xvy)f(gi(zay)) = h(:L', f(gn+1($)), s ,f(gm(l'))) + ho(:c,y),

=1

where f is the only unknown function. Roughly speaking, she applies a partial
differential operator in y to the equation in the distribution sense. Of course, the
nonlinear term on the right hand side disappears. If, after substituting a fixed yq,
we are fortunate enough to obtain a hypoelliptic partial differential equation, then
by the regularity theory of partial differential equations all distribution solutions are
in C*°. For the exact details of how to overcome the difficulties and for applications
see her paper [18].
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Further references about regularity theorems for functional equations can be
found in the survey paper [14]. Some other papers concerning the distribution
method are also referred to there.

The above equation of Swiatak is “almost linear”, so, formally, it is much less
general than equation (1). However her theorems can be applied even if the rank

of %gi is much smaller than the dimension of the domain of the unknown function

f. Roughly speaking, the present author’s results, quoted above, may be applied
to prove regularity of a solution f having s variables, only if there are at least
2s variables in the functional equation. The method of Swiatak may be applied
even if there are only s + 1 variables. This is the minimal number of variables: in
Hilbert’s paper [5] there is an example that for “one variable” functional equations
(this may mean an s-dimensional vector variable) no regularity theorem holds. So
the results of Swiatak suggest that the rank condition in the problem above is too
strong, and the results concerning the above problem can be extended for a much
more general case. Generalizing our method we may hope to obtain regularity
results for general nonlinear functional equations; which seems to be impossible
using the method of Swiatak based on Schwartz distributions. We may not hope
to be so lucky that with one substitution y = yo we have g;(z,yo) = = for all i; a
very strong condition. The somewhat artificial condition of hypoellipticity also has
to disappear. What seems to be most important is to prove “measurability implies
continuity” type results, because by the method of Swiatak we may only start with
locally integrable solutions — a consequence of the distribution method. To the
best knowledge of the author such “measurability implies continuity” type results
without the strong rank condition in (3) or some abstract version of it are known
only for very special equations such as for example the equation

fl@) =) pif(@+ye), zeR" yeR
=1

(i € R, e; € R™ are fixed) in the paper of McKiernan [15]. The proof there is
based on algebraic properties of the solutions.

In this paper we will prove a “measurability implies continuity” type result
for the general explicit nonlinear functional equation (1) without the strong rank
condition in (3) on the inner functions. In the spirit of the “bootstrap” method
corresponding to steps (I)-(VI) we introduce a sequence of properties, which —
roughly speaking — interpolate between measurability and continuity. This se-
quence of properties gives a stairway to climb up from measurability to continuity.
First we will investigate the basic properties of the new notions. Then the reg-
ularity theorem will be proved. An example is given how to apply the theorem
in nontrivial cases. A refinement of the theorem is also proved. Finally, further
properties of the new notions are investigated.
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2. The new notions

2.1. Notation. If f is a function then rng f denotes the range of f. All
normed spaces are supposed to be real; the norm is denoted by | |. Only operator
norms will be denoted by || ||. If f: D — Y is a function mapping an open subset
of a normed space into a normed space, then f’ will denote the derivative of f. If
D C X1 x X x...x X,, we will use the partial sets

Dmi = {(.’L‘l,... s Li— 1y Tiglye - - ,.Tn) : (.’L‘l,...,l'n) S D}

The partial functions f,, : Dy, — Y are defined by

f:n.;(l'l;-n s Lj—1y Ljg1y - ,IL‘n) = f(:cl,... ,IL‘n)

whenever (z1,... ,2,) € D. (Notice that z; is held constant in f.) Also Dy, ..,
and fy; .. .z, are defined similarly. Now, if X; and Y are normed spaces and

.....

Dy, ..

L1541, %0
is an open subset of X; we define the partial derivative denoted by

of

aifa ali f or 81‘1

as the derivative of fo, . ;1 z:41,...,0,- Other notions of calculus are used in the
usual way.

If z, y are points of a metric space and « > 0, we say that z and y are a-near if
their distance is less than «. Similarly, if x and y are points of a uniform space and
a is a relation from the uniformity we say that x and y are a-near if (z,y) € a. In
a metric space the closed ball having radius » > 0 and center x will be denoted by
B, (z).

Concerning measure theory, we follow the terminology of Federer [4]. Hence a
measure means a countably subadditive extended real valued nonnegative function
defined on all subsets of a set; this is called outer measure in other terminology.
By a Radon measure we mean a locally finite measure p defined on a Hausdorff
space X, with the following properties:

(1) Every open subset V of X is measurable and
w(V) =sup{u(K): K CV, K compact};
(2) If Ais any subset of X, then

w(A) =inf{u(V): ACV, V open}.
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A™ will denote the Lebesgue measure on R", and x™ will denote the m-dimen-
sional Hausdorff measure on a metric space.

Assuming that p is a measure on X, A C X and Y is a topological space, we
say that the function f is measurable over A if f is defined at almost every point
of A, the range of f is contained in Y and AN f~1(W) is measurable whenever
W is an open subset of Y. If y is a Radon measure on X and f maps almost
all of X into a topological space Y then we say that f is a Lusin function, if for
each measurable subset A of X having finite measure and for each £ > 0 there is
a compact subset C' of A such that u(A\C) < e and f|C is continuous. In this
setting Lusin’s theorem says that if Y is a second countable topological space and
1 is a Radon measure then every function which is measurable over X is a Lusin
function. The proof can be found in [17], 8.2 by Oxtoby.

We refer the reader to Federer [4] concerning the proof of other measure theo-
retical results used here.

2.2. Definition. Let X be a set, Y a metric space, and f : X — Y be a
function. Let U be a Hausdorff space with the Radon (outer) measure p, and P
a topological space, the “parameter space” with a given point pg € P. Let ¢ be a
function from U x P into X. We will think of ¢ as a surface ¢, : u +— ¢(u,p) for
each p, depending on the parameter p.

Lusin’s theorem and generalizations of Steinhaus’ theorem [9] suggest that the
following condition is connected with measurability:

(L) For each € > 0, each o > 0 and for each compact subset C C U there exists a
neighborhood Py of pg such that if p € Py then

p{u € C:dist (f(e(u,p)), f(e(u,po))) > o} <e.

The condition above can be reformulated in the following sequential way:

(S) For each o > 0, for each compact subset C C U and for each sequence p,, — pyg

u{u € €« dist (F(p(u, pn)), F((u, o)) = o} — 0.

In this form the condition strongly resembles convergence in measure. Riesz theo-
rem suggests the following condition:

(R) For each sequence p,, — po there exists a subsequence p.,, such that for almost
all w € U we have

flp(u, pm;)) — f(p(u, po))-
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This condition resembles the following condition treated by Trautner in a special
case for characteristic functions of measurable sets (see remark below):

(T) For each sequence p,, — po and for almost all u € U there exists a subsequence
Dm,; such that

flp(u, pm;)) — f(p(u, po))-

To investigate the connection between these conditions we need some kind of mea-
surability condition:

(M) u+— f(p(u,po)) is p measurable.

It is clear that conditions (L) and (S) have meaning also if the values of f are in
a uniform space Y'; simply o has to be replaced by a reflexive symmetric relation
from the uniformity of Y and we have to consider the set of those points u for
which the two values of f are not o-near. Condition (R) has the advantage that
it has meaning even if Y is only a topological space. The same is true for (T) and
(M). It seems that (T) has no advantage over (R).

We will often check condition (L) [(S), (R), (T), (M)] locally. If for each ug € U
there is a neighborhood Uy of ug and Py of pg such that ¢|Uy x Py satisfies (L) [(S)],
then ¢ also satisfies (L) [(S)]. To see this, we will choose a finite covering of C by
open sets having finite measure and we will apply (L) [(S)] to a sufficiently good
inner approximation of these open sets by compact sets: Let us choose for each
x € C a neighborhood U, of x and a neighborhood P, of py such that ¢|U, x P,
satisfies (L). Shrinking U, if necessary we may suppose that U, is open and has
finite p measure. Let U,,,...,U,, be a finite subcovering of C, let £,0 > 0 and
let us choose compact sets C; C Uy, for which u(U;,\C;) < €/(2r). Choosing a
neighborhood Fy of pg for which Py C Nj_, P, such that the sets

Ri(p) = {u € C; : dist(f(¢(u,p)), f(p(u, po))) > o}

have p measure less than £/(2r) for each p € Py, we obtain that

pfu € C; : dist(f(o(u, p)), fp(u, po))) = o} <e,

because this set is covered by UI_; R;(p) U Ul_; (Uy,\C;). Similarly, if p,,, — p and
(S) is satisfied by ¢|U, x P,, then for given e,0 > 0 for ¢ = 1,... ,r we obtain an
M; such that for m > M; we have p,,, € P,, and R;(p,,) has p measure less than
e/(2r) for each m > M;. Hence for m > M = maxi<;<, M; we have

p{u € C; = dist(f(¢(u,p)), f(p(u,po))) > o} <e.

Similarly, if for each ug € U there is a neighborhood Uy of ug and Py of pg such
that ¢|Up x Py satisfies (R) [(T), (M)], then supposing that U is a Lindel6f space
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we have that ¢ satisfies (R) [(T), (M)]. For (R) this follows using the diagonal
process. Countably many of the sets Uy cover U. Let us enumerate these open
sets, and let us consider repeatedly sub-sub-. . .-sequences of the sequence p,,. The
diagonal process gives a subsequence, for which the convergence is satisfied almost
everywhere. In the case of (T) and (M) the statement is trivial.

Let X be an open subset of R" and 0 < k < n. The class of all functions f
for which the condition (L) [(S), (R), (T), (M)] is satisfied whenever U is an open
subset of R¥, = A¥, P is an open subset of some Euclidean space, py € P and
¢ :Ux P — X is a C'-function for which ¢, is an immersion of U into X for each
p € P, will be denoted by Lx(X,Y) or shortly by Ly [Sk, Rk, T, Mg]. (Recall,
that a C' mapping of U into X is an immersion if and only if its derivative is
an injective linear mapping for each point of U. For k = 0, take R® = {0} and
A0({0}) = 1, i.e. A% is the counting measure on R°. A function ¢ : {0} x P — X
is a C! function if and only if p — (0, p) is a C! function. Any function mapping
a subset of R%, i.e. ) or {0} into X is considered an immersion.) In the first two
cases we suppose that the values of f are in a uniform space, in the other three
that they are in a topological space. It is clear that f € My if and only if the
condition

(M) f o4 is pn measurable

is satisfied for ;1 = A\¥ whenever 1/ is an immersion of some open subset U of R*
into X.

2.3. Remarks. (1) For our purposes, the function class Ry (X,Y) will be the
most convenient one, because we want to avoid supposing that Y is a uniform space.
It is even more important, that using Rx(X,Y) we can avoid supposing uniform
continuity for the given functions in our regularity theorems and it is enough to
suppose continuity. The classes My, and L;, will also play a role. Our main results
will show that, roughly speaking, solutions f of a functional equation from Ry
are also in Rg. We will prove that Ry is the class of continuous functions, and
that all measurable functions f : X — Y from the open subset X C R" into
some second countable space Y are in R,,. Hence, step-by-step, measurability of
solutions implies their continuity.

(2) In his paper [19] Trautner proved that for a Lebesgue measurable subset M
of [a,b] C R with positive Lebesgue measure and for a sequence p,, € [a,b] there
exists an v € R and a subsequence p,,, such that p,,, +u € M. This follows from
the fact that a Lebesgue measurable function is in 77. Indeed, let us replace p,,, with
a subsequence converging to a point pg € [a,b]. Let f = &y be the characteristic
function of M, and let ¢ : R x R — R be ¢(u,p) = u— p. From &y, € 7; it follows
that for almost all uw € M + po there exists a subsequence p,,, such that

Env(u—pm,) — Em(u—po) = 1.
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This means that v + p,,,, € M for large enough s.

Trautner used his theorem — among others — to give a new proof of the well-
known result of Steinhaus, that measurable additive mappings of R into itself are
continuous.

Trautner’s method was generalized to locally compact groups and to an even
more general setting by Grosse-Erdmann [3]. His results can be applied to prove
that for the functional equation

flg(z,y)) = hly, fi(2))

with unknown functions f, fi — under suitable conditions — measurability of
f1 implies the continuity of f. He applies his abstract results for the case where
(z,y) € D, some open subset of R" x R", g : D — R" and det % and det g—g are
nonzero. His method has the advantage that one only needs the continuity of h
with respect to the second variable. Note that substituting ¢ = g(x,y) we have
locally

f@) = nly, filg1(t,9)):

compare this with Problem 1.1. Condition (T) does not seem to be strong enough
for us to obtain “measurability implies continuity” type results for the more general
equation in Problem 1.1.

(3) The class Ly, [Sk, Rk, T, M}] remains the same if we suppose only that (L)
[(S), (R), (T), (M)] is satisfied whenever U is an open subset of R¥, u = Ak, P is an
open subset of some Euclidean space, pg € P and ¢ : U x P — X is a C!-function
for which ¢, is an embedding (i.e., an immersion which is a homeomorphism of its
domain onto its range) of U into X for each p € P. This easily follows from the
locality principle mentioned in the definition.

Similarly, supposing only that ¢, is an immersion, the resulting class Ly [Sk,
Ri, T, Mg] remains the same.

(4) In condition (L) [(S)] the words “for each compact subset C' of U” can be
equivalently replaced by “for each o-finite measurable subset C of U”. This easily
follows using inner approximation by compact sets.

We start with the investigation of the simplest connections between the classes
L, Sk, Ry, T and My,.

2.4. Theorem. With the notation of the definition above, condition (L) implies
condition (S). If the point po has a countable base of neighborhoods then (L) follows
from (S). If the uniformity of Y has a countable base and p is o-finite, then (S)
implies (R). (R) always implies (T). If Y is a uniform space with a countable
base of topology, (R) is satisfied, and (M) is satisfied for all po € P, then (S) is
satisfied, too. Hence, if Y is a separable metric space, then L = S C Ry C T,
and L, "My =S, N My = R, N M.
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Proof. It is easy to see that (L) implies (S) and if the point pg has a countable
base of neighborhoods then (L) follows from (S). Condition (R) implies (T) trivially.

The proof that if Y is a metric space and p is o-finite then (S) implies (R),
mimics the proof of the classical Riesz’ theorem: Let C' be an arbitrary compact
subset of U and let us choose a sequence o; | 0. We may choose a subsequence p,,
such that the set

{u € C:dist (f(o(u, pm,)), f(o(u, po))) = 0i}

has u (outer) measure less than 27%. Let A; denote a u-hull of this set. Now if u
is not in the zero set N72; UZ; A;, then

dist (f (¢ (u, pm,)), f(p(u; po))) < o

for all i > j for some j. Let us choose a countable almost cover of U by compact sets
C1,Cs,.... Let us consider repeatedly sub-sub-...-sequences of the sequence p,,.
The diagonal process gives a subsequence, for which the convergence is satisfied
almost everywhere. The same proof works in the case of a uniform space having a
countable base of uniformity.

Now suppose that Y is a separable metric space. If f satisfies (M) for every
po € P, then we obtain that u — ¢(u,p) is u measurable for all p € P. Using
that Y is separable, we obtain that for any pair p,p’ € P the mapping u —
(f(p(u,p)), f(e(u,p")) of U into Y x Y is measurable too. This implies that for
each pair p,p’ € P the mapping

u — dist (f(@(u,p)), f(p(u,p')))

is measurable. Now suppose that (S) is not satisfied by ¢ with pg € P. This means
that there is a sequence p,, — po, 0 > 0, € > 0, and a compact set C C U such
that the measure of the measurable sets

{u e C:dist (f(e(u,pm)), f(¢(u, po))) = o}

is greater than ¢ for infinitely many m. Let us choose a subsequence p,,, for which
each of the measurable sets

Ai = {u € C: dist (f((u, pm,)), f(p(u, po))) = o}

has measure > . Then for an arbitrary subsequence p,,, for any u from the
J
measurable set Np2, U7, A;; having measure > ¢ we have

f((p(uapmij )) 7L> f(@(u7p0))'

This contradicts to that f satisfies (R). Hence we have

p{u € C :dist (f(o(u,pm)), f(e(u,po))) = o} — 0.

The same proof works for second countable uniform spaces.
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2.5. Theorem. LetY be a topological space and X an open subset of R™. Then
Mo(X,Y) = YX and Ro(X,Y) = To(X,Y) = C(X,Y), the class of continuous
functions from X into Y. If Y is a uniform space then also Lo(X,Y) = So(X,Y) =
C(X,Y).

Proof. We will use the notation of the definition. It is trivial that Mg contains
all functions from X into Y.

Now let us prove that any continuous function f: X — Y is in Rg, hence also
in 7y. There are only two cases, U = ) or U = {0}. In the first case, there is
nothing to prove; in the second case we may choose p,,, = pk.

The converse is proved indirectly: if f € 7y, but not continuous, then there
exists an zg € X, a sequence x,, — o, and a neighborhood W of f(zo) such that
flx,) ¢ W. Let U = {0}, P = X, po = xq, ¢(0,p) = p for p € P. Choosing a
subsequence of the sequence p,,, = x,, for which

f(e(0,pm)) = f(@m,) = flzo) = f((0,p0)),

we obtain a contradiction.

If Y is a uniform space, f is continuous, and C' = {0} then every py € P has
a neighborhood Py such that if p € Py, then f(p(0,p)) and f(¢(0,p0)) are close
enough, whence f € Ly C 8.

Supposing f is discontinuous at an zp € X, and choosing U = C = {0}, P = X,
po = xo, ©(0,p) = p for p € P, we obtain a sequence p,,, — po such that f(p(0, pm))
and f(¢(0,pg)) are not close, which shows that f is not in Sp.

We will prove that Lebesgue measurable functions over an open subset X of R"
are in R,,. To make the connection with earlier results in [7] clear, we do the main
part of the proof in the following abstract setting:

2.6. Theorem. Let P be a topological space, U and X Hausdorff spaces with
finite Radon (outer) measures v and v, respectively. Suppose that o : U x P — X
is a continuous function with the following property:

(1) For each € > 0 there exists a 6 > 0 such that if p € P, B C U, u(B) > ¢ then
v(ep(B)) = 0.

Suppose, moreover, that po € P and [ is a Lusin function on X with values in a
topological space. Then for U, P, po, ¢ and f the conditions (M), (R) and (T) are
satisfied. If, moreover, Y is a uniform space then (L) and (S) are also satisfied.

Proof. Let us first prove that (M) is satisfied. Let us choose a sequence of
compact sets K;, 4 =1,2,... in X such that f|Kj; is continuous and v(X\K;) — 0.
Let V be any open subset of Y. Since (f|K;)~!(V) is relatively open in K;, it is a
Borel subset of X. With the notation K = U, K; we see that B = (f|K)~'(V)
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is a Borel subset of X. The set £ = X\K has v measure zero, hence the set
N = (f|E)~'(V) is also a zero set. Now let us observe that

(fowp) T (V) =9, (B) U, ' (N).

On the left hand side, ¢, (B) is a Borel set and by condition (1), the set ;' (N)
has measure zero. This means that (M) is satisfied.

Now we suppose that Y is a uniform space and we will show that (L) is satisfied.
Let C be a compact subset of U, and let K = ¢, (C). Let € > 0 and let us choose
a 6 > 0 corresponding to £/2 by (1). Let us choose an open subset V' containing
K such that v(V\K) < ¢/2. Since f is a Lusin function, there exists a compact
subset Ky of K such that v(K\Kp) < /2 and f|Kp is continuous. Let us choose a
uniformity on the compact Hausdorff space Ky compatible with the topology. Since
f| Ko is also uniformly continuous, for each reflexive symmetric relation « from the
uniformity of Y there exists a reflexive symmetric relation § from the uniformity
of Ky such that f(z) and f(2') are a-near in Y whenever x and z’ are (-near in
Ky. Let us choose a reflexive symmetric relation v from the uniformity of Ky for
which vy o~ C (. For each u € C there exists an open neighborhood U, C U of u
and an open neighborhood P, of pg such that U, x P, is mapped by ¢ into V' and
each point of (U, x P,) which is in Ky, is y-near to ¢(u,pg). Choosing a finite
subcover U,,,Uy,,... ,U,, of C, for Py = NI, P,, we obtain that for each p € Py
the mapping ¢, maps C into V and for any u € C, if ¢(u,p) is in Ky then it is
B-near to ¢(u,po). Let p € Py and let us consider the set C' Ny, " (Ko) Ny, (Ko)-
This set is mapped into Ko by ¢, and by ¢, too, and for any u from it, ¢(u,p)
and p(u,pg) are B-near in Ky, hence f(p(u,p)) and f(p(u,po)) are a-near in Y.
If we prove that the complement of this set has measure less than e, then we are
done. Since the complement of this set with respect to C' is covered by the union
of O\, ' (Ko) and C\g, ! (Ko), it is enough to estimate the measure of these sets.
The first set is mapped by ¢, into V\Kj, hence it cannot have measure greater
than or equal to £/2. The second set is mapped by ¢, also into V\ Ky, hence,
similarly, it has measure less than £/2.

In the remaining part of the proof we use the observation that whenever K’
is a compact subset of X and C’ = ¢, !(K’) has finite s measure, then for each
€ > 0 there exists a neighborhood Py of py such that for each p € Py we have
u(C"\, ' (K')) < e. To prove this, let us choose a compact subset C”’ of the Borel
set C’ for which u(C'\C") < ¢/2 and let K" = ¢,,(C"). Let us choose an open set
V containing K" such that v(V\K") < §, where ¢ corresponds to €/2 by (1). For
each u € C” there exist open neighborhoods U, and P, of u and pg, respectively,
such that (U, x P,) C V. Let us choose a finite subcovering Uy, , ... ,U,, of the
covering U,, u € C", and let Py = N, P,,,. Then for p € Py the set C"\ ¢, ' (K") is
mapped by ¢, into V\K", hence has y measure less than ¢/2. Now since K" C K’
and C"\¢, ' (K') € (C'\C") U (C"\¢, ' (K")) we obtain that u(C"\¢, " (K')) <e.
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Now let us suppose only that Y is a topological space. We will prove that
(R) is satisfied, which implies (T). Let again C be a compact subset of U and
K = ¢,,(C), moreover let p,, — po be a sequence in P. Let e; = 2% and let §; > 0
be the corresponding sequence of numbers § by (1). Let us choose a compact subset
K C K such that f|K; is continuous and v(K\K;) < 0; and let Cy = ¢, ! (K}).
Then p(C\C1) < e1. By induction, using the statement of the previous paragraph,
we may find a sequence of indices m; < msy < ... such that u(C’l\cijjl (K1) < €i41
whenever j > m,;. This implies that u(C1\ N, @giT (K1)) < &1. Now let K5 be
a compact subset of K such that f|K> is also continuous and v(K\K3) < d2. Let
Oy = ¢ (K>), then u(C\Cy) < e3. Let us apply induction again, but using the
new subsequence instead of the original sequence. Then we obtain a subsequence
such that ((Cy\ N2, ¢, 1 (K32)) < e2. Continuing this process and taking the
diagonal sequence, we arrive at a subsequence p,, of p,, such that the measure of
the set

E; = (C\C:) U (UZ:(Ci\ey, (K0)))

is less than 2¢;. Now let £ = N2, UX, E;. Clearly, u(E) = 0. If u € C\E then
there exists a k such that u ¢ E; for ¢ > k. This means on one hand that u ¢ C\C;
for i > k, that is, u € C; for ¢ > k. This implies that ¢,,(u) € K; for i > k, in
particular ¢, (u) € Ki. On the other hand, if ¢ > k then for each ¢t > ¢ we have
u ¢ Ci\gazj"llt (K;). We will apply this only for i = k to obtain that ¢, (u) € Ky
whenever ¢ > k. Since f|Kj, is continuous, we obtain that f(¢y,,, (v)) — f(@p, (u))-

2.7. Theorem. Let X be an open subset of R™. IfY is a topological space
having countable base then every measurable function f : X — Y is contained in
RA(X,Y), T,(X,Y) and M, (X,Y). If moreover Y is a uniform space then [ is
contained in L,(X,Y) and S, (X,Y).

Proof. By Lusin’s theorem, f is a Lusin function. Let U C R™ be open, P an
open subset of some Euclidean space, py € P, ¢ : UxP — X aC' function for which
each ¢,, p € P is an embedding. We will apply the previous theorem for ¢ locally.
Let ug € U and let us choose a ¢ > 0 such that |det(¢}, (uo))| > ¢. Choosing a
neighborhood Uy of ug having compact closure and Py of pg having compact closure
such that ¢, is one-to-one on Ug for each p € Fy and |det(p),(u))| > ¢ whenever
u € Uy and p € Py, by the transformation formulae of integrals we have for any
measurable subset B C Uy that

" (p(B)) = /B [det (g, (1)) dA™ (u) > A" (B).

The inequality A" (p,(B)) > cA"(B) is also satisfied for nonmeasurable sets B, be-
cause otherwise we can find a Borel hull A D ¢, (B) for which \"(A4) < eX" (¢, ' (A))
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for some p € Py. This is a contradiction, because go;l (A) is a Borel set, hence mea-
surable.

Now, the previous theorem can be applied for ¢|Up x Py. As it was mentioned
at the definition of (L), etc., this is enough to prove that (L) [(S), (R), (T), (M)]
is satisfied for U, P, pqg, p, A™.

3. The main results

3.1. Theorem. Let Z, Z; (i = 1,2,...,n) be topological spaces. Let X;
(i =1,2,...,n) and X be open subsets of Euclidean spaces and let Y C R! be
open. Let D be an open subset of X x Y. Consider the functions f : X — Z,
fi:Xi = Zi,h:DXxZyx..xZy —Z,g::D— X; (i=1,2,...,n). Let U C RF
be open, P be an open subset of some Euclidean space, pg € P, ¢ : U X P — X a
C'-function, for which ¢, is an immersion of U into X for all p € P, and suppose
that the following conditions hold:
(1) For each (x,y) € D

f(x) =h(z,y, filg(z,9), .., fa(gn(z,9)));

(2) for each fized y € Y, h is continuous in the other variables;

(8) the function f; is in Ry on X; (i=1,2,....,n);

(4) giisCl on D (i =1,2,... ,n);

(5) for each ug € U there exists a yo such that (p(uo,po),yo) € D and the rank of
the derivative of

(U, y) = gz(‘P(UapO)a y)
at (uo,yo) is k + 1 for each 1 <1i < mn.
Then condition (R) is satisfied for f, U, P, po, o, AF.

Proof. Suppose that p,, — pg. Let us choose an open neighborhood Uy of
ug, Py of pg, and Yy of yo such that (p(u,p),y) is in D whenever u € Uy, p € Pp,
y € Yo, moreover, the rank of the derivative of the mapping (u,y) — g:(©(u,p),y)
is equal to k + 1 for all u € Uy, p € Py, y € Yy and for 1 < i < n. This is possible,
because D is open, g; and ¢ are C'-functions, the rank is lower semicontinuous and
U x Y has dimension k + [, hence the rank cannot increase above k + [.

Since the function f; is in Ry, there is a subsequence py,, of p,, such that
except for pairs (u,y) € Uy x Y; from a set E; having \**! measure zero we have

fl (gl (@(uvpmr)a y)) - fl (gl (@(u,po), y))

Now using for the subsequence p,,, that fo is in Rr4; we obtain a subsequence
P, for which, except for pairs (u,y) € Up x Yj from a set E, having A*™! measure
zero we have

J2(g2(p(u, pm,, )5 y) — falga(e(u,po),y)),
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etc. Finally, we obtain a subsequence p.,, of p,, such that except for a set £ =
U, E; of pairs (u,y) € Uy x Y having A**! measure zero we have

fi(gi(p(u, pm, ), y)) — fi(gi(e(u,po),y))

for i =1,2,... ,n. By Fubini’s theorem, for almost all y € Yy we have for almost
all uw € Uy that (u,y) ¢ E. Fixing any such y, from the functional equation and
from the continuity of h for fixed y we obtain that

f(@(uvpmt)) - f(sO(u,po)),

which is condition (R) with the function ¢|Uy x Fp.
Hence we have proved that for each ug € U there is an open neighborhood Uy
of ug such that for a subsequence p,,, of p,, and for almost all u € Uy we have

flp(u, pm,)) — fp(u,po))-

Since U is a Lindeldf space, by the remark in the definition we obtain that (R) is
satisfied.

3.2. Example. Let us consider the following example:
ai(z,y) f(z + gi(y)) =0
i=0

whenever z € R™, y € R. Suppose that the functions a; : R™ x R — R\ {0}
are continuous and the functions g; : R — R™ are in C!. Introducing the variable
xj = x + g;(y) instead of x, we obtain

Voo @ -y _
(1) flas) = ;—%(%_gj(y),y)fu 95(y) + 9:(v)-

To see that condition (5) is satisfied we have to check the rank of the matrix

D) ) daV d gtV
T () () ) — e (v)
830(”;) 890(”.1) dgl™ - dgi™
() .. g (u) )~ W)

where go,(f) and gzm are the coordinate functions of ¢, and g;, respectively. If this
is k + 1, then we may apply our theorem with [ = 1. This means, geometrically,
that the vector g;(y) — gj(y) is not contained in the range of the linear operator
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©p, (1) (Which is known to be k-dimensional). This range can be any k-dimensional
linear subspace in R™. It may happen that for each k-dimensional linear subspace,
there exists a y € R such that none of the vectors g;(y) — g;(y), i # j is contained
in the linear subspace. Then our theorem can be applied directly and proves that
f € Riy1 implies f € Ry. If this is the case for k =m —1,m —2,... ,0 then we
obtain that every measurable solution is continuous. But there are situations when
this is not the case. If, for example, the derivative of the functions g; is constant,
i. e. if g;(y) = b; + yc;, then for any fixed j, equation (1) cannot be applied to
get f € Ry, from f € Riy1, because for some functions ¢ the range of ¢, (u) will
contain some of the vectors g;(y) — g%(y) = ¢; — ¢;. But we have the possibility
to use any of the equations (1). Using that to be in Ry is a local property, it is
enough to prove that for any k-dimensional linear subspace of R™ there exists a
j such that none of the vectors ¢; — ¢j, @ # j is contained in the given subspace.
For example this is the situation if n > m and the vectors cg, ... , ¢, are in general
position. If this condition is not satisfied, then it is still possible that our theorem
can be applied. A similar (but somewhat simpler) situation was studied in the
paper [13], in the proof of Theorem 2.3.

3.3. Remark. Although, as the example above shows, Theorem 3.1 can be
applied in several cases, it is not satisfying because condition (5) is too strong.
If we want to apply theorem 3.1 to prove that f € Ry then ¢ can be arbitrary.

Hence condition (5) implicitly means that the rank of %g

if %gi has a large rank. This in practice means that the g; have to depend on

:vi has to be large, even

all coordinates of z, which is not comfortable. We want to relax this condition.
Instead of supposing that

(ua y) = gi(@(uvpo)v y)

has maximal possible rank k + [ at (ug,yo) we will only suppose that it has a
constant rank k; (depending on %) on a neighborhood of (ug, po,¥o). But in this
case we have to work with functions from R N My, and, roughly speaking, our
theorem says that solutions in Rg1 N M1 are also in Ry N M.

First we deal only with the measurability condition (M). We will use the fol-
lowing lemma to prove that condition (M) for the unknown functions f; implies
condition (M) for f.

3.4. Lemma. Let X be an open subset of R™, Y a topological space, 0 < k <n
and f € Mp(X,Y). If ¢ is a C' mapping of the open subset U of R™ into X for
which the rank of the derivative is k everywhere, then f o is A™ measurable.

Proof. The lemma directly follows from the rank theorem. Indeed, the rank
theorem implies, that for each ug € U there exists an open neighborhood Uy such
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that ¥|Up can be written as o o p o . Here, with the notation I = (—1,1), the
mapping 3 is a diffeomorphism of Uy onto I™ such that S(ug) = 0, the projection
p of I"™ into I™ has the form p(z1,22,... ,2m) = (21,22,...,2x,0,...,0), and
a is a diffeomorphism of I™ onto an open set Xo mapping 0 into zg = %(ug)-
Identifying the set I* x {0} C I™ with I* we have that o|I* is an immersion,
hence (f o (04|I’“))_1 (V) is A\¥ measurable for each open subset V of Y. Since
p~'(A) is A measurable for each A\*¥ measurable subset A of I*, and 3~(B) is
A™ measurable for each \™ measurable subset B of I"™, we obtain that f o (¢|Up)
is A™ measurable. Now using that U is a Lindeldf space, we get the general case.

3.5. Theorem. Let Z be a topological space and let Z; (i = 1,2,...,n)
be separable metric spaces. Let X; (i = 1,2,...,n) and X be open subsets of
Euclidean spaces and let Y C R! be open. Let D be an open subset of X x Y.
Consider the functions f : X — Z, f; : X; — Z;, h : D X Zy X ... X Z,, — Z,
gi:D— X; (i=1,2,...,n). Let U C R* be open, 1) : U — X be a C' immersion
of U into X, and suppose that the following conditions hold:

(1) For each (x,y) € D

f(x) =h(z,y, fi(g(z,9), ., fa (gn(z,9)));

(2) for each fized y € Y, h is continuous in the other variables;

(8) the function f; is in My, on X; (i=1,2,...,n);

(4) giisC on D (i =1,2,...,n);

(5) for each ug € U there exists a yo such that (¥(ug),yo) € D and the rank of the
derivative of

(ua y) = gl(w(u)a y)

is k; on a neighborhood of (ug,yo) for each 1 < i < n.

Then u — f(1p(u)) is measurable.

Proof. Let us choose an open neighborhood Uy of ug and Yy of yo such that
(¥(u),y) is in D whenever u € Uy, y € Yy, moreover, the rank of the derivative
of the mapping (u,y) — g;(¢¥(u),y) is equal to k; for all u € Uy, y € Yy and
for 1 < ¢ < m. This is possible by condition (5). By the previous lemma we
obtain that the mapping (u,y) — fi(g:(¥(u),y)) is A**! measurable. By Fubini’s
theorem except for a set E; of points y from Yy with A! measure zero the mapping
u v fi(gi(¥(u),y)) is A¥ measurable on Uy. Hence, except for the set E = U, E,
for all y € ¥ the mapping

w—= (), fi(g1(P(w),y), - s falgn(¥(w), y)))
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of Uy into Dy x Z; x --- X Z,, is measurable. Since for any fixed y the function h is
continuous in other variables, we obtain that for any fixed y € Y5\ F the mapping

wi— h(¥(u),y, fi(g1((w),y)), - s falgn(d(u), y)))

is measurable. This means that u — f(¢)(u)) is measurable on Up.
Since U is a Lindel6f space, the statement follows.

The following theorem is the key to the generalization 3.7 of theorem 3.1.

3.6. Theorem. Let U C R™, X and P be open subsets of Fuclidean spaces,
po € P, Y a separable metric space, ¢ : U x P — X a C' function, for which
rank o (u) =k for eachu € U, p € P. If f € My(X,Y)NLx(X,Y) then condition
(L) is satisfied for f, U, P, po, ¢ and A™.

Proof. Let ug € U. Since the rank of ¢}, (uo) is equal to k, we may write u as
u = (up,uz) € R¥ x R™~* such that the determinant of

%(u )
Oy 0, Po

is not equal to 0. Hence there exists a neighborhood U; x Us of ug and a neighbor-
hood Py of pg such that the closure < U; of U; is compact, < U; x Uy C U, and
the mapping

ur — p(ur,u2,p)

is an immersion of U; for each uy € Us, p € Py. We may suppose that A\*(U;) and
A=k () are finite. Since f € Ly, for each £,0 > 0 and for each uy € Us there
exists a § > 0 such that if |u) — ua| < J, |[p — po| < 0, then u} € Uz and

e

)‘k{ul el : diSt(f((p(ulaU’IQap))a f((,D(Ul,UQ,pO))) > 0/2} < m

Applying this for p = pg, too, and combining the two inequalities, we obtain that

(1) Aur € Uy = dist(f(olun, s ), F i (un, b)) 2 0} < s

for each w} for which |ujy — us| < ¢ and for each p for which |p — pg| < 4. For a
fixed €,0 > 0, let §,, be the d corresponding to us € Us.

Let C be an arbitrary compact subset of U; xUs and let Cy = {us : (u1,us2) € C'}
be the projection of C. The closed balls with center us € Cs and radius < dy,
gives a Vitali covering of Cs, and hence it is possible to find a disjoint sequence B;,
i=1,2... of them which A™~* almost covers Cs.
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Since f € My, by the previous lemma the mappings v — f(p(u,p)) are ™
measurable for each p € Py. Hence the mapping

is measurable, too, i. e. the sets

(2) {u e U x B; : dist(f((u, p)), f(p(u, po))) = o}

are \™ measurable too. Using (1) and Fubini’s theorem we obtain that the A™
measure of the set (2) is at most A~ *(B;)e/A™~*(U,). Since the sets B; are a
disjoint almost cover of Cs, we have that

A e C = dist(f(e(u, p), f((u,po))) > 0} <e.

Hence we have proved that each ug € U has a neighborhood Uy = U; x Us such
that (L) is satisfied on this. By the remark in the definition of (L) the statement
follows.

3.7. Theorem. Let Z be a topological space and let Z; (i = 1,2,...,n)
be separable metric spaces. Let X; (1 = 1,2,... ,n) and X be open subsets of
Euclidean spaces andY C R be open. Let D be an open subset of X xY. Consider
the functions f : X — Z, fi : X; > Z;, h : DX Zy X ...xXZyp —Z,q9;,: D — X;
(i=1,2,...,n). Let U C R* be open, P an open subset of some Euclidean space,
po € P, p:U x P — X aC'-function, for which each p,, p € P is an immersion
of U into X, and suppose that the following conditions hold:

(1) For each (x,y) € D

f(x) =h(z,y, filg(z,9), ., fa(gn(z,9)));

(2) for each fized y € Y, h is continuous in the other variables;

(8) the function f; is in Ry, " My,, (i=1,2,... ,n);

(4) giisC on D (i =1,2,...,n);

(5) for each ug € U there exists a yo such that (p(uo,po),yo) € D and the rank of
the derivative of

(u,y) = gi(p(u,p),y)

is k; on a neighborhood of the point (ug, po,yo) for each 1 < i < n.
Then the conditions (R) and (M) are satisfied for f, U, P, po, @, AF.
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Proof. From Theorem 3.5 it follows that condition (M) is satisfied by f, U, P,
po, @, AF. Let us fix an ug € U and let us choose a yo for ug by (5). Let us choose
open neighborhoods Uy, Py and Yy of wg, po and yg such that (p(u,p),y) € D
whenever u € Uy, p € Py and y € Yy, moreover the rank of the derivative of

(u,y) — gi(o(u, p),y)

is k; on Uy x Py x Yy for each 1 <4 < n. Now the proof that condition (R) is also
satisfied is exactly the same as in Theorem 3.1, but we have to use the previous
theorem instead of the definition.

4. Further investigation of the new notions

4.1. Conditions. In what follows we will only investigate the situation, where
X is a nonvoid open subset of R™ and f maps X into a separable metric space,
because we want to avoid any difficulties arising only from the poor topology of
the range Y.

4.2. Remark. There is a kind of locality other than the one treated after
Definition 2.2. We have f € L;(X,Y) if and only if each 2o € X has an open
neighborhood X C X such that f|Xy € L£i(Xo,Y). The “only if” part is trivial.
To prove the “if” part we will use the notation of Definition 2.2. Let us note that
for each point uy € U there exist open neighborhoods Uy and Py of ug and po,
respectively, such that for g = p(ug,po) the set ©(Uy, Fy) is contained in Xj.
This means that (L) is satisfied for ¢|Uy x Py. Now from the locality principle in
the definition we have that f € £;(X,Y). The same locality is true (and the same
proof works) for Sk, Rk, Tx and M.

4.3. The class M. Let
A = {A CX:€p€ ./\/lk(X, {0, 1})}

where {0,1} is taken as discrete space. It is easy to see that Ay is a o-algebra,
and a function f : X — Y is in My(X,Y) if and only if f~1(V) is in Ay for
each open subset V of Y. Hence the investigation of My (X,Y) is reduced to the
investigation of the o-algebra Aj. It is easy to see that A, is the class of all \"
measurable subsets of X and Ay is the class of all subsets of X. We will prove that
A € Ay, if and only if for each open set U C R and for each immersion ¢ : U — X
the set ANrng1 is x* measurable.

For each u € U, there exists a compact neighborhood C of u such that the
restriction of ¢ to C' is one-to-one. By the transformation formulae of integrals,
if »~1(A) N C is Lebesgue measurable, then 1(C) N A is Hausdorff measurable.
In the other direction, if ¢(C) N A is Hausdorff measurable, then, using that the
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Hausdorff measure of ¢(C) is finite, there exist Borel sets B, N C 1(C) such that
B C A, (ANy(C))\ B C N and x*(N) = 0. The sets (|C)~(B) and (x)|C)~1(N)
are Borel sets, and the later may only have measure 0. This means that the \*
measure of (1|C)~!(A\ B) is zero, too, and hence (1|C)~!(A) is ¥ measurable.

Now for each u € U choosing a compact neighborhood C' as above, countably
many of them covers U. If ANrnge is x* measurable, then the sets (|C;) 71 (A)
are all \¥ measurable, and hence ¢~ (A) is A\¥ measurable. In the other direction,
if 1p~1(A) is A*¥ measurable, then the sets ¢¥~'(A) N C; are measurable, too, and
hence ANrngvy = (Usp(C;)) N Ais a x* measurable set.

What we have proved until now implies that every x* measurable set is in Ay,
because rng is always x* measurable. A countably (x*,k) rectifiable set is in
Ay, if and only if it is x* measurable. We have only to prove that if A € Ay is
countably (x*, k) rectifiable, i. e. if A is x* almost subset of a countable union of
Lipschitz images of bounded subsets of R¥, then A is y* measurable. By Theorem
3.2.29 from [4], A C NU(UX, S;), where x*(N) = 0 and each S; is a k-dimensional
C! submanifold of X. Dividing S; into smaller parts, if necessary, we may suppose
that each S; is the image of some open subset of R¥ by a C' immersion ;. Since
Y1 (A) is \F measurable, the set ANrng; = AN S; is x*¥ measurable for each i.
Hence

A=(ANN)U(UZ,(ANS)))

is x* measurable.

There are x* nonmeasurable sets in A;. Any non x* measurable subset ([4],
2.2.4) of a purely unrectifiable compact subset with finite x* measure is an example.
For such a set A, the set 1y~1(A) has measure 0 for each immersion v from an open
subset of R* into X. Example of a purely unrectifiable set can be found in [4],
3.3.20. See moreover [16], 3.17.

4.4. Connections between My, Li, Sk, Rr and 7;. One of the simplest
questions is, whether f € My implies f € Li, Sk, Ry or 7. We know that this
is true for £ = n. If £ < n then the characteristic function of the intersection of
X and an appropriate k-dimensional plane is in M}y, but contained in none of the
classes Lk, Sk, Ri, 7x.

In the other direction, suppose, that f € L = Sk C Rr C 7. The question
is, whether f € My, is satisfied. This is trivial for £ = 0. We will show that this
cannot be proved in ZFC for 0 < & < n. Namely, we will give an example f under
the continuum hypothesis for which f € £, but f ¢ M,;. By the famous results
of Goédel and Cohen, the continuum hypothesis is independent from the axioms of
ZFC. This means that My C L, cannot be proved in ZFC.

Another question is whether Sy = Ry. This is trivial for k¥ = 0. We will show
by a counterexample under the continuum hypothesis that for 0 < k < n this is
not a theorem in ZFC. I do not know anything about the case k = n.
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Similarly, we may ask whether Ry = 7 or at least M, N Ry = My N 7. This
is also true for k = 0. For 0 < k < n we will prove that My N Ry, & My N 7T,
hence R € 7. For k = n we know that M,, C R, C 7, hence of course

=
M,NR, =M, N7T,. Idonot know whether R,, = 7,,.

4.5. Hierarchy of function classes belonging to different dimensions.
Let us fix dimensions 0 < k < I < n and let us investigate the connection between
the classes My, L, etc. and classes M;, L, etc.

We may hope that decreasing the dimension conditions (L), (S), etc. become
stronger. One of the only two positive results in this direction is that this is true
for the conditions (L), (S) and (R) under measurability:

MM N L C L.
The proof of this statement is very similar to the proof of Theorem 3.6, therefore
we do not repeat the argument.

We will show by a counterexample under the continuum hypothesis that for
k>0
ZFCE MyN Ly C M;UT;.
(F indicates that the right hand side is a theorem in the system on the left.)
Similarly we will show by a counterexample under the continuum hypothesis
that
IZFCE MN LN L C M,

except for the trivial case k = 0.

It is much easier to see that inclusions in the other direction do not hold in
general. Although
M; C Mg

is satisfied trivially, in general
M & My, if k> 0.

This is shown by the characteristic function of a non y* measurable subset of the
intersection of X and an appropriate & dimensional plane. The same example
shows that

MiNnL §Z M UT.

If we take the characteristic function of the intersection of X and an appropriate
k dimensional plane, then we see that

Mlﬁﬁlﬂ/\/lk¢77€.

We will show that
MiNR, C M.

I do not know whether Ry may be replaced here by 7 except for the trivial case
k=0.
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Let us see the proofs.

4.6. Theorem. Under the conditions of 4.1 for 0 < k < I < n we have
M N Ry C M.

Proof. This is trivial for £ = 0. Otherwise, let ©) be an immersion of an open
subset U C R¥ into X. Let ug € U and let V be an [ —k dimensional subspace of R"
orthogonal to rngv’(ug). Let 7 : RI=F — V be a linear isometry, and let us define
¢ by ¢(u,p) = ¥(u) + 7(p). Then for py = 0 we have ¢,, = 1. Let us choose open
neighborhoods Uy and Py of ug and pg, respectively, such that ¢(Uy, Py) C X and ¢
is an immersion of Uy x Py into X. Since f € M, the mapping (u,p) — f(p(u,p))
is A\ measurable. Hence for A’ almost all p € Py the mapping u — f(p(u, p)) is
AF measurable. Let us choose a sequence p,,, — po such that each u — f(o(u, pm))
is measurable. By f € Ry it is possible to choose a subsequence p,,, such that

flp(u,pm,)) — f(p(u, po))

for \¥ almost all u € Uy. Hence u — f(1)(u)) is measurable over Uy, i. e. locally.
This implies that f € M.

4.7. Counterexample. Under the conditions of 4.1 we will show by a coun-
terexample that for 0 < k < n we have My N Ry ; My N Ty,

Proof. For simplicity, we will work with a nonvoid k-dimensional plane in X

having the form V' = X N W where W = {(x1,22,... ;25,20 ,,... ,29) € R"} for
some fixed z{, ,,... ,2). Without loss of generality we may suppose that z ,, =
- =2% = 0. Our function f will depend only on x1,... ,z; and on the distance

r=/xp, ., + - 22 from the subspace W. Let f(x) = 0 whenever r = 0. Let g(y)

be 0 or 1 on R* depending whether the sum of the integer parts of the coordinates of
y € R¥ is even or odd, respectively. We will use a smoothing h of this “chesshoard”
function g to define f. The continuous function h is obtained taking the mean of g
for a brick around y, namely, on the set of all z € R* for which the difference z; —;
of all coordinates is between —1/4 and 1/4. Now for any nonnegative integer m if
r=a2"+ (1 —a)27™! for some 0 < o < 1 then let us define

F@.@er1, - @) = ah(27y) + (1= )h(2™*y).

For r > 1 let
f(yamlﬁ-la oo 7:671) = h(y)

Since f is continuous on the two parts V and X\V of X, it is a Borel function,
hence it is in M,, for any 0 < m < n.
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First we will prove that f ¢ Ry. Let m be the embedding

y— (y1,--- Yk, 0,...,0)

of R¥ into R™. Let us choose a K € N and a vector 4° from 2-5ZF such that if U is
the set of all points y for which all coordinates of y—1° are greater than zero and less
than 27X then the closure of 7(U) isin V. For p € R let ¢(u, p) = 7(u)+pe,, where
ey is the unit vector (0,...,0,1) € R™. For an appropriate M we have p(u,p) € X
whenever u € U andp € P = {p: |p| <27M}. Let po = 0 and p,,, = 2~™ whenever
m > M. For any subsequence p,,, of p,, it holds that if for a given v € U for
infinitely many s we have f(i2(, pm.)) = 1 then f((u, pm,)) 7 F((u,po)) = 0.
Hence with the notation U, = {u € U : f(¢(u,pm)) = 1} convergence can occur
only if there exists an S such that for each s > S we have u ¢ U,,,, i. e. if
u ¢ NGy UX g Un,,. Hence convergence almost everywhere may happen only if

NNy U2 g Un,) = 0.

This means that for convergence almost everywhere \¥(U,,,.) — 0 is necessary. But
this does not hold because \*(U,,,) = \¥(U)/2* whenever ms > K.

It is much harder to prove that f € 7. Let U be an open subset of R¥, let
P be an open subset of some Euclidean space, pg € Pand ¢ : U x P — X a C!
function for which each ¢,, p € P is an immersion. Let p,, — po be a convergent
sequence in P. Since the function f is continuous on X\V, if ¢(u,pg) ¢ V then
flo(u,pm)) — f(e(u,po)). Hence we have to deal only with the set Z ={u e U :
o(u, po) € V'}. Let us introduce the notation U, = {u € Z : f(p(u,pm)) > €}. We
have to prove that for almost all © € Z there exists a subsequence p,,, of p,, for
which f(o(u, pm,.)) — f(p(u,po)) = 0. This means that for each £ > 0 and for each
M there exists an m > M such that u ¢ UZ,, i. e., that u ¢ U0 U35y NS, U,
Hence we have to prove that this set has A\¥ measure zero. Since decreasing e
the set U37_y NS°_,, Us, increases, if we take a sequence 5 > 0 tending to 0 and
restrict the union for only these numbers €4, the union does not change. Hence it is
enough to prove that for each € > 0 the set USj_; No°_,, UZ, has measure zero, or,
equivalently, that for each € > 0 and for each M the set N)°_,,U;, has AF measure
zero. If this is not the case, then there exists an € > 0 and an M for which there
exists a density point ug of this set. Suppose for contradiction that this is the case
and let us fix e, M and wy. Moreover, we may suppose that ug € No°_,,Uz,.

Let us write ¢ = (p1,p2) where ¢ (u,p) is the first k¥ coordinates of o (u,p)
and pa(u,p) is the last n — k ones. Since wug is a density point of Z, too, we
have @5, (ug) = 0 and det ¢} , (ug) # 0. Using the proof of the inverse function
theorem, it is possible to find a ¢ > 0, an open ball U, with center ug and a
neighborhood Py of pg such that whenever Bs(ug) is contained in Uy and p € Py
then Bes(¢1,p(ug)) is contained in 1 ,(Bs(ug)). Furthermore we may suppose that
ll¢h p(u)]l < ¢/(16vk) whenever (u, p) € Uy x Py. Shrinking Uy and Py, if necessary,
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we may also suppose that for some positive constant C' we have J(¢1,)(u) < C
whenever (u,p) € Uy X Py, where J is the absolute value of the Jacobian.

Let a(k) denote the \¥ measure of balls having radius 1 in R¥. Then, of course,
the A\* measure of any ball having radius ¢ is a(k)6*. Since ug is a density point,
there exists a g > 0 such that for the closed ball Bs(ug) we have

ckok
N (Bs(uo)\(Mpr=piU)) < Chk/2o5k
whenever 0 < § < &g. For this §p let us choose an sqg > 1 for which 27 %+ <
050/\/E. Let us choose an My such that for m > My we have p,, € Py and the
distance of ¢(ug, py,) from W is less than 2702, Let us fix an m > max{M, M }.
Since ug € UZ,, the distance of ¢(ug,pm) from W is greater than 0 but less than
27572 Let us choose an s such that this distance is not less than 3-27573 but
less than 3-27572. Clearly s > so. Let Vk27%/c < § < Vk275"1/c. Then we
have 0 < 6 < §. Let S denote the set of all those y € R* for which all coordinates
of 2%y has the same integer part as the corresponding coordinate of 2%y, where
Yo = ©1(uo, pm)- The set S is the cartesian product of intervals having length 275,
Hence the diameter of S is vk275 and because yo € S, the set S is contained in
©1,p, (Bs(uo)). Using the estimate of |¢5 , (u)| valid for all u € B;(ug) we obtain
the estimate
02 (tt, pm) — 92 (10, prm)| < €6/(16Vk) < 27°77.

This implies that the distance of ¢(u, p,,) from W is between 27°=2 and 27°. Let S
denote those points y of S for which all of the three functions h(2%y), h(2571y) and
h(2512y) take the value zero. A y € S is in S if and only if the fractional part of all
the coordinates of 2%y, 25*1y and 2572y is between 1/4 and 3/4. This means that
the fractional part of all the coordinates of 2%y is in [5/16,6/16] U [10/16,11/16].
Hence the \*¥ measure of Sy is 275*=3% If u € Bs(ug) and y = @1 (u, pm) € So,
then v ¢ \UZ,. But J(¢1,,,)(u) < C, hence by the transformation formulae of
integrals we have

275k73k Cké‘k
C = Ckk/293k"

N (Bs(u0)\Uy,) >
This contradicts the choice of §y. This contradiction proves that f € 7.

For the following counterexamples we need a lemma. The counter examples are
related to the existence of the so-called almost invariant sets. These sets were used
by Kakutani and Oxtoby to prove that the Lebesgue measure on the complex unit
circle can be extended to an invariant measure such that the Hilbert space dimen-
sion of the corresponding L? space becomes 2°, where c is the cardinal number
continuum. The construction below is a refinement of the construction from the
paper [6] of the author, where the result of Kakutani and Oxtoby was extended
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— among others — to arbitrary locally compact groups. The ideas there are com-
bined with the well-known ideas of Sierpinski to construct under the continuum
hypothesis a subset of the unit square with outer measure 1 and containing at most
two points on each line. To understand the typical application of this abstract set
theoretic lemma, we may think of the case when X is the plane, T' is the class
of all diffeomorphisms mapping some open subset of the plane onto some other
open subset of the plane, F is the class of all compact plane sets having positive
Lebesgue measure, G is the class of all one-dimensional C' submanifolds of the
plane and n = ¢ = N;.

4.8. Lemma. Let X be a set and T a class of one-to-one transformations each
mapping a subset of X into X and let F, G be classes of subsets of X. Suppose
that there exists a cardinal number n > Rg with the following properties:

(1) card(X) = n;

(2) card(T) < n;

(8) card(F) < n and for every F € F we have card(F) = n;

(4) card(G) < n and for every F € F and Go C G for which card(Gy) < n we have

card(F\ UGp) = n;

(5) The class G is T invariant, i. e. if G € G, 7 € T then 7(G) € G and 77 (G) € G.
Then there exists a family {X,}yer of subsets X, of X with the following proper-
ties:

(6) card(T') = n;

(7) the sets X, v € T' are pairwise disjoint;

(8) for each v € ' and G € G we have card(X, N G) < n;

(9) card(F N X)) = n whenever y €T and F € F;

(10) for every subset Tg of T and for every 7 € T

card (7(Us ery X3) A (7(X) 0 (User, X3))) < .

Proof. Let Q be the smallest ordinal having cardinality n. We may suppose
that F is nonvoid, because otherwise we may replace it with {X}. Let Y be an
arbitrary set with cardinality n. Since card(Y x F) = n, there exists a one-to-
one mapping « +— (Yo, Fy) of the set of ordinals {a : 0 < a < Q} onto Y x F.
The transfinite sequence Fy, ..., F,,...,0 < a < € contains every element F' of F
exactly n times. Similarly, we may suppose that G is nonvoid, because otherwise we
may replace it with {(}, and we may choose a transfinite sequence G, ... ,Ga,. ..,
0 < a < Q containing all elements of G. Let us choose a mapping a — 7, of the
set {a: 0 < a < Q} onto the set {1x} UT for which 75 = 1x where 1x is the
identical mapping of X onto itself. For each x € X and each ordinal a < 2 let
C,(x) denote the set of all points of X that can be written as

'rgi O~'~OTE:(1‘)
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wheren =1,2,...,k=1,2,....,n,0 < By <aand g is 1 or —1. Here 7! means
the mapping 7 and 7~! means the inverse of 7. Clearly, we have z € C,(z) and for
€ Xand0 < g <a< Qwehave Cg(x) C Co(z) and 75 (Co () = 73(X)NCq(x).
We also have

card (Cy(z)) < max{card(a),Ro} < n.

If A C X then we will use the notation C,(A) for UyeaChq(x). We will show that
there exists a transfinite double sequence

{25:0<8<a<Q}
of elements of X such that:
rgeF, if 0S8 <a<(y
the sets {Co(23) :0< < a<Q} are pairwise disjoint;

Cy(28) is disjoint from any Coa(G4), v < a

(03

If we agree that (v, d) < (o, 3) whenever v < o or v = v and 6 < (8 (lexicographic
ordering), then {(o,8) : 0 < 5 < a <} is a well ordered set. We will define the
sequence {xg :0 < B < a< Q} by transfinite induction. Let 29 be an arbitrary
point of Fy\Go. Suppose that 0 < f < a < Q and that z] have already been
defined for all pairs (v,d) < (o, 3), 0 < § <. Consider the union D(a, 3) of the
sets Co(z)) as (7, d) runs over all pairs (v,d) < («,3). Then

card (D(a, 8)) < (card(a))? max{card(a), R} < n.

Let E(c) be the union of all sets Co(G~), v < a. By (5), E() is the union of some
Go C G with card(G,) < n. By (4) the cardinal number of F,\E(«) is n, hence
(Fo\E(a))\D(a, ) is nonvoid. Let 2§ be an arbitrary point of (F,,\ E(a))\D(e, 3).
Then Cy(x3) is disjoint from every C¢(z) where x = zj for some (v,0) < (a, 3) or
x € G¢ for some ¢ < . Otherwise we would have

'rgi o~~0'r§:(:cg) :'rgl1 o~~0'rg7$(z),

where B, < a, §; < o, e is 1 or —1, and n; is 1 or =1, k = 1,2,...,n, j =
1,2,...,m. Hence
:cg:Tg:”o'uo%_lEIO'rgfo'~o7'(;77’:(:c),

and this contradicts the choice of zg‘
Now let
I'={¢: ¢isanordinal and 0 < ¢ < Q};
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Xe=|J{Cala®): ¢ <a<Q}, (€T

Properties (6) and (7) are obvious. Since 2§ € F'and 2 € Cq(z¢) C X¢ whenever
(<a<Qand F, = F, we have that F'N X, has at least n elements. Hence (9)
is satisfied.

To prove (8) let us observe that

Co(xg)NGy =10
whenever a > . Hence, if G = G then
XcNG CU{Cu(ag) : ¢ <a< v}

and the right hand side has cardinality less than n.
To prove (10) let Ty C T and 7 € T. Suppose that 0 < v < Q and 7, = 7.
Using that
Ty (C’a(:c?)) =7,(X)NCalxg) if y<a<Q

and
LJ 4Xz ::LJ {(xa(z?) :C € FU; C S;Qf<:()}a

CeTly

we have that
TW(UCEFOXC)A(TW(X) N (Ugerng))
cU{m (Cala) UCa(ag) i ¢eTy, ¢ <a<q).

Since
card (Co () Uy (Co(2g))) < max {card(a),No},

the right hand side has cardinality less than n. Hence (10) is proved.

4.9. Counterexample. Using the conditions of 4.1, under the continuum
hypothesis for 0 < k < n we have L, ¢ M.

Proof. We will give a function f € Ly for which f ¢ M;. We want to apply
the previous lemma. We will use only that the functions ¢ in the definition of
L}, are continuous and that by Remark 2.3.(3) we may suppose that the functions
¢p are one-to-one. Let 1" denote the class of all one-to-one functions 7 which can
be represented in the form ¢, o gazj,l, where U is an open subset of R*, P is an
open subset of some Euclidean space and ¢ : U x P — X is a continuous function
for which all ¢,, p € P is one-to-one. Since the cardinality of all pairs U, P is
continuum and any continuous function ¢ is uniquely determined by the values on
a countable dense subset, the cardinality of the class T is continuum.
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Let F denote the class of all compact k rectifiable subsets of X having positive
x* measure. Since each compact set is uniquely determined by its complement,
and the open complement is determined by its subsets from a fixed countable base,
it follows that the class F has c elements, and all elements have cardinality c.

Applying the previous lemma with G = () we obtain a class of subsets X,, vy € R
of X. Our counterexample will be the characteristic function f of X, i.e. X, for
v=0.

Let U be a bounded open subset of R¥ and 1) : U — X be an immersion for
which the rectifiable and x* measurable set M = 4(U) has positive but finite x*
measure. Let us observe that if Xo N M were of x* measure zero, then M\ X,
would contain some F' € F, which is impossible because F'N Xq # 0. If Xo N M
were x* measurable with positive xy* measure then it would contain some F € F.
But this is impossible because F'N X, # 0 and X, N X = 0 for any v # 0. Hence
Xo N M is non x* measurable. By 4.3 this implies that f ¢ Mj.

We will prove that f € L. Let C be a compact subset of U. The set

{ueC: flep(w) # flep(u))}
is equal to the set
<p;01 ({:I: € 0 (C) 1w € XoA(pp, © wgl)(XO)}) .
For the mapping 7 = ¢p, o go;l this set is a subset of the set
P ((T(X) N Xo) AT(X0)) -
If we suppose that the continuum hypothesis holds then this set is countable.

4.10. Counterexample. Using the conditions of 4.1, for 0 < k < n under the
continuum hypothesis Sy, ; Ri.

Proof. We apply the construction of the previous lemma, choosing for 7', F
and G the same classes as above to obtain the sets X, v € R. If m € Nand m > 2,
let fi(x) = gm(x)hm(x), where g, () is the characteristic function of the set X,,,
and

0, if dist(z, D) < 15
0, if dist(z, D) > —L;
hon(@) =3+ 1) (dist(w) _ m%l) if 1o <dist(z,D) < L;
m(m — 1) (ﬁ - dist(z,D)) if o < dist(x, D) < iy,
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where D is a given nonvoid k-dimensional closed disk contained in the intersec-
tion of X with a k dimensional plane. Let f = Y °_| f,. (As in the previous
counterexample we can prove that f ¢ Mj.) As in the previous counterexample it
follows that each g,, is in L = Sk, hence in Ry, too. The same is trivial for the
continuous function h,,. From this it follows for the product g, h,, that it is also
in Ry. Since everywhere on the open set X\D the function f is locally the finite
sum of such products, we have that f|X \ D € Ry. Let ¢ : U x P — X and let

F = {u: ¢(u,po) € D}.

Clearly F' is a closed set. Let C be a compact subset of F. For p,, — po, let
R, ; denote the set of all points u for which ¢(u, p,,) € X; but ¢(u,po) ¢ X; or
o(u,pm) ¢ X; but p(u,po) € X;. Under the continuum hypothesis, the sets R,, ;
and their union R = U7 ;| R,, j are countable and hence have A¥ measure zero.

Let us observe that for each i there exists an m; such that if m > m; then for
each u € C we have

1

syMPm) — ) < .

o, pm) = p(u,po)| < -5
Hence, if u € C but v ¢ R and u ¢ U;’iigogol (X;), then ¢(u,pm) ¢ X, whenever
j > i. Hence gj(¢(u,pm)) = 0 for j > i. On the other hand, dist(p(u, pm), D) <
77, hence hj(p(u, pm)) = 0 whenever j < i. So we obtain that f(o(u,pm)) = 0
whenever u ¢ R, u ¢ U520, (X;) and m > m;. Since the sets X; are disjoint,
flo(u,pm)) — f(e(u,po)) for m — oo whenever u ¢ R, i. e. almost everywhere.

Taking union for countably many sets C' we obtain that f € Ry.

On the other hand, if e # 0 is orthogonal to D and ¢(u, p) = ¥ (u) + pe, where 9
is an isometric immersion mapping some nonvoid open subset of R* into D, pg = 0,

then, for p,, = 1/m we have that

{ue C:|f(e(u,pm)) = fp(u,po))| = 1} D¢~ (Xm) NC,

if m is large enough, except for a countable set. The set on the left hand side has
the same A\* measure as C. This shows that f ¢ Sk.

4.11. Counterexample. Using the conditions of 4.1, under the continuum
hypothesis for 0 < k <1 <mn we have My N Ly N L, & M,.

Proof. We will give an example of a function f € My N L N L, but f & M.
We want to apply Lemma 4.8. We will use that by Remark 2.3.(3) we may suppose
that the functions ¢, in the definition of £; are one-to-one immersions. Let T
denote the class of all one-to-one functions 7 which can be represented in the form
©p O 90;,1, where U is an open subset of R!, P is an open subset of some Euclidean
space and ¢ : U x P — X is a C' function for which all ¢,, p € P are one-to-one.
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Let F denote the class of all compact [ rectifiable subsets of X having positive x!
measure. Let G be the class of all k-rectifiable Borel subsets of X. It is not hard
to prove that the class G is T invariant. Moreover all G € G has x! measure zero,
hence the same is true for the union of countably many G € G. This means that
F\ U Gy has positive x! measure, hence cardinality ¢ for any countable subfamily
Go C G and for any F' € F. Other conditions of Lemma 4.8 has already been
checked at 4.9.

Applying Lemma 4.8 we obtain a class X, v € R where each X, contains only
countably many points from each G € G, but X, N F # () for each F' € F, hence
X, N F is not x! measurable for any F € F.

Let f be the characteristic function of Xy. Along the same lines as in 4.9 we
get that f € £; but f ¢ M,. Since for any C! embedding ¢ of an open subset of
R¥ into X the function fo4) is zero except for a countable set, we get that f € My
and f € Ly, too. Hence the statement is proved.

4.12. Counterexample. Using the conditions of 4.1, under the continuum
hypothesis for 0 < k <1 <mn we have My N Ly ¢ M;UT;.

Proof. Let us apply Lemma 4.8 for the same 7', 7 and G as in the previous
counterexample. We obtain a class X, v € R where each X, contains only count-
ably many points from each G € G, but X, N F' # () for each F' € F, hence X, N F
not x! measurable for any F € F.

Let Z be an | dimensional plane which has a nonempty intersection with X and
let f be the characteristic function of the set ZNXy. Then f € MNSy = MiNLg,
but f ¢ 7, and f ¢ M,.

Acknowledgment. I am greatly indebted to one of the referees who has con-
tributed to several details in this paper by an unusually careful reading.
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