
MEASURABILITY IMPLIES CONTINUITY FORSOLUTIONS OF FUNCTIONAL EQUATIONS| EVEN WITH FEW VARIABLES
Antal Járai

Abstract. It is proved that — under certain conditions — measurable solutions f

of the functional equation

f(x) = h(x, y, f(g1(x, y)), . . . , f(gn(x, y))), (x, y) ∈ D ⊂ R
s × R

l

are continuous, even if 1 ≤ l ≤ s. As a tool we introduce new function classes which
— roughly speaking — interpolate between continuous and Lebesgue measurable
functions. Connection between these classes are also investigated.1. IntrodutionIn onnetion with his �fth problem Hilbert [5℄ suggested that although themethod of redution to di�erential equations makes it possible to solve funtionalequations in an elegant way, the inherent di�erentiability assumptions are typiallyunnatural (see [2℄). Suh shortomings an be overome by appealing to regularitytheorems.In this spirit the following general regularity problem of non-omposite fun-tional equations with several variables was formulated by the author and inludedby Az�el among the most important open problems on funtional equations (seeAz�el [1℄ and J�arai [7℄):1.1. Problem. Let X and Z be open subsets of Rs and Rm, respetively, andlet D be an open subset of X ×X. Let f : X → Z, gi : D → X (i = 1, 2, . . . , n)and h : D × Zn+1 → Z be funtions. Suppose that(1)

f(x) = h(x, y, f(y), f(g1(x, y)), . . . , f(gn(x, y))) whenever (x, y) ∈ D;(2) h is analyti;
1991 Mathematics Subject Classification. Primary: 39B05. Secondary: 28A20, 28A78, 28C15,

28E15, 04A99.
This work is supported by OTKA T016846 and T031995 grants.

Typeset by AMS-TEX1



2 A. JÁRAI(3) gi is analyti and for eah x ∈ X there exists a y for whih (x, y) ∈ D and
∂gi
∂y

(x, y) has rank s (i = 1, 2, . . . , n).Is it true that every f whih is measurable or has the Baire property is analyti?The following steps an be used:(I) Measurability implies ontinuity.(II) Baire property implies ontinuity.(III) Continuous solutions are loally Lipshitz.(IV) Loally Lipshitz solutions are ontinuously di�erentiable.(V) All p times ontinuously di�erentiable solutions are p+1 times ontinuouslydi�erentiable.(VI) In�nitely many times di�erentiable solutions are analyti.We note that in order to obtain f ∈ Cp it is usually enough to suppose onlythat the given funtions h and gi are in Cp (if 2 ≤ p ≤ ∞) or in Cp+1 (if p = 0or p = 1). The omplete answer to the problem above is not known. The authordisussed this problem in several papers and solved problems orresponding to (I),(II), (IV) and (V) (see [7℄), and under some additional ompatness ondition (III)(see [8℄). Referenes an be found in the survey paper [14℄. There are some partialresults in onnetion with (VI). Moreover, other properties of solutions suh ashaving loally bounded variation or loal H�older ontinuity are also disussed (see[12℄ and referenes in [14℄). It is possible to extend these results to manifolds, andthe C∞-part of the problem is ompletely solved on ompat manifolds [11℄. Themost appliable results are treated in the booklet [10℄.Regularity theorems of the type \loally integrable solutions are in�nitely manytimes di�erentiable" an be obtained using distributions. The essene of themethod is to prove that solutions in the distribution sense satisfy a di�erentialequation having only in�nitely many times di�erentiable solutions. This idea wasused by �Swiatak [18℄ to prove general regularity results for the funtional equation
n

∑

i=1 hi(x, y)f(gi(x, y)) = h(x, f(gn+1(x)), . . . , f(gm(x))) + h0(x, y),where f is the only unknown funtion. Roughly speaking, she applies a partialdi�erential operator in y to the equation in the distribution sense. Of ourse, thenonlinear term on the right hand side disappears. If, after substituting a �xed y0,we are fortunate enough to obtain a hypoellipti partial di�erential equation, thenby the regularity theory of partial di�erential equations all distribution solutions arein C∞. For the exat details of how to overome the diÆulties and for appliationssee her paper [18℄.



MEASURABILITY IMPLIES CONTINUITY . . . 3Further referenes about regularity theorems for funtional equations an befound in the survey paper [14℄. Some other papers onerning the distributionmethod are also referred to there.The above equation of �Swiatak is \almost linear", so, formally, it is muh lessgeneral than equation (1). However her theorems an be applied even if the rankof ∂gi
∂y

is muh smaller than the dimension of the domain of the unknown funtion
f . Roughly speaking, the present author's results, quoted above, may be appliedto prove regularity of a solution f having s variables, only if there are at least2s variables in the funtional equation. The method of �Swiatak may be appliedeven if there are only s+ 1 variables. This is the minimal number of variables: inHilbert's paper [5℄ there is an example that for \one variable" funtional equations(this may mean an s-dimensional vetor variable) no regularity theorem holds. Sothe results of �Swiatak suggest that the rank ondition in the problem above is toostrong, and the results onerning the above problem an be extended for a muhmore general ase. Generalizing our method we may hope to obtain regularityresults for general nonlinear funtional equations; whih seems to be impossibleusing the method of �Swiatak based on Shwartz distributions. We may not hopeto be so luky that with one substitution y = y0 we have gi(x, y0) ≡ x for all i; avery strong ondition. The somewhat arti�ial ondition of hypoelliptiity also hasto disappear. What seems to be most important is to prove \measurability impliesontinuity" type results, beause by the method of �Swiatak we may only start withloally integrable solutions | a onsequene of the distribution method. To thebest knowledge of the author suh \measurability implies ontinuity" type resultswithout the strong rank ondition in (3) or some abstrat version of it are knownonly for very speial equations suh as for example the equation

f(x) = m
∑

i=1 µif(x+ yei), x ∈ Rn, y ∈ R(µi ∈ R, ei ∈ Rn are �xed) in the paper of MKiernan [15℄. The proof there isbased on algebrai properties of the solutions.In this paper we will prove a \measurability implies ontinuity" type resultfor the general expliit nonlinear funtional equation (1) without the strong rankondition in (3) on the inner funtions. In the spirit of the \bootstrap" methodorresponding to steps (I){(VI) we introdue a sequene of properties, whih |roughly speaking | interpolate between measurability and ontinuity. This se-quene of properties gives a stairway to limb up from measurability to ontinuity.First we will investigate the basi properties of the new notions. Then the reg-ularity theorem will be proved. An example is given how to apply the theoremin nontrivial ases. A re�nement of the theorem is also proved. Finally, furtherproperties of the new notions are investigated.



4 A. JÁRAI2. The new notions2.1. Notation. If f is a funtion then rng f denotes the range of f . Allnormed spaes are supposed to be real; the norm is denoted by | |. Only operatornorms will be denoted by ‖ ‖. If f : D → Y is a funtion mapping an open subsetof a normed spae into a normed spae, then f ′ will denote the derivative of f . If
D ⊂ X1 ×X2 × . . .×Xn, we will use the partial sets

Dxi
= {(x1, . . . , xi−1, xi+1, . . . , xn) : (x1, ..., xn) ∈ D

}

.The partial funtions fxi
: Dxi

→ Y are de�ned by
fxi

(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xn)whenever (x1, . . . , xn) ∈ D. (Notie that xi is held onstant in f .) Also Dxi1 ,... ,xirand fxi1 ,... ,xir
are de�ned similarly. Now, if Xi and Y are normed spaes and

Dx1,... ,xi−1,xi+1,... ,xnis an open subset of Xi we de�ne the partial derivative denoted by
∂if, ∂xi

f or ∂f

∂xias the derivative of fx1,... ,xi−1,xi+1,... ,xn
. Other notions of alulus are used in theusual way.If x, y are points of a metri spae and α > 0, we say that x and y are α-near iftheir distane is less than α. Similarly, if x and y are points of a uniform spae and

α is a relation from the uniformity we say that x and y are α-near if (x, y) ∈ α. Ina metri spae the losed ball having radius r ≥ 0 and enter x will be denoted by
Br(x).Conerning measure theory, we follow the terminology of Federer [4℄. Hene ameasure means a ountably subadditive extended real valued nonnegative funtionde�ned on all subsets of a set; this is alled outer measure in other terminology.By a Radon measure we mean a loally �nite measure µ de�ned on a Hausdor�spae X , with the following properties:(1) Every open subset V of X is measurable and

µ(V ) = sup{µ(K) : K ⊂ V, K ompat};(2) If A is any subset of X , then
µ(A) = inf{µ(V ) : A ⊂ V, V open}.
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λn will denote the Lebesgue measure on Rn, and χm will denote the m-dimen-sional Hausdor� measure on a metri spae.Assuming that µ is a measure on X , A ⊂ X and Y is a topologial spae, wesay that the funtion f is measurable over A if f is de�ned at almost every pointof A, the range of f is ontained in Y and A ∩ f−1(W ) is measurable whenever
W is an open subset of Y . If µ is a Radon measure on X and f maps almostall of X into a topologial spae Y then we say that f is a Lusin funtion, if foreah measurable subset A of X having �nite measure and for eah ε > 0 there isa ompat subset C of A suh that µ(A\C) < ε and f |C is ontinuous. In thissetting Lusin's theorem says that if Y is a seond ountable topologial spae and
µ is a Radon measure then every funtion whih is measurable over X is a Lusinfuntion. The proof an be found in [17℄, 8.2 by Oxtoby.We refer the reader to Federer [4℄ onerning the proof of other measure theo-retial results used here.2.2. De�nition. Let X be a set, Y a metri spae, and f : X → Y be afuntion. Let U be a Hausdor� spae with the Radon (outer) measure µ, and Pa topologial spae, the \parameter spae" with a given point p0 ∈ P . Let ϕ be afuntion from U × P into X . We will think of ϕ as a surfae ϕp : u 7→ ϕ(u, p) foreah p, depending on the parameter p.Lusin's theorem and generalizations of Steinhaus' theorem [9℄ suggest that thefollowing ondition is onneted with measurability:(L) For eah ε > 0, eah σ > 0 and for eah ompat subset C ⊂ U there exists aneighborhood P0 of p0 suh that if p ∈ P0 then

µ {u ∈ C : dist (f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ} ≤ ε.The ondition above an be reformulated in the following sequential way:(S) For eah σ > 0, for eah ompat subset C ⊂ U and for eah sequene pm → p0
µ {u ∈ C : dist (f(ϕ(u, pm)), f(ϕ(u, p0))) ≥ σ} → 0.In this form the ondition strongly resembles onvergene in measure. Riesz theo-rem suggests the following ondition:(R) For eah sequene pm → p0 there exists a subsequene pmi

suh that for almostall u ∈ U we have
f(ϕ(u, pmi

)) → f(ϕ(u, p0)).



6 A. JÁRAIThis ondition resembles the following ondition treated by Trautner in a speialase for harateristi funtions of measurable sets (see remark below):(T) For eah sequene pm → p0 and for almost all u ∈ U there exists a subsequene
pmi

suh that
f(ϕ(u, pmi

)) → f(ϕ(u, p0)).To investigate the onnetion between these onditions we need some kind of mea-surability ondition:(M) u 7→ f(ϕ(u, p0)) is µ measurable.It is lear that onditions (L) and (S) have meaning also if the values of f are ina uniform spae Y ; simply σ has to be replaed by a reexive symmetri relationfrom the uniformity of Y and we have to onsider the set of those points u forwhih the two values of f are not σ-near. Condition (R) has the advantage thatit has meaning even if Y is only a topologial spae. The same is true for (T) and(M). It seems that (T) has no advantage over (R).We will often hek ondition (L) [(S), (R), (T), (M)℄ loally. If for eah u0 ∈ Uthere is a neighborhood U0 of u0 and P0 of p0 suh that ϕ|U0×P0 satis�es (L) [(S)℄,then ϕ also satis�es (L) [(S)℄. To see this, we will hoose a �nite overing of C byopen sets having �nite measure and we will apply (L) [(S)℄ to a suÆiently goodinner approximation of these open sets by ompat sets: Let us hoose for eah
x ∈ C a neighborhood Ux of x and a neighborhood Px of p0 suh that ϕ|Ux × Pxsatis�es (L). Shrinking Ux if neessary we may suppose that Ux is open and has�nite µ measure. Let Ux1 , . . . , Uxr

be a �nite subovering of C, let ε, σ > 0 andlet us hoose ompat sets Ci ⊂ Uxi
for whih µ(Uxi

\Ci) < ε/(2r). Choosing aneighborhood P0 of p0 for whih P0 ⊂ ∩r
i=1Pxi

suh that the sets
Ri(p) = {u ∈ Ci : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ}have µ measure less than ε/(2r) for eah p ∈ P0, we obtain that
µ{u ∈ Ci : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ} ≤ ε,beause this set is overed by ∪r

i=1Ri(p) ∪ ∪r
i=1(Uxi

\Ci). Similarly, if pm → p and(S) is satis�ed by ϕ|Ux × Px, then for given ε, σ > 0 for i = 1, . . . , r we obtain an
Mi suh that for m ≥ Mi we have pm ∈ Pxi

and Ri(pm) has µ measure less than
ε/(2r) for eah m ≥Mi. Hene for m ≥M = max1≤i≤r Mi we have

µ{u ∈ Ci : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ} ≤ ε.Similarly, if for eah u0 ∈ U there is a neighborhood U0 of u0 and P0 of p0 suhthat ϕ|U0 × P0 satis�es (R) [(T), (M)℄, then supposing that U is a Lindel�of spae



MEASURABILITY IMPLIES CONTINUITY . . . 7we have that ϕ satis�es (R) [(T), (M)℄. For (R) this follows using the diagonalproess. Countably many of the sets U0 over U . Let us enumerate these opensets, and let us onsider repeatedly sub-sub-. . . -sequenes of the sequene pm. Thediagonal proess gives a subsequene, for whih the onvergene is satis�ed almosteverywhere. In the ase of (T) and (M) the statement is trivial.Let X be an open subset of Rn and 0 ≤ k ≤ n. The lass of all funtions ffor whih the ondition (L) [(S), (R), (T), (M)℄ is satis�ed whenever U is an opensubset of Rk, µ = λk, P is an open subset of some Eulidean spae, p0 ∈ P and
ϕ : U ×P → X is a C1-funtion for whih ϕp is an immersion of U into X for eah
p ∈ P , will be denoted by Lk(X,Y ) or shortly by Lk [Sk, Rk, Tk, Mk℄. (Reall,that a C1 mapping of U into X is an immersion if and only if its derivative isan injetive linear mapping for eah point of U . For k = 0, take R0 = {0} and
λ0({0}) = 1, i.e. λ0 is the ounting measure on R0. A funtion ϕ : {0} × P → Xis a C1 funtion if and only if p 7→ ϕ(0, p) is a C1 funtion. Any funtion mappinga subset of R0, i.e. ∅ or {0} into X is onsidered an immersion.) In the �rst twoases we suppose that the values of f are in a uniform spae, in the other threethat they are in a topologial spae. It is lear that f ∈ Mk if and only if theondition(M′) f ◦ ψ is µ measurableis satis�ed for µ = λk whenever ψ is an immersion of some open subset U of Rkinto X .2.3. Remarks. (1) For our purposes, the funtion lass Rk(X,Y ) will be themost onvenient one, beause we want to avoid supposing that Y is a uniform spae.It is even more important, that using Rk(X,Y ) we an avoid supposing uniformontinuity for the given funtions in our regularity theorems and it is enough tosuppose ontinuity. The lasses Mk and Lk will also play a role. Our main resultswill show that, roughly speaking, solutions f of a funtional equation from Rk+1are also in Rk. We will prove that R0 is the lass of ontinuous funtions, andthat all measurable funtions f : X → Y from the open subset X ⊂ Rn intosome seond ountable spae Y are in Rn. Hene, step-by-step, measurability ofsolutions implies their ontinuity.(2) In his paper [19℄ Trautner proved that for a Lebesgue measurable subset Mof [a, b℄ ⊂ R with positive Lebesgue measure and for a sequene pm ∈ [a, b℄ thereexists an u ∈ R and a subsequene pms

suh that pms
+ u ∈M . This follows fromthe fat that a Lebesgue measurable funtion is in T1. Indeed, let us replae pm witha subsequene onverging to a point p0 ∈ [a, b℄. Let f = ξM be the harateristifuntion of M , and let ϕ : R × R → R be ϕ(u, p) = u− p. From ξM ∈ T1 it followsthat for almost all u ∈M + p0 there exists a subsequene pms

suh that
ξM (u− pms

) → ξM (u− p0) = 1.



8 A. JÁRAIThis means that u+ pms
∈M for large enough s.Trautner used his theorem | among others | to give a new proof of the well-known result of Steinhaus, that measurable additive mappings of R into itself areontinuous.Trautner's method was generalized to loally ompat groups and to an evenmore general setting by Grosse-Erdmann [3℄. His results an be applied to provethat for the funtional equation

f(g(x, y)) = h(y, f1(x))with unknown funtions f , f1 | under suitable onditions | measurability of
f1 implies the ontinuity of f . He applies his abstrat results for the ase where(x, y) ∈ D, some open subset of Rn × Rn, g : D → Rn and det ∂g

∂x and det ∂g
∂y arenonzero. His method has the advantage that one only needs the ontinuity of hwith respet to the seond variable. Note that substituting t = g(x, y) we haveloally

f(t) = h(y, f1(g1(t, y)));ompare this with Problem 1.1. Condition (T) does not seem to be strong enoughfor us to obtain \measurability implies ontinuity" type results for the more generalequation in Problem 1.1.(3) The lass Lk [Sk, Rk, Tk, Mk℄ remains the same if we suppose only that (L)[(S), (R), (T), (M)℄ is satis�ed whenever U is an open subset of Rk, µ = λk, P is anopen subset of some Eulidean spae, p0 ∈ P and ϕ : U × P → X is a C1-funtionfor whih ϕp is an embedding (i.e., an immersion whih is a homeomorphism of itsdomain onto its range) of U into X for eah p ∈ P . This easily follows from theloality priniple mentioned in the de�nition.Similarly, supposing only that ϕp0 is an immersion, the resulting lass Lk [Sk,
Rk, Tk, Mk℄ remains the same.(4) In ondition (L) [(S)℄ the words \for eah ompat subset C of U" an beequivalently replaed by \for eah σ-�nite measurable subset C of U". This easilyfollows using inner approximation by ompat sets.We start with the investigation of the simplest onnetions between the lasses
Lk, Sk, Rk, Tk and Mk.2.4. Theorem. With the notation of the de�nition above, ondition (L) impliesondition (S). If the point p0 has a ountable base of neighborhoods then (L) followsfrom (S). If the uniformity of Y has a ountable base and µ is σ-�nite, then (S)implies (R). (R) always implies (T). If Y is a uniform spae with a ountablebase of topology, (R) is satis�ed, and (M) is satis�ed for all p0 ∈ P , then (S) issatis�ed, too. Hene, if Y is a separable metri spae, then Lk = Sk ⊂ Rk ⊂ Tkand Lk ∩Mk = Sk ∩Mk = Rk ∩Mk.



MEASURABILITY IMPLIES CONTINUITY . . . 9Proof. It is easy to see that (L) implies (S) and if the point p0 has a ountablebase of neighborhoods then (L) follows from (S). Condition (R) implies (T) trivially.The proof that if Y is a metri spae and µ is σ-�nite then (S) implies (R),mimis the proof of the lassial Riesz' theorem: Let C be an arbitrary ompatsubset of U and let us hoose a sequene σi ↓ 0. We may hoose a subsequene pmisuh that the set
{u ∈ C : dist (f(ϕ(u, pmi

)), f(ϕ(u, p0))) ≥ σi}has µ (outer) measure less than 2−i. Let Ai denote a µ-hull of this set. Now if uis not in the zero set ∩∞
j=1 ∪∞

i=j Ai, thendist (f(ϕ(u, pmi
)), f(ϕ(u, p0))) < σifor all i ≥ j for some j. Let us hoose a ountable almost over of U by ompat sets

C1, C2, . . . . Let us onsider repeatedly sub-sub-. . . -sequenes of the sequene pm.The diagonal proess gives a subsequene, for whih the onvergene is satis�edalmost everywhere. The same proof works in the ase of a uniform spae having aountable base of uniformity.Now suppose that Y is a separable metri spae. If f satis�es (M) for every
p0 ∈ P , then we obtain that u 7→ ϕ(u, p) is µ measurable for all p ∈ P . Usingthat Y is separable, we obtain that for any pair p, p′ ∈ P the mapping u 7→(f(ϕ(u, p)), f(ϕ(u, p′))) of U into Y × Y is measurable too. This implies that foreah pair p, p′ ∈ P the mapping

u 7→ dist (f(ϕ(u, p)), f(ϕ(u, p′)))is measurable. Now suppose that (S) is not satis�ed by ϕ with p0 ∈ P . This meansthat there is a sequene pm → p0, σ > 0, ε > 0, and a ompat set C ⊂ U suhthat the measure of the measurable sets
{u ∈ C : dist (f(ϕ(u, pm)), f(ϕ(u, p0))) ≥ σ}is greater than ε for in�nitely many m. Let us hoose a subsequene pmi

for whiheah of the measurable sets
Ai = {u ∈ C : dist (f(ϕ(u, pmi

)), f(ϕ(u, p0))) ≥ σ}has measure ≥ ε. Then for an arbitrary subsequene pmij
for any u from themeasurable set ∩∞

k=1 ∪∞
j=k Aij

having measure ≥ ε we have
f(ϕ(u, pmij

)) 6→ f(ϕ(u, p0)).This ontradits to that f satis�es (R). Hene we have
µ {u ∈ C : dist (f(ϕ(u, pm)), f(ϕ(u, p0))) ≥ σ} → 0.The same proof works for seond ountable uniform spaes.



10 A. JÁRAI2.5. Theorem. Let Y be a topologial spae and X an open subset of Rn. Then
M0(X,Y ) = Y X and R0(X,Y ) = T0(X,Y ) = C(X,Y ), the lass of ontinuousfuntions from X into Y . If Y is a uniform spae then also L0(X,Y ) = S0(X,Y ) =
C(X,Y ).Proof. We will use the notation of the de�nition. It is trivial that M0 ontainsall funtions from X into Y .Now let us prove that any ontinuous funtion f : X → Y is in R0, hene alsoin T0. There are only two ases, U = ∅ or U = {0}. In the �rst ase, there isnothing to prove; in the seond ase we may hoose pmk

= pk.The onverse is proved indiretly: if f ∈ T0, but not ontinuous, then thereexists an x0 ∈ X , a sequene xn → x0, and a neighborhood W of f(x0) suh that
f(xn) /∈ W . Let U = {0}, P = X , p0 = x0, ϕ(0, p) = p for p ∈ P . Choosing asubsequene of the sequene pm = xm for whih

f(ϕ(0, pmk
)) = f(xmk

) → f(x0) = f(ϕ(0, p0)),we obtain a ontradition.If Y is a uniform spae, f is ontinuous, and C = {0} then every p0 ∈ P hasa neighborhood P0 suh that if p ∈ P0, then f(ϕ(0, p)) and f(ϕ(0, p0)) are loseenough, whene f ∈ L0 ⊂ S0.Supposing f is disontinuous at an x0 ∈ X , and hoosing U = C = {0}, P = X ,
p0 = x0, ϕ(0, p) = p for p ∈ P , we obtain a sequene pm → p0 suh that f(ϕ(0, pm))and f(ϕ(0, p0)) are not lose, whih shows that f is not in S0.We will prove that Lebesgue measurable funtions over an open subset X of Rnare in Rn. To make the onnetion with earlier results in [7℄ lear, we do the mainpart of the proof in the following abstrat setting:2.6. Theorem. Let P be a topologial spae, U and X Hausdor� spaes with�nite Radon (outer) measures µ and ν, respetively. Suppose that ϕ : U × P → Xis a ontinuous funtion with the following property:(1) For eah ε > 0 there exists a δ > 0 suh that if p ∈ P , B ⊂ U , µ(B) ≥ ε then

ν(ϕp(B)) ≥ δ.Suppose, moreover, that p0 ∈ P and f is a Lusin funtion on X with values in atopologial spae. Then for U , P , p0, ϕ and f the onditions (M), (R) and (T) aresatis�ed. If, moreover, Y is a uniform spae then (L) and (S) are also satis�ed.Proof. Let us �rst prove that (M) is satis�ed. Let us hoose a sequene ofompat sets Ki, i = 1, 2, . . . in X suh that f |Ki is ontinuous and ν(X\Ki) → 0.Let V be any open subset of Y . Sine (f |Ki)−1(V ) is relatively open in Ki, it is aBorel subset of X . With the notation K = ∪∞
i=1Ki we see that B = (f |K)−1(V )



MEASURABILITY IMPLIES CONTINUITY . . . 11is a Borel subset of X . The set E = X\K has ν measure zero, hene the set
N = (f |E)−1(V ) is also a zero set. Now let us observe that(f ◦ ϕp)−1(V ) = ϕ−1

p (B) ∪ ϕ−1
p (N).On the left hand side, ϕ−1

p (B) is a Borel set and by ondition (1), the set ϕ−1
p (N)has measure zero. This means that (M) is satis�ed.Now we suppose that Y is a uniform spae and we will show that (L) is satis�ed.Let C be a ompat subset of U , and let K = ϕp0 (C). Let ε > 0 and let us hoosea δ > 0 orresponding to ε/2 by (1). Let us hoose an open subset V ontaining

K suh that ν(V \K) < δ/2. Sine f is a Lusin funtion, there exists a ompatsubset K0 of K suh that ν(K\K0) < δ/2 and f |K0 is ontinuous. Let us hoose auniformity on the ompat Hausdor� spaeK0 ompatible with the topology. Sine
f |K0 is also uniformly ontinuous, for eah reexive symmetri relation α from theuniformity of Y there exists a reexive symmetri relation β from the uniformityof K0 suh that f(x) and f(x′) are α-near in Y whenever x and x′ are β-near in
K0. Let us hoose a reexive symmetri relation γ from the uniformity of K0 forwhih γ ◦ γ ⊂ β. For eah u ∈ C there exists an open neighborhood Uu ⊂ U of uand an open neighborhood Pu of p0 suh that Uu ×Pu is mapped by ϕ into V andeah point of ϕ(Uu × Pu) whih is in K0, is γ-near to ϕ(u, p0). Choosing a �nitesubover Uu1 , Uu2 , . . . , Uun

of C, for P0 = ∩n
i=1Pui

we obtain that for eah p ∈ P0the mapping ϕp maps C into V and for any u ∈ C, if ϕ(u, p) is in K0 then it is
β-near to ϕ(u, p0). Let p ∈ P0 and let us onsider the set C ∩ϕ−1

p (K0)∩ϕ−1
p0 (K0).This set is mapped into K0 by ϕp and by ϕp0 too, and for any u from it, ϕ(u, p)and ϕ(u, p0) are β-near in K0, hene f(ϕ(u, p)) and f(ϕ(u, p0)) are α-near in Y .If we prove that the omplement of this set has measure less than ε, then we aredone. Sine the omplement of this set with respet to C is overed by the unionof C\ϕ−1

p (K0) and C\ϕ−1
p0 (K0), it is enough to estimate the measure of these sets.The �rst set is mapped by ϕp into V \K0, hene it annot have measure greaterthan or equal to ε/2. The seond set is mapped by ϕp0 also into V \K0, hene,similarly, it has measure less than ε/2.In the remaining part of the proof we use the observation that whenever K ′is a ompat subset of X and C′ = ϕ−1

p0 (K ′) has �nite µ measure, then for eah
ε > 0 there exists a neighborhood P0 of p0 suh that for eah p ∈ P0 we have
µ(C′\ϕ−1

p (K ′)) < ε. To prove this, let us hoose a ompat subset C′′ of the Borelset C′ for whih µ(C′\C′′) < ε/2 and let K ′′ = ϕp0(C′′). Let us hoose an open set
V ontaining K ′′ suh that ν(V \K ′′) < δ, where δ orresponds to ε/2 by (1). Foreah u ∈ C′′ there exist open neighborhoods Uu and Pu of u and p0, respetively,suh that ϕ(Uu × Pu) ⊂ V . Let us hoose a �nite subovering Uu1 , . . . , Uun

of theovering Uu, u ∈ C′′, and let P0 = ∩n
i=1Pui

. Then for p ∈ P0 the set C′′\ϕ−1
p (K ′′) ismapped by ϕp into V \K ′′, hene has µ measure less than ε/2. Now sine K ′′ ⊂ K ′and C′\ϕ−1

p (K ′) ⊂ (C′\C′′) ∪ (C′′\ϕ−1
p (K ′′)) we obtain that µ(C′\ϕ−1

p (K ′)) < ε.



12 A. JÁRAINow let us suppose only that Y is a topologial spae. We will prove that(R) is satis�ed, whih implies (T). Let again C be a ompat subset of U and
K = ϕp0(C), moreover let pm → p0 be a sequene in P . Let εi = 2−i and let δi > 0be the orresponding sequene of numbers δ by (1). Let us hoose a ompat subset
K1 ⊂ K suh that f |K1 is ontinuous and ν(K\K1) < δ1 and let C1 = ϕ−1

p0 (K1).Then µ(C\C1) < ε1. By indution, using the statement of the previous paragraph,we may �nd a sequene of indies m1 < m2 < . . . suh that µ(C1\ϕ−1
pj
(K1)) < εi+1whenever j ≥ mi. This implies that µ(C1\ ∩∞

r=1 ϕ−1
pmr

(K1)) < ε1. Now let K2 bea ompat subset of K suh that f |K2 is also ontinuous and ν(K\K2) < δ2. Let
C2 = ϕ−1

p0 (K2), then µ(C\C2) < ε2. Let us apply indution again, but using thenew subsequene instead of the original sequene. Then we obtain a subsequenesuh that µ(C2\ ∩∞
s=1 ϕ−1

pmrs
(K2)) < ε2. Continuing this proess and taking thediagonal sequene, we arrive at a subsequene pmt

of pm suh that the measure ofthe set
Ei = (C\Ci) ∪ (

∪∞
t=i(Ci\ϕ−1

pmt
(Ki)))is less than 2εi. Now let E = ∩∞

k=1 ∪∞
i=k Ei. Clearly, µ(E) = 0. If u ∈ C\E thenthere exists a k suh that u /∈ Ei for i ≥ k. This means on one hand that u /∈ C\Cifor i ≥ k, that is, u ∈ Ci for i ≥ k. This implies that ϕp0(u) ∈ Ki for i ≥ k, inpartiular ϕp0 (u) ∈ Kk. On the other hand, if i ≥ k then for eah t ≥ i we have

u /∈ Ci\ϕ−1
pmt

(Ki). We will apply this only for i = k to obtain that ϕpmt
(u) ∈ Kkwhenever t ≥ k. Sine f |Kk is ontinuous, we obtain that f(ϕpmt

(u)) → f(ϕp0(u)).2.7. Theorem. Let X be an open subset of Rn. If Y is a topologial spaehaving ountable base then every measurable funtion f : X → Y is ontained in
Rn(X,Y ), Tn(X,Y ) and Mn(X,Y ). If moreover Y is a uniform spae then f isontained in Ln(X,Y ) and Sn(X,Y ).Proof. By Lusin's theorem, f is a Lusin funtion. Let U ⊂ Rn be open, P anopen subset of some Eulidean spae, p0 ∈ P , ϕ : U×P → X a C1 funtion for whiheah ϕp, p ∈ P is an embedding. We will apply the previous theorem for ϕ loally.Let u0 ∈ U and let us hoose a c > 0 suh that | det(ϕ′

p0(u0))| > c. Choosing aneighborhood U0 of u0 having ompat losure and P0 of p0 having ompat losuresuh that ϕp is one-to-one on U0 for eah p ∈ P0 and | det(ϕ′
p(u))| > c whenever

u ∈ U0 and p ∈ P0, by the transformation formulae of integrals we have for anymeasurable subset B ⊂ U0 that
λn(ϕp(B)) = ∫

B

∣

∣det(ϕ′
p(u))∣∣ dλn(u) ≥ cλn(B).The inequality λn(ϕp(B)) ≥ cλn(B) is also satis�ed for nonmeasurable sets B, be-ause otherwise we an �nd a Borel hull A ⊃ ϕp(B) for whih λn(A) < cλn(ϕ−1

p (A))



MEASURABILITY IMPLIES CONTINUITY . . . 13for some p ∈ P0. This is a ontradition, beause ϕ−1
p (A) is a Borel set, hene mea-surable.Now, the previous theorem an be applied for ϕ|U0 × P0. As it was mentionedat the de�nition of (L), et., this is enough to prove that (L) [(S), (R), (T), (M)℄is satis�ed for U , P , p0, ϕ, λn.3. The main results3.1. Theorem. Let Z, Zi (i = 1, 2, . . . , n) be topologial spaes. Let Xi(i = 1, 2, . . . , n) and X be open subsets of Eulidean spaes and let Y ⊂ Rl beopen. Let D be an open subset of X × Y . Consider the funtions f : X → Z,

fi : Xi → Zi, h : D×Z1× . . .×Zn → Z, gi : D → Xi (i = 1, 2, . . . , n). Let U ⊂ Rkbe open, P be an open subset of some Eulidean spae, p0 ∈ P , ϕ : U × P → X a
C1-funtion, for whih ϕp is an immersion of U into X for all p ∈ P , and supposethat the following onditions hold:(1) For eah (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for eah �xed y ∈ Y , h is ontinuous in the other variables;(3) the funtion fi is in Rk+l on Xi (i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for eah u0 ∈ U there exists a y0 suh that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p0), y)at (u0, y0) is k + l for eah 1 ≤ i ≤ n.Then ondition (R) is satis�ed for f , U , P , p0, ϕ, λk.Proof. Suppose that pm → p0. Let us hoose an open neighborhood U0 of
u0, P0 of p0, and Y0 of y0 suh that (ϕ(u, p), y) is in D whenever u ∈ U0, p ∈ P0,
y ∈ Y0, moreover, the rank of the derivative of the mapping (u, y) 7→ gi(ϕ(u, p), y)is equal to k + l for all u ∈ U0, p ∈ P0, y ∈ Y0 and for 1 ≤ i ≤ n. This is possible,beause D is open, gi and ϕ are C1-funtions, the rank is lower semiontinuous and
U × Y has dimension k + l, hene the rank annot inrease above k + l.Sine the funtion f1 is in Rk+l, there is a subsequene pmr

of pm suh thatexept for pairs (u, y) ∈ U0 × Y0 from a set E1 having λk+l measure zero we have
f1(g1(ϕ(u, pmr

), y)) → f1(g1(ϕ(u, p0), y)).Now using for the subsequene pmr
that f2 is in Rk+l we obtain a subsequene

pmrs
for whih, exept for pairs (u, y) ∈ U0×Y0 from a set E2 having λk+l measurezero we have

f2(g2(ϕ(u, pmrs
), y)) → f2(g2(ϕ(u, p0), y)),



14 A. JÁRAIet. Finally, we obtain a subsequene pmt
of pm suh that exept for a set E =

∪n
i=1Ei of pairs (u, y) ∈ U0 × Y0 having λk+l measure zero we have

fi(gi(ϕ(u, pmt
), y)) → fi(gi(ϕ(u, p0), y))for i = 1, 2, . . . , n. By Fubini's theorem, for almost all y ∈ Y0 we have for almostall u ∈ U0 that (u, y) /∈ E. Fixing any suh y, from the funtional equation andfrom the ontinuity of h for �xed y we obtain that

f(ϕ(u, pmt
)) → f(ϕ(u, p0)),whih is ondition (R) with the funtion ϕ|U0 × P0.Hene we have proved that for eah u0 ∈ U there is an open neighborhood U0of u0 suh that for a subsequene pmt
of pm and for almost all u ∈ U0 we have

f(ϕ(u, pmt
)) → f(ϕ(u, p0)).Sine U is a Lindel�of spae, by the remark in the de�nition we obtain that (R) issatis�ed.3.2. Example. Let us onsider the following example:

n
∑

i=0 ai(x, y)f(x + gi(y)) = 0whenever x ∈ Rm, y ∈ R. Suppose that the funtions ai : Rm × R → R \ {0}are ontinuous and the funtions gi : R → Rm are in C1. Introduing the variable
xj = x+ gj(y) instead of x, we obtain(1) f(xj) = −

∑

i6=j

ai(xj − gj(y), y)
aj(xj − gj(y), y)f(xj − gj(y) + gi(y)).To see that ondition (5) is satis�ed we have to hek the rank of the matrix













∂ϕ(1)p0
∂u1 (u) . . .

∂ϕ(1)p0
∂uk

(u) d g
(1)
i
d y

(y)− d g
(1)
j

d y
(y)... ... ...

∂ϕ(m)
p0

∂u1 (u) . . .
∂ϕ(m)

p0
∂uk

(u) d g
(m)
i
d y

(y)− d g
(m)
j

d y
(y) ,where ϕ(r)p and g(r)i are the oordinate funtions of ϕp and gi, respetively. If thisis k + 1, then we may apply our theorem with l = 1. This means, geometrially,that the vetor g′i(y) − g′j(y) is not ontained in the range of the linear operator
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ϕ′
p0(u) (whih is known to be k-dimensional). This range an be any k-dimensionallinear subspae in Rm. It may happen that for eah k-dimensional linear subspae,there exists a y ∈ R suh that none of the vetors g′i(y)− g′j(y), i 6= j is ontainedin the linear subspae. Then our theorem an be applied diretly and proves that
f ∈ Rk+1 implies f ∈ Rk. If this is the ase for k = m− 1,m− 2, . . . , 0 then weobtain that every measurable solution is ontinuous. But there are situations whenthis is not the ase. If, for example, the derivative of the funtions gi is onstant,i. e. if gi(y) = bi + yci, then for any �xed j, equation (1) annot be applied toget f ∈ Rk from f ∈ Rk+1, beause for some funtions ϕ the range of ϕ′

p0(u) willontain some of the vetors g′i(y) − g′j(y) = ci − cj . But we have the possibilityto use any of the equations (1). Using that to be in Rk is a loal property, it isenough to prove that for any k-dimensional linear subspae of Rm there exists a
j suh that none of the vetors ci − cj , i 6= j is ontained in the given subspae.For example this is the situation if n ≥ m and the vetors c0, . . . , cn are in generalposition. If this ondition is not satis�ed, then it is still possible that our theoreman be applied. A similar (but somewhat simpler) situation was studied in thepaper [13℄, in the proof of Theorem 2.3.3.3. Remark. Although, as the example above shows, Theorem 3.1 an beapplied in several ases, it is not satisfying beause ondition (5) is too strong.If we want to apply theorem 3.1 to prove that f ∈ Rk then ϕ an be arbitrary.Hene ondition (5) impliitly means that the rank of ∂gi

∂x
has to be large, evenif ∂gi

∂y
has a large rank. This in pratie means that the gi have to depend onall oordinates of x, whih is not omfortable. We want to relax this ondition.Instead of supposing that (u, y) 7→ gi(ϕ(u, p0), y)has maximal possible rank k + l at (u0, y0) we will only suppose that it has aonstant rank ki (depending on i) on a neighborhood of (u0, p0, y0). But in thisase we have to work with funtions from Rk ∩ Mk, and, roughly speaking, ourtheorem says that solutions in Rk+1 ∩Mk+1 are also in Rk ∩Mk.First we deal only with the measurability ondition (M). We will use the fol-lowing lemma to prove that ondition (M) for the unknown funtions fi impliesondition (M) for f .3.4. Lemma. Let X be an open subset of Rn, Y a topologial spae, 0 ≤ k ≤ nand f ∈ Mk(X,Y ). If ψ is a C1 mapping of the open subset U of Rm into X forwhih the rank of the derivative is k everywhere, then f ◦ ψ is λm measurable.Proof. The lemma diretly follows from the rank theorem. Indeed, the ranktheorem implies, that for eah u0 ∈ U there exists an open neighborhood U0 suh



16 A. JÁRAIthat ψ|U0 an be written as α ◦ p ◦ β. Here, with the notation I = (−1, 1), themapping β is a di�eomorphism of U0 onto Im suh that β(u0) = 0, the projetion
p of Im into In has the form p(x1, x2, . . . , xm) = (x1, x2, . . . , xk, 0, . . . , 0), and
α is a di�eomorphism of In onto an open set X0 mapping 0 into x0 = ψ(u0).Identifying the set Ik × {0} ⊂ In with Ik we have that α|Ik is an immersion,hene (

f ◦ (α|Ik))−1 (V ) is λk measurable for eah open subset V of Y . Sine
p−1(A) is λm measurable for eah λk measurable subset A of Ik, and β−1(B) is
λm measurable for eah λm measurable subset B of Im, we obtain that f ◦ (ψ|U0)is λm measurable. Now using that U is a Lindel�of spae, we get the general ase.3.5. Theorem. Let Z be a topologial spae and let Zi (i = 1, 2, . . . , n)be separable metri spaes. Let Xi (i = 1, 2, . . . , n) and X be open subsets ofEulidean spaes and let Y ⊂ Rl be open. Let D be an open subset of X × Y .Consider the funtions f : X → Z, fi : Xi → Zi, h : D × Z1 × . . . × Zn → Z,
gi : D → Xi (i = 1, 2, . . . , n). Let U ⊂ Rk be open, ψ : U → X be a C1 immersionof U into X, and suppose that the following onditions hold:(1) For eah (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for eah �xed y ∈ Y , h is ontinuous in the other variables;(3) the funtion fi is in Mki
on Xi (i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for eah u0 ∈ U there exists a y0 suh that (ψ(u0), y0) ∈ D and the rank of thederivative of (u, y) 7→ gi(ψ(u), y)is ki on a neighborhood of (u0, y0) for eah 1 ≤ i ≤ n.Then u 7→ f(ψ(u)) is measurable.Proof. Let us hoose an open neighborhood U0 of u0 and Y0 of y0 suh that(ψ(u), y) is in D whenever u ∈ U0, y ∈ Y0, moreover, the rank of the derivativeof the mapping (u, y) 7→ gi(ψ(u), y) is equal to ki for all u ∈ U0, y ∈ Y0 andfor 1 ≤ i ≤ n. This is possible by ondition (5). By the previous lemma weobtain that the mapping (u, y) 7→ fi(gi(ψ(u), y)) is λk+l measurable. By Fubini'stheorem exept for a set Ei of points y from Y0 with λl measure zero the mapping

u 7→ fi(gi(ψ(u), y)) is λk measurable on U0. Hene, exept for the set E = ∪n
i=1Ei,for all y ∈ Y0 the mapping

u 7→ (ψ(u), f1(g1(ψ(u), y)), . . . , fn(gn(ψ(u), y)))



MEASURABILITY IMPLIES CONTINUITY . . . 17of U0 into Dy ×Z1× · · · ×Zn is measurable. Sine for any �xed y the funtion h isontinuous in other variables, we obtain that for any �xed y ∈ Y0\E the mapping
u 7→ h(ψ(u), y, f1(g1(ψ(u), y)), . . . , fn(gn(ψ(u), y)))is measurable. This means that u 7→ f(ψ(u)) is measurable on U0.Sine U is a Lindel�of spae, the statement follows.The following theorem is the key to the generalization 3.7 of theorem 3.1.3.6. Theorem. Let U ⊂ Rm, X and P be open subsets of Eulidean spaes,

p0 ∈ P , Y a separable metri spae, ϕ : U × P → X a C1 funtion, for whihrankϕ′
p(u) = k for eah u ∈ U , p ∈ P . If f ∈ Mk(X,Y )∩Lk(X,Y ) then ondition(L) is satis�ed for f , U , P , p0, ϕ and λm.Proof. Let u0 ∈ U . Sine the rank of ϕ′

p0(u0) is equal to k, we may write u as
u = (u1, u2) ∈ Rk × Rm−k suh that the determinant of

∂ϕ

∂u1 (u0, p0)is not equal to 0. Hene there exists a neighborhood U1×U2 of u0 and a neighbor-hood P0 of p0 suh that the losure ≤ U1 of U1 is ompat, ≤ U1 × U2 ⊂ U , andthe mapping
u1 7→ ϕ(u1, u2, p)is an immersion of U1 for eah u2 ∈ U2, p ∈ P0. We may suppose that λk(U1) and

λm−k(U2) are �nite. Sine f ∈ Lk, for eah ε, σ > 0 and for eah u2 ∈ U2 thereexists a δ > 0 suh that if |u′2 − u2| < δ, |p− p0| < δ, then u′2 ∈ U2 and
λk{u1 ∈ U1 : dist(f(ϕ(u1, u′2, p)), f(ϕ(u1, u2, p0))) ≥ σ/2} ≤ ε2λm−k(U2) .Applying this for p = p0, too, and ombining the two inequalities, we obtain that(1) λk{u1 ∈ U1 : dist(f(ϕ(u1, u′2, p)), f(ϕ(u1, u′2, p0))) ≥ σ} ≤ ε

λm−k(U2)for eah u′2 for whih |u′2 − u2| < δ and for eah p for whih |p − p0| < δ. For a�xed ε, σ > 0, let δu2 be the δ orresponding to u2 ∈ U2.Let C be an arbitrary ompat subset of U1×U2 and let C2 = {u2 : (u1, u2) ∈ C}be the projetion of C. The losed balls with enter u2 ∈ C2 and radius < δu2gives a Vitali overing of C2, and hene it is possible to �nd a disjoint sequene Bi,
i = 1, 2 . . . of them whih λm−k almost overs C2.



18 A. JÁRAISine f ∈ Mk, by the previous lemma the mappings u 7→ f(ϕ(u, p)) are λmmeasurable for eah p ∈ P0. Hene the mapping
u 7→ dist(f(ϕ(u, p)), f(ϕ(u, p0)))is measurable, too, i. e. the sets(2) {u ∈ U1 ×Bi : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ}are λm measurable too. Using (1) and Fubini's theorem we obtain that the λmmeasure of the set (2) is at most λm−k(Bi)ε/λm−k(U2). Sine the sets Bi are adisjoint almost over of C2, we have that

λm{u ∈ C : dist(f(ϕ(u, p)), f(ϕ(u, p0))) ≥ σ} ≤ ε.Hene we have proved that eah u0 ∈ U has a neighborhood U0 = U1 × U2 suhthat (L) is satis�ed on this. By the remark in the de�nition of (L) the statementfollows.3.7. Theorem. Let Z be a topologial spae and let Zi (i = 1, 2, . . . , n)be separable metri spaes. Let Xi (i = 1, 2, . . . , n) and X be open subsets ofEulidean spaes and Y ⊂ Rl be open. Let D be an open subset of X×Y . Considerthe funtions f : X → Z, fi : Xi → Zi, h : D × Z1 × . . . × Zn → Z, gi : D → Xi(i = 1, 2, . . . , n). Let U ⊂ Rk be open, P an open subset of some Eulidean spae,
p0 ∈ P , ϕ : U × P → X a C1-funtion, for whih eah ϕp, p ∈ P is an immersionof U into X, and suppose that the following onditions hold:(1) For eah (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for eah �xed y ∈ Y , h is ontinuous in the other variables;(3) the funtion fi is in Rki
∩Mki

, (i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for eah u0 ∈ U there exists a y0 suh that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p), y)is ki on a neighborhood of the point (u0, p0, y0) for eah 1 ≤ i ≤ n.Then the onditions (R) and (M) are satis�ed for f , U , P , p0, ϕ, λk.



MEASURABILITY IMPLIES CONTINUITY . . . 19Proof. From Theorem 3.5 it follows that ondition (M) is satis�ed by f , U , P ,
p0, ϕ, λk. Let us �x an u0 ∈ U and let us hoose a y0 for u0 by (5). Let us hooseopen neighborhoods U0, P0 and Y0 of u0, p0 and y0 suh that (ϕ(u, p), y) ∈ Dwhenever u ∈ U0, p ∈ P0 and y ∈ Y0, moreover the rank of the derivative of(u, y) 7→ gi(ϕ(u, p), y)is ki on U0 × P0 × Y0 for eah 1 ≤ i ≤ n. Now the proof that ondition (R) is alsosatis�ed is exatly the same as in Theorem 3.1, but we have to use the previoustheorem instead of the de�nition.4. Further investigation of the new notions4.1. Conditions. In what follows we will only investigate the situation, where
X is a nonvoid open subset of Rn and f maps X into a separable metri spae,beause we want to avoid any diÆulties arising only from the poor topology ofthe range Y .4.2. Remark. There is a kind of loality other than the one treated afterDe�nition 2.2. We have f ∈ Lk(X,Y ) if and only if eah x0 ∈ X has an openneighborhood X0 ⊂ X suh that f |X0 ∈ Lk(X0, Y ). The \only if" part is trivial.To prove the \if" part we will use the notation of De�nition 2.2. Let us note thatfor eah point u0 ∈ U there exist open neighborhoods U0 and P0 of u0 and p0,respetively, suh that for x0 = ϕ(u0, p0) the set ϕ(U0, P0) is ontained in X0.This means that (L) is satis�ed for ϕ|U0 × P0. Now from the loality priniple inthe de�nition we have that f ∈ Lk(X,Y ). The same loality is true (and the sameproof works) for Sk, Rk, Tk and Mk.4.3. The lass Mk. Let

Ak = {A ⊂ X : ξA ∈ Mk(X, {0, 1})}where {0, 1} is taken as disrete spae. It is easy to see that Ak is a σ-algebra,and a funtion f : X → Y is in Mk(X,Y ) if and only if f−1(V ) is in Ak foreah open subset V of Y . Hene the investigation of Mk(X,Y ) is redued to theinvestigation of the σ-algebra Ak. It is easy to see that An is the lass of all λnmeasurable subsets of X and A0 is the lass of all subsets of X . We will prove that
A ∈ Ak if and only if for eah open set U ⊂ Rk and for eah immersion ψ : U → Xthe set A ∩ rngψ is χk measurable.For eah u ∈ U , there exists a ompat neighborhood C of u suh that therestrition of ψ to C is one-to-one. By the transformation formulae of integrals,if ψ−1(A) ∩ C is Lebesgue measurable, then ψ(C) ∩ A is Hausdor� measurable.In the other diretion, if ψ(C) ∩ A is Hausdor� measurable, then, using that the



20 A. JÁRAIHausdor� measure of ψ(C) is �nite, there exist Borel sets B,N ⊂ ψ(C) suh that
B ⊂ A, (A∩ψ(C))\B ⊂ N and χk(N) = 0. The sets (ψ|C)−1(B) and (ψ|C)−1(N)are Borel sets, and the later may only have measure 0. This means that the λkmeasure of (ψ|C)−1(A \B) is zero, too, and hene (ψ|C)−1(A) is λk measurable.Now for eah u ∈ U hoosing a ompat neighborhood C as above, ountablymany of them overs U . If A ∩ rngψ is χk measurable, then the sets (ψ|Ci)−1(A)are all λk measurable, and hene ψ−1(A) is λk measurable. In the other diretion,if ψ−1(A) is λk measurable, then the sets ψ−1(A) ∩ Ci are measurable, too, andhene A ∩ rngψ = (∪iψ(Ci)) ∩A is a χk measurable set.What we have proved until now implies that every χk measurable set is in Ak,beause rngψ is always χk measurable. A ountably (χk, k) reti�able set is in
Ak if and only if it is χk measurable. We have only to prove that if A ∈ Ak isountably (χk, k) reti�able, i. e. if A is χk almost subset of a ountable union ofLipshitz images of bounded subsets of Rk, then A is χk measurable. By Theorem3.2.29 from [4℄, A ⊂ N ∪ (∪∞

i=1Si), where χk(N) = 0 and eah Si is a k-dimensional
C1 submanifold of X . Dividing Si into smaller parts, if neessary, we may supposethat eah Si is the image of some open subset of Rk by a C1 immersion ψi. Sine
ψ−1

i (A) is λk measurable, the set A ∩ rngψi = A ∩ Si is χk measurable for eah i.Hene
A = (A ∩N) ∪ (∪∞

i=1(A ∩ Si))is χk measurable.There are χk nonmeasurable sets in Ak. Any non χk measurable subset ([4℄,2.2.4) of a purely unreti�able ompat subset with �nite χk measure is an example.For suh a set A, the set ψ−1(A) has measure 0 for eah immersion ψ from an opensubset of Rk into X . Example of a purely unreti�able set an be found in [4℄,3.3.20. See moreover [16℄, 3.17.4.4. Connetions between Mk, Lk, Sk, Rk and Tk. One of the simplestquestions is, whether f ∈ Mk implies f ∈ Lk, Sk, Rk or Tk. We know that thisis true for k = n. If k < n then the harateristi funtion of the intersetion of
X and an appropriate k-dimensional plane is in Mk but ontained in none of thelasses Lk, Sk, Rk, Tk.In the other diretion, suppose, that f ∈ Lk = Sk ⊂ Rk ⊂ Tk. The questionis, whether f ∈ Mk is satis�ed. This is trivial for k = 0. We will show that thisannot be proved in ZFC for 0 < k ≤ n. Namely, we will give an example f underthe ontinuum hypothesis for whih f ∈ Lk but f /∈ Mk. By the famous resultsof G�odel and Cohen, the ontinuum hypothesis is independent from the axioms ofZFC. This means that Mk ⊂ Lk annot be proved in ZFC.Another question is whether Sk = Rk. This is trivial for k = 0. We will showby a ounterexample under the ontinuum hypothesis that for 0 < k < n this isnot a theorem in ZFC. I do not know anything about the ase k = n.



MEASURABILITY IMPLIES CONTINUITY . . . 21Similarly, we may ask whether Rk = Tk or at least Mk ∩Rk = Mk ∩ Tk. Thisis also true for k = 0. For 0 < k < n we will prove that Mk ∩ Rk $ Mk ∩ Tkhene Rk $ Tk. For k = n we know that Mn ⊂ Rn ⊂ Tn hene of ourse
Mn ∩Rn = Mn ∩ Tn. I do not know whether Rn = Tn.4.5. Hierarhy of funtion lasses belonging to di�erent dimensions.Let us �x dimensions 0 ≤ k < l ≤ n and let us investigate the onnetion betweenthe lasses Mk, Lk, et. and lasses Ml, Ll, et.We may hope that dereasing the dimension onditions (L), (S), et. beomestronger. One of the only two positive results in this diretion is that this is truefor the onditions (L), (S) and (R) under measurability:

Mk ∩Ml ∩ Lk ⊂ Ll.The proof of this statement is very similar to the proof of Theorem 3.6, thereforewe do not repeat the argument.We will show by a ounterexample under the ontinuum hypothesis that for
k > 0 ZFC 2 Mk ∩ Lk ⊂ Ml ∪ Tl.(� indiates that the right hand side is a theorem in the system on the left.)Similarly we will show by a ounterexample under the ontinuum hypothesisthat ZFC 2 Mk ∩ Lk ∩ Ll ⊂ Mlexept for the trivial ase k = 0.It is muh easier to see that inlusions in the other diretion do not hold ingeneral. Although

Ml ⊂ M0is satis�ed trivially, in general
Ml 6⊂ Mk if k > 0.This is shown by the harateristi funtion of a non χk measurable subset of theintersetion of X and an appropriate k dimensional plane. The same exampleshows that

Ml ∩ Ll 6⊂ Mk ∪ Tk.If we take the harateristi funtion of the intersetion of X and an appropriate
k dimensional plane, then we see that

Ml ∩ Ll ∩Mk 6⊂ Tk.We will show that
Ml ∩Rk ⊂ Mk.I do not know whether Rk may be replaed here by Tk exept for the trivial ase

k = 0.



22 A. JÁRAILet us see the proofs.4.6. Theorem. Under the onditions of 4.1 for 0 ≤ k < l ≤ n we have
Ml ∩Rk ⊂ Mk.Proof. This is trivial for k = 0. Otherwise, let ψ be an immersion of an opensubset U ⊂ Rk into X . Let u0 ∈ U and let V be an l−k dimensional subspae of Rnorthogonal to rngψ′(u0). Let π : Rl−k → V be a linear isometry, and let us de�ne
ϕ by ϕ(u, p) = ψ(u) + π(p). Then for p0 = 0 we have ϕp0 = ψ. Let us hoose openneighborhoods U0 and P0 of u0 and p0, respetively, suh that ϕ(U0, P0) ⊂ X and ϕis an immersion of U0×P0 into X . Sine f ∈ Ml, the mapping (u, p) 7→ f(ϕ(u, p))is λl measurable. Hene for λl−k almost all p ∈ P0 the mapping u 7→ f(ϕ(u, p)) is
λk measurable. Let us hoose a sequene pm → p0 suh that eah u 7→ f(ϕ(u, pm))is measurable. By f ∈ Rk it is possible to hoose a subsequene pms

suh that
f(ϕ(u, pms

)) → f(ϕ(u, p0))for λk almost all u ∈ U0. Hene u 7→ f(ψ(u)) is measurable over U0, i. e. loally.This implies that f ∈ Mk.4.7. Counterexample. Under the onditions of 4.1 we will show by a oun-terexample that for 0 < k < n we have Mk ∩Rk $ Mk ∩ Tk.Proof. For simpliity, we will work with a nonvoid k-dimensional plane in Xhaving the form V = X ∩W where W = {(x1, x2, . . . , xk, x
0
k+1, . . . , x0n) ∈ Rn} forsome �xed x0k+1, . . . , x0n. Without loss of generality we may suppose that x0k+1 =

· · · = x0n = 0. Our funtion f will depend only on x1, . . . , xk and on the distane
r = √

x2k+1 + · · ·x2n from the subspae W . Let f(x) = 0 whenever r = 0. Let g(y)be 0 or 1 on Rk depending whether the sum of the integer parts of the oordinates of
y ∈ Rk is even or odd, respetively. We will use a smoothing h of this \hessboard"funtion g to de�ne f . The ontinuous funtion h is obtained taking the mean of gfor a brik around y, namely, on the set of all z ∈ Rk for whih the di�erene zi−yiof all oordinates is between −1/4 and 1/4. Now for any nonnegative integer m if
r = α2−m + (1− α)2−m−1 for some 0 < α ≤ 1 then let us de�ne

f(y, xk+1, . . . , xn) = αh(2my) + (1− α)h(2m+1y).For r > 1 let
f(y, xk+1, . . . , xn) = h(y).Sine f is ontinuous on the two parts V and X\V of X , it is a Borel funtion,hene it is in Mm for any 0 ≤ m ≤ n.



MEASURABILITY IMPLIES CONTINUITY . . . 23First we will prove that f /∈ Rk. Let π be the embedding
y 7→ (y1, . . . , yk, 0, . . . , 0)of Rk into Rn. Let us hoose a K ∈ N and a vetor y0 from 2−KZk suh that if U isthe set of all points y for whih all oordinates of y−y0 are greater than zero and lessthan 2−K , then the losure of π(U) is in V . For p ∈ R let ϕ(u, p) = π(u)+pen where

en is the unit vetor (0, . . . , 0, 1) ∈ Rn. For an appropriateM we have ϕ(u, p) ∈ Xwhenever u ∈ U and p ∈ P = {p : |p| < 2−M}. Let p0 = 0 and pm = 2−m whenever
m > M . For any subsequene pms

of pm it holds that if for a given u ∈ U forin�nitely many s we have f(ϕ(u, pms
)) = 1 then f(ϕ(u, pms

)) 6→ f(ϕ(u, p0)) = 0.Hene with the notation Um = {u ∈ U : f(ϕ(u, pm)) = 1} onvergene an ouronly if there exists an S suh that for eah s ≥ S we have u /∈ Ums
, i. e. if

u /∈ ∩∞
S=1 ∪∞

s=S Ums
. Hene onvergene almost everywhere may happen only if

λk (∩∞
S=1 ∪∞

s=S Ums
) = 0.This means that for onvergene almost everywhere λk(Ums

) → 0 is neessary. Butthis does not hold beause λk(Ums
) = λk(U)/2k whenever ms > K.It is muh harder to prove that f ∈ Tk. Let U be an open subset of Rk, let

P be an open subset of some Eulidean spae, p0 ∈ P and ϕ : U × P → X a C1funtion for whih eah ϕp, p ∈ P is an immersion. Let pm → p0 be a onvergentsequene in P . Sine the funtion f is ontinuous on X\V , if ϕ(u, p0) /∈ V then
f(ϕ(u, pm)) → f(ϕ(u, p0)). Hene we have to deal only with the set Z = {u ∈ U :
ϕ(u, p0) ∈ V }. Let us introdue the notation Uε

m = {u ∈ Z : f(ϕ(u, pm)) ≥ ε}. Wehave to prove that for almost all u ∈ Z there exists a subsequene pms
of pm forwhih f(ϕ(u, pmk

)) → f(ϕ(u, p0)) = 0. This means that for eah ε > 0 and for eah
M there exists an m ≥M suh that u /∈ Uε

m, i. e., that u /∈ ∪ε>0 ∪∞
M=1 ∩∞

m=MUε
m.Hene we have to prove that this set has λk measure zero. Sine dereasing εthe set ∪∞

M=1 ∩∞
m=M Uε

m inreases, if we take a sequene εs > 0 tending to 0 andrestrit the union for only these numbers εs, the union does not hange. Hene it isenough to prove that for eah ε > 0 the set ∪∞
M=1 ∩∞

m=M Uε
m has measure zero, or,equivalently, that for eah ε > 0 and for eahM the set ∩∞

m=MUε
m has λk measurezero. If this is not the ase, then there exists an ε > 0 and an M for whih thereexists a density point u0 of this set. Suppose for ontradition that this is the aseand let us �x ε, M and u0. Moreover, we may suppose that u0 ∈ ∩∞

m=MUε
m.Let us write ϕ = (ϕ1, ϕ2) where ϕ1(u, p) is the �rst k oordinates of ϕ(u, p)and ϕ2(u, p) is the last n − k ones. Sine u0 is a density point of Z, too, wehave ϕ′2,p0(u0) = 0 and detϕ′1,p0(u0) 6= 0. Using the proof of the inverse funtiontheorem, it is possible to �nd a c > 0, an open ball U0 with enter u0 and aneighborhood P0 of p0 suh that whenever Bδ(u0) is ontained in U0 and p ∈ P0then Bcδ(ϕ1,p(u0)) is ontained in ϕ1,p(Bδ(u0)). Furthermore we may suppose that

‖ϕ′2,p(u)‖ ≤ c/(16√k) whenever (u, p) ∈ U0×P0. Shrinking U0 and P0, if neessary,



24 A. JÁRAIwe may also suppose that for some positive onstant C we have J(ϕ1,p)(u) ≤ Cwhenever (u, p) ∈ U0 × P0, where J is the absolute value of the Jaobian.Let α(k) denote the λk measure of balls having radius 1 in Rk. Then, of ourse,the λk measure of any ball having radius δ is α(k)δk. Sine u0 is a density point,there exists a δ0 > 0 suh that for the losed ball Bδ(u0) we have
λk (Bδ(u0)\(∩∞

m=MUε
m)) < ckδk

Ckk/223kwhenever 0 < δ ≤ δ0. For this δ0 let us hoose an s0 > 1 for whih 2−s0+1 ≤
cδ0/√k. Let us hoose an M0 suh that for m ≥ M0 we have pm ∈ P0 and thedistane of ϕ(u0, pm) from W is less than 2−s0−2. Let us �x an m ≥ max{M,M0}.Sine u0 ∈ Uε

m, the distane of ϕ(u0, pm) from W is greater than 0 but less than2−s0−2. Let us hoose an s suh that this distane is not less than 3 · 2−s−3 butless than 3 · 2−s−2. Clearly s ≥ s0. Let √
k2−s/c < δ ≤

√
k2−s+1/c. Then wehave 0 < δ ≤ δ0. Let S denote the set of all those y ∈ Rk for whih all oordinatesof 2sy has the same integer part as the orresponding oordinate of 2sy0 where

y0 = ϕ1(u0, pm). The set S is the artesian produt of intervals having length 2−s.Hene the diameter of S is √
k2−s and beause y0 ∈ S, the set S is ontained in

ϕ1,pm
(Bδ(u0)). Using the estimate of ‖ϕ′2,pm

(u)‖ valid for all u ∈ Bδ(u0) we obtainthe estimate
|ϕ2(u, pm)− ϕ2(u0, pm)| ≤ cδ/(16√k) ≤ 2−s−3.This implies that the distane of ϕ(u, pm) fromW is between 2−s−2 and 2−s. Let S0denote those points y of S for whih all of the three funtions h(2sy), h(2s+1y) and

h(2s+2y) take the value zero. A y ∈ S is in S0 if and only if the frational part of allthe oordinates of 2sy, 2s+1y and 2s+2y is between 1/4 and 3/4. This means thatthe frational part of all the oordinates of 2sy is in [5/16, 6/16℄∪ [10/16, 11/16℄.Hene the λk measure of S0 is 2−sk−3k. If u ∈ Bδ(u0) and y = ϕ1(u, pm) ∈ S0,then u /∈ \Uε
m. But J(ϕ1,pm

)(u) ≤ C, hene by the transformation formulae ofintegrals we have
λk(Bδ(u0)\Uε

m) ≥ 2−sk−3k
C

≥ ckδk

Ckk/223k .This ontradits the hoie of δ0. This ontradition proves that f ∈ Tk.For the following ounterexamples we need a lemma. The ounter examples arerelated to the existene of the so-alled almost invariant sets. These sets were usedby Kakutani and Oxtoby to prove that the Lebesgue measure on the omplex unitirle an be extended to an invariant measure suh that the Hilbert spae dimen-sion of the orresponding L2 spae beomes 2, where  is the ardinal numberontinuum. The onstrution below is a re�nement of the onstrution from thepaper [6℄ of the author, where the result of Kakutani and Oxtoby was extended



MEASURABILITY IMPLIES CONTINUITY . . . 25| among others | to arbitrary loally ompat groups. The ideas there are om-bined with the well-known ideas of Sierpinski to onstrut under the ontinuumhypothesis a subset of the unit square with outer measure 1 and ontaining at mosttwo points on eah line. To understand the typial appliation of this abstrat settheoreti lemma, we may think of the ase when X is the plane, T is the lassof all di�eomorphisms mapping some open subset of the plane onto some otheropen subset of the plane, F is the lass of all ompat plane sets having positiveLebesgue measure, G is the lass of all one-dimensional C1 submanifolds of theplane and n =  = ℵ1.4.8. Lemma. Let X be a set and T a lass of one-to-one transformations eahmapping a subset of X into X and let F , G be lasses of subsets of X. Supposethat there exists a ardinal number n > ℵ0 with the following properties:(1) ard(X) = n;(2) ard(T ) ≤ n;(3) ard(F) ≤ n and for every F ∈ F we have ard(F ) = n;(4) ard(G) ≤ n and for every F ∈ F and G0 ⊂ G for whih ard(G0) < n we haveard(F\ ∪ G0) = n;(5) The lass G is T invariant, i. e. if G ∈ G, τ ∈ T then τ(G) ∈ G and τ−1(G) ∈ G.Then there exists a family {Xγ}γ∈� of subsets Xγ of X with the following proper-ties:(6) ard(�) = n;(7) the sets Xγ , γ ∈ � are pairwise disjoint;(8) for eah γ ∈ � and G ∈ G we have ard(Xγ ∩G) < n;(9) ard(F ∩Xγ) = n whenever γ ∈ � and F ∈ F ;(10) for every subset �0 of � and for every τ ∈ Tard(τ(∪γ∈�0Xγ)△ (τ(X) ∩ (∪γ∈�0Xγ))) < n.Proof. Let 
 be the smallest ordinal having ardinality n. We may supposethat F is nonvoid, beause otherwise we may replae it with {X}. Let Y be anarbitrary set with ardinality n. Sine ard(Y × F) = n, there exists a one-to-one mapping α 7→ (yα, Fα) of the set of ordinals {α : 0 ≤ α < 
} onto Y × F .The trans�nite sequene F0, . . . , Fα, . . . , 0 ≤ α < 
 ontains every element F of Fexatly n times. Similarly, we may suppose that G is nonvoid, beause otherwise wemay replae it with {∅}, and we may hoose a trans�nite sequene G0, . . . , Gα, . . . ,0 ≤ α < 
 ontaining all elements of G. Let us hoose a mapping α 7→ τα of theset {α : 0 ≤ α < 
} onto the set {1X} ∪ T for whih τ0 = 1X where 1X is theidential mapping of X onto itself. For eah x ∈ X and eah ordinal α < 
 let
Cα(x) denote the set of all points of X that an be written as

τε1
β1 ◦ · · · ◦ τεn

βn
(x)



26 A. JÁRAIwhere n = 1, 2, . . . , k = 1, 2, . . . , n, 0 ≤ βk ≤ α and εk is 1 or −1. Here τ1 meansthe mapping τ and τ−1 means the inverse of τ . Clearly, we have x ∈ Cα(x) and for
x ∈ X and 0 ≤ β ≤ α < 
 we have Cβ(x) ⊂ Cα(x) and τβ (Cα(x)) = τβ(X)∩Cα(x).We also have ard (Cα(x)) ≤ max{ard(α),ℵ0} < n.If A ⊂ X then we will use the notation Cα(A) for ∪x∈ACα(x). We will show thatthere exists a trans�nite double sequene

{xα
β : 0 ≤ β ≤ α < 
}of elements of X suh that:

xα
β ∈ Fα if 0 ≤ β ≤ α < 
;the sets {Cα(xα
β ) : 0 ≤ β ≤ α < 
} are pairwise disjoint;

Cα(xβ
α) is disjoint from any Cα(Gγ), γ ≤ α.If we agree that (γ, δ) < (α, β) whenever γ < α or γ = α and δ < β (lexiographiordering), then {(α, β) : 0 ≤ β ≤ α < 
 } is a well ordered set. We will de�ne thesequene {xα

β : 0 ≤ β ≤ α < 
} by trans�nite indution. Let x00 be an arbitrarypoint of F0\G0. Suppose that 0 ≤ β ≤ α < 
 and that xγ
δ have already beende�ned for all pairs (γ, δ) < (α, β), 0 ≤ δ ≤ γ. Consider the union D(α, β) of thesets Cα(xγ

δ ) as (γ, δ) runs over all pairs (γ, δ) < (α, β). Thenard (D(α, β)) ≤ (ard(α))2max{ard(α),ℵ0} < n.Let E(α) be the union of all sets Cα(Gγ), γ ≤ α. By (5), E(α) is the union of some
Gα ⊂ G with ard(Gα) < n. By (4) the ardinal number of Fα\E(α) is n, hene(Fα\E(α))\D(α, β) is nonvoid. Let xα

β be an arbitrary point of (Fα\E(α))\D(α, β).Then Cα(xα
β ) is disjoint from every Cζ(x) where x = xγ

δ for some (γ, δ) < (α, β) or
x ∈ Gζ for some ζ ≤ α. Otherwise we would have

τε1
β1 ◦ · · · ◦ τεn

βn
(xα

β ) = τη1
δ1 ◦ · · · ◦ τηm

δm
(x),where βk ≤ α, δj ≤ α, εk is 1 or −1, and ηj is 1 or −1, k = 1, 2, . . . , n, j =1, 2, . . . ,m. Hene

xα
β = τ−εn

βn
◦ · · · ◦ τ−ε1

β1 ◦ τη1
δ1 ◦ · · · ◦ τηm

δm
(x),and this ontradits the hoie of xα

β .Now let � = {ζ : ζ is an ordinal and 0 ≤ ζ < 
};
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Xζ = ⋃

{

Cα(xα
ζ ) : ζ ≤ α < 
}

, ζ ∈ �.Properties (6) and (7) are obvious. Sine xα
ζ ∈ F and xα

ζ ∈ Cα(xα
ζ ) ⊂ Xζ whenever

ζ ≤ α < 
 and Fα = F , we have that F ∩Xζ has at least n elements. Hene (9)is satis�ed.To prove (8) let us observe that
Cα(xα

ζ ) ∩Gγ = ∅whenever α ≥ γ. Hene, if G = Gγ then
Xζ ∩G ⊂ ∪{Cα(xα

ζ ) : ζ ≤ α < γ}and the right hand side has ardinality less than n.To prove (10) let �0 ⊂ � and τ ∈ T . Suppose that 0 ≤ γ < 
 and τγ = τ .Using that
τγ

(

Cα(xα
ζ )) = τγ(X) ∩ Cα(xα

ζ ) if γ ≤ α < 
and
⋃

ζ∈�0Xζ = ⋃

{

Cα(xα
ζ ) : ζ ∈ �0, ζ ≤ α < 
}

,we have that
τγ(∪ζ∈�0Xζ)△(

τγ(X) ∩ (∪ζ∈�0Xζ))
⊂

⋃

{

τγ
(

Cα(xα
ζ )) ∪ Cα(xα

ζ ) : ζ ∈ �0, ζ ≤ α < γ
}

.Sine ard (

Cα(xα
ζ ) ∪ τγ (

Cα(xα
ζ ))) ≤ max {ard(α),ℵ0} ,the right hand side has ardinality less than n. Hene (10) is proved.4.9. Counterexample. Using the onditions of 4.1, under the ontinuumhypothesis for 0 < k ≤ n we have Lk 6⊂ Mk.Proof. We will give a funtion f ∈ Lk for whih f /∈ Mk. We want to applythe previous lemma. We will use only that the funtions ϕ in the de�nition of

Lk are ontinuous and that by Remark 2.3.(3) we may suppose that the funtions
ϕp are one-to-one. Let T denote the lass of all one-to-one funtions τ whih anbe represented in the form ϕp ◦ ϕ−1

p′ , where U is an open subset of Rk, P is anopen subset of some Eulidean spae and ϕ : U × P → X is a ontinuous funtionfor whih all ϕp, p ∈ P is one-to-one. Sine the ardinality of all pairs U , P isontinuum and any ontinuous funtion ϕ is uniquely determined by the values ona ountable dense subset, the ardinality of the lass T is ontinuum.



28 A. JÁRAILet F denote the lass of all ompat k reti�able subsets of X having positive
χk measure. Sine eah ompat set is uniquely determined by its omplement,and the open omplement is determined by its subsets from a �xed ountable base,it follows that the lass F has  elements, and all elements have ardinality .Applying the previous lemma with G = ∅ we obtain a lass of subsets Xγ , γ ∈ Rof X . Our ounterexample will be the harateristi funtion f of X0 i.e. Xγ for
γ = 0.Let U be a bounded open subset of Rk and ψ : U → X be an immersion forwhih the reti�able and χk measurable set M = ψ(U) has positive but �nite χkmeasure. Let us observe that if X0 ∩ M were of χk measure zero, then M\X0would ontain some F ∈ F , whih is impossible beause F ∩X0 6= ∅. If X0 ∩Mwere χk measurable with positive χk measure then it would ontain some F ∈ F .But this is impossible beause F ∩Xγ 6= ∅ and Xγ ∩X0 = ∅ for any γ 6= 0. Hene
X0 ∩M is non χk measurable. By 4.3 this implies that f /∈ Mk.We will prove that f ∈ Lk. Let C be a ompat subset of U . The set

{u ∈ C : f(ϕp0(u)) 6= f(ϕp(u))}is equal to the set
ϕ−1

p0 (

{x ∈ ϕp0(C) : x ∈ X0△(ϕp0 ◦ ϕ−1
p )(X0)}) .For the mapping τ = ϕp0 ◦ ϕ−1

p this set is a subset of the set
ϕ−1

p0 ((τ(X) ∩X0)△τ(X0)) .If we suppose that the ontinuum hypothesis holds then this set is ountable.4.10. Counterexample. Using the onditions of 4.1, for 0 < k < n under theontinuum hypothesis Sk $ Rk.Proof. We apply the onstrution of the previous lemma, hoosing for T , Fand G the same lasses as above to obtain the sets Xγ , γ ∈ R. If m ∈ N and m ≥ 2,let fm(x) = gm(x)hm(x), where gm(x) is the harateristi funtion of the set Xm,and
hm(x) = 





























0, if dist(x,D) ≤ 1
m+1 ;0, if dist(x,D) ≥ 1
m−1 ;

m(m+ 1)(dist(x,D)− 1
m+1) if 1

m+1 ≤ dist(x,D) ≤ 1
m ;

m(m− 1)( 1
m−1 − dist(x,D)) if 1

m ≤ dist(x,D) ≤ 1
m−1 ,



MEASURABILITY IMPLIES CONTINUITY . . . 29where D is a given nonvoid k-dimensional losed disk ontained in the interse-tion of X with a k dimensional plane. Let f = ∑∞
m=1 fm. (As in the previousounterexample we an prove that f /∈ Mk.) As in the previous ounterexample itfollows that eah gm is in Lk = Sk, hene in Rk, too. The same is trivial for theontinuous funtion hm. From this it follows for the produt gmhm that it is alsoin Rk. Sine everywhere on the open set X\D the funtion f is loally the �nitesum of suh produts, we have that f |X \D ∈ Rk. Let ϕ : U × P → X and let

F = {u : ϕ(u, p0) ∈ D}.Clearly F is a losed set. Let C be a ompat subset of F . For pm → p0, let
Rm,j denote the set of all points u for whih ϕ(u, pm) ∈ Xj but ϕ(u, p0) /∈ Xj or
ϕ(u, pm) /∈ Xj but ϕ(u, p0) ∈ Xj . Under the ontinuum hypothesis, the sets Rm,jand their union R = ∪∞

m,j=1Rm,j are ountable and hene have λk measure zero.Let us observe that for eah i there exists an mi suh that if m > mi then foreah u ∈ C we have
|ϕ(u, pm)− ϕ(u, p0)| < 1

i+ 1 .Hene, if u ∈ C but u /∈ R and u /∈ ∪∞
j=iϕ

−1
p0 (Xj), then ϕ(u, pm) /∈ Xj whenever

j ≥ i. Hene gj(ϕ(u, pm)) = 0 for j ≥ i. On the other hand, dist(ϕ(u, pm), D) <1
i+1 , hene hj(ϕ(u, pm)) = 0 whenever j ≤ i. So we obtain that f(ϕ(u, pm)) = 0whenever u /∈ R, u /∈ ∪∞

j=iϕ
−1
p0 (Xj) and m > mi. Sine the sets Xj are disjoint,

f(ϕ(u, pm)) → f(ϕ(u, p0)) for m → ∞ whenever u /∈ R, i. e. almost everywhere.Taking union for ountably many sets C we obtain that f ∈ Rk.On the other hand, if e 6= 0 is orthogonal to D and ϕ(u, p) = ψ(u)+pe, where ψis an isometri immersion mapping some nonvoid open subset of Rk into D, p0 = 0,then, for pm = 1/m we have that
{u ∈ C : |f(ϕ(u, pm))− f(ϕ(u, p0))| ≥ 1} ⊃ ψ−1(Xm) ∩ C,if m is large enough, exept for a ountable set. The set on the left hand side hasthe same λk measure as C. This shows that f /∈ Sk.4.11. Counterexample. Using the onditions of 4.1, under the ontinuumhypothesis for 0 < k < l ≤ n we have Mk ∩ Lk ∩ Ll 6⊂ Ml.Proof. We will give an example of a funtion f ∈ Mk ∩ Lk ∩ Ll but f /∈ Ml.We want to apply Lemma 4.8. We will use that by Remark 2.3.(3) we may supposethat the funtions ϕp in the de�nition of Ll are one-to-one immersions. Let Tdenote the lass of all one-to-one funtions τ whih an be represented in the form

ϕp ◦ ϕ−1
p′ , where U is an open subset of Rl, P is an open subset of some Eulideanspae and ϕ : U × P → X is a C1 funtion for whih all ϕp, p ∈ P are one-to-one.



30 A. JÁRAILet F denote the lass of all ompat l reti�able subsets of X having positive χlmeasure. Let G be the lass of all k-reti�able Borel subsets of X . It is not hardto prove that the lass G is T invariant. Moreover all G ∈ G has χl measure zero,hene the same is true for the union of ountably many G ∈ G. This means that
F\ ∪ G0 has positive χl measure, hene ardinality  for any ountable subfamily
G0 ⊂ G and for any F ∈ F . Other onditions of Lemma 4.8 has already beenheked at 4.9.Applying Lemma 4.8 we obtain a lass Xγ , γ ∈ R where eah Xγ ontains onlyountably many points from eah G ∈ G, but Xγ ∩ F 6= ∅ for eah F ∈ F , hene
Xγ ∩ F is not χl measurable for any F ∈ F .Let f be the harateristi funtion of X0. Along the same lines as in 4.9 weget that f ∈ Ll but f /∈ Ml. Sine for any C1 embedding ψ of an open subset of
Rk into X the funtion f ◦ψ is zero exept for a ountable set, we get that f ∈ Mkand f ∈ Lk, too. Hene the statement is proved.4.12. Counterexample. Using the onditions of 4.1, under the ontinuumhypothesis for 0 < k < l ≤ n we have Mk ∩ Lk 6⊂ Ml ∪ Tl.Proof. Let us apply Lemma 4.8 for the same T , F and G as in the previousounterexample. We obtain a lass Xγ , γ ∈ R where eah Xγ ontains only ount-ably many points from eah G ∈ G, but Xγ ∩F 6= ∅ for eah F ∈ F , hene Xγ ∩Fnot χl measurable for any F ∈ F .Let Z be an l dimensional plane whih has a nonempty intersetion with X andlet f be the harateristi funtion of the set Z∩X0. Then f ∈ Mk∩Sk = Mk∩Lk,but f /∈ Tl and f /∈ Ml.Aknowledgment. I am greatly indebted to one of the referees who has on-tributed to several details in this paper by an unusually areful reading.
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mány Péter sétány 1/C, H-1117 Budapest, Hungary.

E-mail address: ajarai@moon.inf.elte.hu Homepage: http://compalg.inf.elte.hu/∼ajarai


