
CONTINUITY IMPLIES DIFFERENTIABILITYFOR SOLUTIONS OF FUNCTIONAL EQUATIONS| EVEN WITH FEW VARIABLES
Antal Járai

Abstract. It is proved that — under certain conditions — continuous solutions f of

the functional equation

f(x) = h(x, y, f(g1(x, y)), . . . , f(gn(x, y))), (x, y) ∈ D ⊂ R
s × R

l,

are C∞, even if 1 ≤ l ≤ s. As a tool we introduce new function classes which — roughly

speaking — interpolate between differentiable and continuous functions.1. IntrodutionIn onnetion with his �fth problem Hilbert [4℄ suggested that although themethod of redution to di�erential equations makes it possible to solve funtionalequations in an elegant way, the inherent di�erentiability assumptions are typiallyunnatural (see [2℄). Suh shortomings an be overome by applying regularity theo-rems. In this spirit the following general regularity problem for non-omposite fun-tional equations with several variables was formulated (in a somewhat di�erent form)by the author and inluded by Az�el among the most important open problems onfuntional equations (see Az�el [1℄ and J�arai [5℄):1.1. Problem. Let X , Y and Z be open subsets of R
s, R

t and R
m, respetively,and let D be an open subset of X × Y . Let f : X → Z, gi : D → X (i = 1, 2, . . . , n)and h : D × Zn → Z be funtions. Suppose that(1)

f(x) = h(x, y, f(g1(x, y)), . . . , f(gn(x, y))) whenever (x, y) ∈ D;(2) h is analyti;(3) gi is analyti and for eah x ∈ X there exists a y for whih (x, y) ∈ D and
∂gi

∂y
(x, y) has rank s (i = 1, 2, . . . , n).Is it true that every f whih is measurable or has the Baire property is analyti?
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2 CONTINUITY IMPLIES DIFFERENTIABILITY . . .The following steps an be used:(I) Measurability implies ontinuity.(II) Baire property implies ontinuity.(III) Continuous solutions are loally Lipshitz.(IV) Loally Lipshitz solutions are ontinuously di�erentiable.(V) All p times ontinuously di�erentiable solutions are p + 1 times ontinuouslydi�erentiable.(VI) In�nitely many times di�erentiable solutions are analyti.Simple examples show that none of the onditions of the problem an be omitted.Moreover, using a general \transfer priniple" several regularity problems onerningfuntional equations with more than one unknown funtions an be redued to theproblem above. We note that in order to obtain f ∈ Cp it is usually enough to supposeonly that the given funtions h and gi are in Cp (if 2 ≤ p ≤ ∞) or in Cp+1 (if p = 0 or
p = 1).The omplete answer to the problem above is not known. The author disussedthis problem in several papers and solved problems orresponding to (I), (II), (IV)and (V) (see [5℄), and under some additional ompatness ondition (III) (see [7℄).Referenes an be found in the survey paper [14℄. There are some partial results inonnetion with (VI). Moreover, other properties of solutions suh as having loallybounded variation or loal H�older ontinuity are also disussed (see [9℄ and referenesin [14℄). It is possible to extend these results to manifolds, and the C∞-part of theproblem is ompletely solved on ompat manifolds [10℄. The most appliable resultsare treated in the booklet [8℄.Regularity theorems of the type \loally integrable solutions are in�nitely manytimes di�erentiable" an be obtained using distributions. The essene of the methodis to prove that solutions in the distribution sense satisfy a di�erential equation havingonly in�nitely many times di�erentiable solutions. This idea was used by �Swiatak [16℄to prove general regularity results for the funtional equation(4) n

∑

i=1 hi(x, y)f(gi(x, y)) = h(x, f(gn+1(x)), . . . , f(gm(x))) + h0(x, y),where f is the only unknown funtion. Roughly speaking, she applies a partial di�er-ential operator in y to the equation in the distribution sense. Of ourse, the nonlinearterm on the right hand side disappears. If there exists a y0 suh that gi(x, y0) ≡ x for1 ≤ i ≤ n, and substituting this y0 we are fortunate enough to obtain a hypoelliptipartial di�erential equation, then by the regularity theory of partial di�erential equa-tions all distribution solutions are in C∞. For the exat details of how to overomethe diÆulties and for appliations see her paper [16℄.Further referenes about regularity theorems for funtional equations an befound in the survey paper [14℄. Some other papers onerning the distribution methodare also referred there.



CONTINUITY IMPLIES DIFFERENTIABILITY . . . 3The above equation of �Swiatak is \almost linear", so, formally, it is muh lessgeneral than equation (1). However, her theorems an be applied in ertain ases evenif the rank of ∂gi

∂y
is muh smaller than the dimension of the domain of the unknownfuntion f . Roughly speaking, the present author's results, quoted above, may beapplied to prove regularity of a solution f having m variables, only if there are at least2m variables in the funtional equation. The method of �Swiatak may apply even ifthere are only m + 1 variables. This is the minimal number of variables: in Hilbert'spaper [4℄ there is an example that for \one variable" funtional equations (this maymean an m-dimensional vetor variable) no regularity theorem holds. So the results of�Swiatak suggest that the rank ondition in the problem above is too strong, and theresults an be extended to a muh more general ase.Suh \measurability implies ontinuity even with few variables" type results weretreated reently in J�arai [12℄. Well-known analogies between measurability and Baireproperty suggest analogous results for Baire property (see [11℄).In this paper we prove general \ontinuity implies C∞" type results. The \C1implies C∞" part holds for the general expliit nonlinear funtional equation (1) with-out the strong rank ondition in (3) to the inner funtions. The \ontinuity implies

C1" part holds only for linear equations of the type(5) f(x) = h0(x, y) + n
∑

i=1 hi(x, y)f(gi(x, y))with unknown funtion f . In the spirit of the \bootstrap" method orrespondingto steps (I){(VI) we introdue a sequene of properties, whih | roughly speaking| interpolate between ontinuity and ontinuous di�erentiability. This sequene ofproperties provides us with a stairway to limb up from ontinuity to ontinuousdi�erentiability. First we investigate the basi properties of the new notions. Thena \ontinuity implies C1" type theorem will be proved. An example is given how toapply the theorem in nontrivial ases. A re�nement of the theorem is also proved.Finally, a \C1 implies C∞" type theorem is proved.The main advantages of our method ompared to �Swiatak's are the following:
• We do not need the very strong ondition that there is a y0 suh that gi(x, y0) ≡ xfor 1 ≤ i ≤ n. This ondition does not hold for most of the important funtionalequations.
• The somewhat arti�ial ondition of hypoelliptiity is also avoided. Our ondi-tions | besides smoothness onditions for the given funtions | are only linearalgebrai in nature.
• Seemingly, equation (4) of �Swiatak is nonlinear, and our equation (5) is linear.However, substituting y = y0 in equation (4) the onditions gi(x, y0) ≡ x for1 ≤ i ≤ n yield

n
∑

i=1 hi(x, y0)f(x) = h(x, f(gn+1(x)), . . . , f(gm(x))) + h0(x, y0).



4 CONTINUITY IMPLIES DIFFERENTIABILITY . . .Expressing the term h(x, f(gn+1(x)), . . . , f(gm(x))) from this equation, and sub-stituting bak into (4), after division by ∑n
i=1 hi(x, y0) we obtain an equation ofthe type (5). Hene our methods an be applied to prove \ontinuity implies C1"for �Swiatak's equation. We prove \C1 implies C∞" for the most general nonlinearfuntional equation (3).

• Finally, generalizing our methods we may hope to obtain \ontinuity implies C1"type results for the most general nonlinear funtional equation (3). This seems tobe impossible using the method of �Swiatak based on Shwartz distributions. Theappliability of the distribution method is restrited, beause no multipliationamong Shwartz distributions is de�ned. By Shwartz's impossibility theorem,this annot be done in a satisfying way. It is even more hopeless to substitutedistributions into general C∞ funtions with several variables. The distributionmethod has to be restrited to funtional equations that are not very far frombeing linear. 2. The new notions2.2. De�nition. The basi idea is to onsider parametri integrals of the form(1) p 7→

∫

U

w(u, p)f(ϕ(u, p)) dµ(u),where f : X → Y is a funtion mapping the set X into the Banah spae Y . Suha parametri integral is given by a parametri integration quintuple (P, U, w, ϕ, µ),where P is the parameter spae, U is a measure spae with measure µ, the funtion
w is a weight funtion w : U × P → R and the funtion ϕ : U × P → X is onsideredrepresenting a parametri family u 7→ ϕ(u, p), p ∈ P of surfaes in X . We may onsidera set P of parametri integration quintuples and to denote by F(X, Y,P;G) the lassof all suh funtion f : X → Y for whih for all quintuples from P the parametriintegral (1) is in the lass of funtions G.For our purposes a somewhat simpler setting will be suÆient. For simpliity,we may suppose that f is a ontinuous funtion mapping an open subset X of R

ninto a Banah spae Y . We shall onsider the set Pk of all integration quintuples(U, P, w, ϕ, µ) for whih U is an open subset of R
k, the \parameter spae" P is someopen subset of some Eulidean spae, µ is the restrition of Lebesgue measure λk tosubsets of U , and w : U ×P → R and ϕ : U ×P → X are arbitrary funtions satisfyingsome smoothness onditions. We use weight funtions that are at least ontinuous andhave ompat support. The funtions ϕ are supposed to be at least C1. Under suhonditions the parametri integral(2) p 7→

∫

U

w(u, p)f(ϕ(u, p)) duexists for eah p ∈ P and is ontinuous. Here integration is with respet to k dimen-sional Lebesgue measure.



CONTINUITY IMPLIES DIFFERENTIABILITY . . . 5Earlier results about parametri integrals (see Theorem 2.5 below) show thatif w ∈ C1 and if f is merely ontinuous, but ϕ is twie ontinuously di�erentiable,this parametri integral will be ontinuously di�erentiable for k = n. If k = 0 thenthe ontinuous di�erentiability of suh integrals beomes equivalent to the ontinuousdi�erentiability of f . Roughly speaking, the ontinuous di�erentiability of suh para-metri integrals is a stronger ondition on f , the smaller k is, and provides us with astairway to limb up from ontinuity to ontinuous di�erentiability.For onveniene we introdue the following notation. Suppose that X is an opensubset of R
n, Y is a Banah spae, 0 ≤ k ≤ n an integer, W is a lass of funtions wmapping some produt U × P (depending on w) into R, where U is an open subsetof R

k and P is an open subset of some Eulidean spae, � is a lass of funtions ϕmapping some produt U ×P into X where, again U is an open subset of R
k and P isan open subset of some Eulidean spae, and G is a lass of funtions mapping someopen subset P of some Eulidean spae into Y . Let

Fk(X, Y,W,�;G)denote the lass of all ontinuous funtions f : X → Y for whih whenever w ∈ Wand ϕ ∈ � have the same domain U × P , the parametri integral (2) is de�ned for all
p ∈ P and is in the lass G.The funtion lasses W, � and G will be de�ned via smoothness onditions. Let0 ≤ m ≤ ∞ and let Cm denote the lass of all funtions whih are de�ned on someopen subset of some Eulidean spae, take values in a Banah spae and are m timesontinuously di�erentiable. Let Km be the sublass of Cm onsisting of funtions thathave ompat support. Let Im denote the lass of funtions ϕ ∈ Cm whih map someCartesian produt U ×P of open subsets of Eulidean spaes into an Eulidean spaeso that u 7→ ϕ(u, p) is an immersion for eah p ∈ P . Similarly, let Em denote thelass of those funtions ϕ ∈ Cm whih are mapping some Cartesian produt U × P ofopen subsets of Eulidean spaes into an Eulidean spae so that u 7→ ϕ(u, p) is anembedding for eah p ∈ P .The most important lasses for us will be Fk(X, Y,K1, I2; C1), 0 ≤ k ≤ n. Weshall often hek the ondition f ∈ Fk(X, Y,K1, I2; C1) loally. If for a given funtion
ϕ : U × P → X for eah u0 ∈ U and p0 ∈ P there is a neighbourhood U0 of u0 and
P0 of p0 suh that the parametri integral (2) is in C1 whenever the support of w isontained in U0×P0, then for any w : U ×P → R the parametri integral (2) is in C1.This easily follows using a partition of unity.2.3. Remarks. (1) Suppose that X is an open subset of R

n and let therange be R
m. Our main results will show that, roughly speaking, solutions f from

Fk+1(X, Rm,K1, I2; C1) are also in Fk(X, Rm,K1, I2; C1). We shall prove that thelass F0(X, Rm,K1, I2; C1) is the lass of C1 funtions, and that all ontinuous fun-tions f : X → R
m are in Fn(X, Rm,K1, I2; C1). Hene, step-by-step, ontinuity ofsolutions implies that they are in C1.(2) There is some analogy with the measure theoretial and with the Baire at-egory ase. About the history of the analogous measure theoretial notions see thereferenes in J�arai [12℄.



6 CONTINUITY IMPLIES DIFFERENTIABILITY . . .(3) It is a lassi tehnique to use parametri integrals to prove regularity theo-rems for funtional equations with unknown funtions having one real variable. See thebook of Az�el, 4.2.2, 4.2.3 for its history. The generalization for funtional equationswith unknown funtions of several variables is non-trivial and was arried out by theauthor (see [5℄). The main diÆulty is to prove that a parametri integral of the form
p 7→

∫

gp(D) h(x, p) dxis ontinuously di�erentiable; even if we only know that h and ∂h
∂p

are ontinuous and
g is ontinuously di�erentiable.(4) If X is an open subset of R

n, Y is a Banah spae, and 0 ≤ k ≤ n, then thelass Fk(X, Y,K1, I2; C1) is equal to the lass Fk(X, Y,K1, E2; C1). This easily followsfrom the loality priniple mentioned in the de�nition.2.4. Theorem. Let Y = R
m and let X be an open subset of R

n. Then
F0(X, Y,K∞, I∞; Ck) = Ck for 0 ≤ k < ∞.Proof. In this ase the parametri integral simply beomes the mapping p 7→
w(0, p)f(ϕ(0, p)). We may take P = X , p 7→ ϕ(0, p) to be the identity mapping, and
p 7→ w(0, p) to be equal to one in a neighbourhood of a given point x0 = p0 ∈ X . Thenit follows that f is a Ck funtion in a neighbourhood of x0. Conversely, if f ∈ Ck, thenthe mapping p 7→ w(0, p)f(ϕ(0, p)) is also in Ck.Next we prove that ontinuous funtions mapping an open subset X of R

n into
R

m are in F0(X, Rm,K1, I2; C1). To do this we need the following theorem aboutdi�erentiation of parametri integrals.2.5. Theorem. Let S be a simplex with non-void interior in R
n, and let U ,

V and W be open subsets of R
n, R

s and R
n, respetively. Let g : (t, y) 7→ x be afuntion mapping V × W into U , and let h : (t, x) 7→ z be a funtion mapping V × Uinto R. Suppose, that S ⊂ W and(1) g is ontinuously di�erentiable, gt is invertable for all t ∈ V , and (Jgt)(y) 6= 0 if

t ∈ V and y ∈ W ;(2) h and ∂h
∂t

are ontinuous.Then the funtion
F (t) = ∫

gt(S) h(t, x) dx whenever t ∈ Vis ontinuously di�erentiable on V .Proof. This is the main result of J�arai [6℄. For our purposes the somewhatweaker version (Theorem 5.1 in J�arai [5℄) supposing that g is twie ontinuously dif-ferentiable would be also suÆient.



CONTINUITY IMPLIES DIFFERENTIABILITY . . . 72.6. Theorem. Let X be an open subset of R
n, and let f : X → R

m be aontinuous funtion. Then f ∈ Fn(X, Rm,K1, E2; C1).Proof. Arguing oordinate-wise, we may suppose, that f is real valued, i. e.that m = 1. Let P be an open subset of R
s and let U be an open subset of R

n. Let
ϕ : U × P 7→ X be a funtion from I2. By the loality priniple from the de�nition,it is enough to prove that any p0 ∈ P and u0 ∈ U have neighbourhoods P0 ⊂ P and
U0 ⊂ U , respetively, suh that whenever w : U × P → R is a C1 funtion havingsupport ontained in U0 × P0, the parametri integral

p 7→

∫

U

w(u, p)f(ϕ(u, p)) duis in C1. If U0 and P0 are small enough, then we an substitute x = ϕ(u, p) for eah
p ∈ P0. We may hoose a simplex S ontaining U0. Then the integral above beame

∫

ϕp(S) w(ϕ−1
p (x), p)f(x)J(ϕ−1

p )(x) dxfor all p0 ∈ P0. Hene, by the previous theorem the integral is ontinuous.3. The main results3.1. Theorem. Let X and Xi, 1 ≤ i ≤ n be open subsets of Eulidean spaesand let Y be an open subset of R
l. Let D be an open subset of X × Y . Consider thefuntions f : X → R

m, fi : Xi → R
m, hi : D → R, gi : D → Xi (i = 1, 2, . . . , n). Let

U ⊂ R
k be open, P be an open subset of some Eulidean spae, p0 ∈ P , ϕ : U×P → Xa I2 funtion and suppose that the following onditions hold:(1) For eah (x, y) ∈ D,

f(x) = n
∑

i=1 hi(x, y)fi(gi(x, y));(2) hi is ontinuously di�erentiable for i = 1, . . . , n;(3) the funtion fi is in Fk+l(Xi, R
m,K1, E2; C1), (i = 1, 2, . . . , n);(4) gi is C2 on D (i = 1, 2, . . . , n);(5) for eah u0 ∈ U there exists a y0 suh that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p0), y)at (u0, y0) is k + l for eah 1 ≤ i ≤ n.Then for any funtion w : U × P → X that belongs to K1 the parametri integral

p 7→

∫

U

w(u, p)f(ϕ(u, p)) duis ontinuously di�erentiable on a neighbourhood of p0.



8 CONTINUITY IMPLIES DIFFERENTIABILITY . . .Proof. Let us hoose open neighbourhoods U0, P0, Y0 of u0, p0, y0 suh that(ϕ(u, p), y) is in D whenever u ∈ U0, p ∈ P0, y ∈ Y0. We an also ensure that the rankof the derivative of the mapping (u, y) 7→ gi(ϕ(u, p), y) is equal to k + l for all u ∈ U0,
p ∈ P0, y ∈ Y0 and for 1 ≤ i ≤ n. This is possible, beause D is open, gi and ϕ are C2funtions, the rank is lower semiontinuous and U × Y has dimension k + l, hene therank annot inrease above k + l.Now let w : U0 × P0 → R be a K1 funtion. Let us hoose a K1 funtion
w0 : Y0 → R for whih ∫

Y0 w0(y) dy 6= 0. By (1) we obtain
w(u, p)f(ϕ(u, p))w0(y) = n

∑

i=1 w(u, p)w0(y)hi(ϕ(u, p), y)fi(gi(ϕ(u, p), y)).Integrating both sides over U0 × Y0 we obtain
∫

Y0 w0(y) dy

∫

U0 w(u, p)f(ϕ(u, p)) du= n
∑

i=1 ∫

Y0 ∫

U0 w(u, p)w0(y)hi(ϕ(u, p), y)fi(gi(ϕ(u, p), y)) dudy.Now the right hand side is in C1. This proves that
p 7→

∫

U0 w(u, p)f(ϕ(u, p)) duis ontinuously di�erentiable on P0. For an arbitrary K1 funtion w : U × P → Rthe statement follows using a partition of unity subordinate to an appropriate �niteovering of the support of u 7→ w(u, p0).3.2. Example. Let us onsider the funtional equation
n

∑

i=0 hi(x, y)f(x+ gi(y)) = 0,whenever x ∈ R
m, y ∈ R. Suppose that the funtions hi : R

m × R → R \ {0} areontinuously di�erentiable and the funtions gi : R → R
m are in C2. Introduing thevariable xj = x + gj(y) instead of x, we obtain(1) f(xj) = −

∑

i6=j

hi(xj − gj(y), y)
hj(xj − gj(y), y)f(xj − gj(y) + gi(y)).To see that ondition (5) from the previous theorem is satis�ed we have to hek therank of the matrix
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CONTINUITY IMPLIES DIFFERENTIABILITY . . . 9If this is k+1, then we may apply our theorem with l = 1. This means, geometrially,that the vetor g′
i(y) − g′

j(y) is not ontained in the range of the linear operator
ϕ′

p0(u) (whih is known to be k-dimensional). This range an be any k-dimensionallinear subspae in R
m. It may happen that for eah k-dimensional linear subspae,there exists a y ∈ R suh that none of the vetors g′

i(y) − g′
j(y), i 6= j is ontainedin the linear subspae. Then our theorem an be applied diretly and proves that

f ∈ Fk+1(Rm, R,K1, E2; C1) implies f ∈ Fk(Rm, R,K1, E2; C1). If this is the ase for
k = m− 1, m− 2, . . . , 0 then we obtain that every ontinuous solution is ontinuouslydi�erentiable. However, there are situations when this is not the ase. If, for example,the derivative of the funtions gi is onstant, i. e. if gi(y) = yai + bi, then for any�xed j, equation (1) annot be applied to get f ∈ Fk(Rm, R,K1, E2; C1) from f ∈
Fk+1(Rm, R,K1, E2; C1), beause for some ϕ's the range of ϕ′

p0(u) will ontain someof the vetors g′
i(y)− g′

j(y) = ai − aj . But we have the possibility to use any of theequations (1). Using the loality priniple mentioned in the de�nition, it is enough toprove that for any k-dimensional linear subspae of R
n there exists a j suh that noneof the vetors ai −aj , i 6= j is ontained in the given subspae. For example this is thesituation if n ≥ m and the vetors a0, . . . , an are in general position. If this onditionis not satis�ed, then it is still possible that our theorem an be applied. A similar (butsomewhat simpler) situation was studied in the paper [15℄, in the proof of Theorem2.3. 3.3. Remark. Although, as the example above shows, Theorem 3.1 an beapplied in several ases, it is not satisfying beause ondition (5) is too strong. If wewant to apply Theorem 3.1 to prove that f ∈ Fk(X, Rm,K1, E2; C1) then we have toallow an arbitrary ϕ. Hene ondition (5) impliitly means that the rank of ∂gi

∂x
hasto be large, even if ∂gi

∂y
has a large rank. This in pratie means that the gi haveto depend on all oordinates of x, whih is not omfortable. We want to relax thisondition. Instead of supposing that(u, y) 7→ gi(ϕ(u, p0), y)has maximal possible rank k + l at (u0, y0), we only suppose that it has rank not lessthen some ki.3.4. Lemma. Let X be an open subset of R

n, let 0 ≤ k ≤ n and let
f ∈ Fk(X, Rm,K1, E2; C1).Let U and P be open subsets of Eulidean spaes and suppose that for the C2 mapping

ϕ : U × P → X the derivative of the partial mapping u 7→ ϕ(u, p) has rank not lessthan k at the point (u0, p0) ∈ U × P . Then there exists a neighbourhood U0 of u0and P0 of p0 suh that for any funtion w : U × P → R having support ontained in
U0 × P0 the parametri integral

p 7→

∫

U

w(u, p)f(ϕ(u, p)) du



10 CONTINUITY IMPLIES DIFFERENTIABILITY . . .is ontinuously di�erentiable on P .Proof. Denoting by u1 the �rst k oordinates of u, and by u2 the rest of theoordinates of u, we may assume that the mapping u1 7→ ϕ(u1, u2, p) has nonzeroJaobian at (u0, p0). Let us hoose a neighbourhood U0 = U1 × U2 of u0 and P0 of p0suh that this Jaobian is non-zero on U0 × P0. Then the mapping(u2, p) 7→ ∫

U1 w(u1, u2, p)f(ϕ(u1, u2, p)) du1is in C1. Integrating with respet to u2, we obtain the statement of the lemma.3.5. Corollary. If 0 ≤ k ≤ l ≤ n then
Fk(X, Rm,K1, E2; C1) ⊂ Fl(X, Rm,K1, E2; C1).

The next theorem is our generalization of theorem 3.1.3.6. Theorem. Let X , Y and Xi, 1 ≤ i ≤ n be open subsets of Eulideanspaes. Let D be an open subset of X × Y . Consider the funtions f : X → R
m,

fi : Xi → R
m, hi : D → R, gi : D → Xi (i = 1, 2, . . . , n). Let U ⊂ R

k be open, P bean open subset of some Eulidean spae, p0 ∈ P , ϕ : U × P → X an I2 funtion andsuppose that the following onditions hold:(1) For eah (x, y) ∈ D,
f(x) = n

∑

i=1 hi(x, y)fi(gi(x, y));(2) hi is ontinuously di�erentiable for i = 1, . . . , n;(3) the funtion fi is in Fki
(Xi, R

m,K1, E2; C1), (i = 1, 2, . . . , n);(4) gi is C2 on D (i = 1, 2, . . . , n);(5) for eah u0 ∈ U there exists a y0 suh that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p0), y)at (u0, y0) is at least ki for eah 1 ≤ i ≤ n.Then for any funtion w : U × P → X that belongs to K1, the parametri integral
p 7→

∫

U

w(u, p)f(ϕ(u, p)) duis ontinuously di�erentiable on a neighbourhood of p0.



CONTINUITY IMPLIES DIFFERENTIABILITY . . . 11Proof. Let us hoose open neighbourhoods U0, P0, Y0 of u0, p0, y0, respetively,suh that (ϕ(u, p), y) is in D whenever u ∈ U0, p ∈ P0, y ∈ Y0. Moreover, we anensure that the rank of the derivative of the mapping (u, y) 7→ gi(ϕ(u, p), y) is not lessthan ki for all u ∈ U0, p ∈ P0, y ∈ Y0 and for 1 ≤ i ≤ n. This is possible, beause Dis open, gi and ϕ are C2 funtions, and the rank is lower semiontinuous.Now let w : U0 × P0 → R be a K1 funtion. Let us hoose a K1 funtion
w0 : Y0 → R, for whih ∫

Y0 w0(y) dy 6= 0. From (1) we obtain
w(u, p)f(ϕ(u, p))w0(y) = n

∑

i=1 w(u, p)w0(y)hi(ϕ(u, p), y)fi(gi(ϕ(u, p), y)).Integrating both sides over U0 × Y0 we obtain that
∫

Y0 w0(y) dy

∫

U0 w(u, p)f(ϕ(u, p)) du= n
∑

i=1 ∫

Y0 ∫

U0 w(u, p)w0(y)hi(ϕ(u, p), y)fi(gi(ϕ(u, p), y)) dudy.Now the right hand side is in C1 by the previous lemma. This proves that
p 7→

∫

U0 w(u, p)f(ϕ(u, p)) duis ontinuously di�erentiable on P0. For an arbitrary K1 funtion w : U × P → R thestatement follows by using a partition of unity subordinate to an appropriate �niteovering of the support of u 7→ w(u, p0).Our last theorem is about higher order derivates. Here the funtional equationis allowed to be nonlinear.3.7. Theorem. Let X be an open subset of R
s. Let Y , Z and Xi, Zi, 1 ≤ i ≤ nbe open subsets of Eulidean spaes. Let D be an open subset of X × Y . Considerthe funtions f : X → R

m, fi : Xi → Zi, h : D × Z1 × · · ·Zi → Z, gi : D → Xi(i = 1, 2, . . . , n). Let r ≥ 1 an integer. Let U ⊂ R
k be open, P be an open subset ofsome Eulidean spae, p0 ∈ P , ϕ : U × P → X an I2 funtion and suppose that thefollowing onditions hold:(1) For eah (x, y) ∈ D,

f(x) = h(x, y, f1(g1(x, y)) . . . fn(gn(x, y)));(2) all partial derivates ∂α0
x ∂α1

z1 . . . ∂αn
zn

h are ontinuously di�erentiable whenever 0 ≤

|α| ≤ r, where α = (α0, α1, . . . , αn) ∈ N
n+1 and |α| = ∑n

i=0 αi;(3) all partial derivates of order r of the funtion fi are in Fki
(Xi, R

m,K1, E2; C1),(i = 1, 2, . . . , n);



12 CONTINUITY IMPLIES DIFFERENTIABILITY . . .(4) gi is Cr+1 on D (i = 1, 2, . . . , n);(5) for eah u0 ∈ U there exists a y0 suh that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p0), y)at (u0, y0) is ki for eah 1 ≤ i ≤ n.Then for any funtion w : U × P → X that belongs to K1 and for any multiindex
α ∈ N

s for whih |α| = r, the parametri integral
p 7→

∫

U

w(u, p)(∂αf)(ϕ(u, p)) duis ontinuously di�erentiable on a neighbourhood of p0.Proof. Let 1 ≤ q ≤ s, and di�erentiate equation (1) partially with respet to
xq. We have, omitting the variables,

∂f

∂xq

= ∂h

∂xq

+ n
∑

i=1 ∑

j

∂h

∂zi,j

ri
∑

k=1 ∂fi,j

∂xi,k

∂gi,k

∂xq

.Here zi = (zi,j), xi = (xi,k), fi = (fi,j) and gi = (gi,k). The last equation shows, thatwhenever α ∈ N
s, |α| = 1, the funtion ∂αf satis�es the funtional equation
∂αf(x) = hα,0(x, y) + nα

∑

β=1hα,β(x, y)fα,β (gα,β(x, y))for (x, y) ∈ D. Here, if the q-th oordinate of α equals one, and all other oordinatesare zero, then
hα,0(x, y) = ∂h

∂xq

(x, y, f0(y), f1 (g1(x, y)) , . . . , fn (gn(x, y))) ,
gα,β = gi for some 1 ≤ i ≤ n,

fα,β = ∂fi,j

∂xi,k

for some i, j, k,and
hα,β(x, y) = ∂h

∂zi,j

(x, y, f0(y), f1 (g1(x, y)) , . . . , fn (gn(x, y))) ∂gi,k

∂xq

(x, y)for some i, j, k.It is lear that hα,β has a ontinuous p-th partial derivative with respet to xwhenever 0 ≤ β ≤ nα, moreover fα,β maps some Xi into R and all p − 1-st partial



CONTINUITY IMPLIES DIFFERENTIABILITY . . . 13derivatives of fα,β exist. Repeating this proess, we have by indution on |α|, that if
α ∈ N

s, 1 ≤ |α| ≤ p, then(5) ∂αf(x) = hα,0(x, y) + nα
∑

β=1hα,β(x, y)fα,β (gα,β(x, y))whenever (x, y) ∈ D. Here hα,β : D → Z is ontinuous, its p + 1 − |α|-th partialderivative with respet to x is ontinuous moreover fα,β : Xi → R for some 1 ≤ i ≤ nand all of its p − |α|-th partial derivatives are ontinuous. Finally, gα,β = gi for thesame i for whih dmn fα,β = Xi.Now we use Theorem 3.6. Then we have that for any funtion w : U × P → Xthat belongs to K1, and for any multiindex α ∈ N
s, the parametri integral

p 7→

∫

U

w(u, p)(∂αf)(ϕ(u, p)) duis ontinuously di�erentiable on a neighbourhood of p0.
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7. Antal Járai, On Lipschitz property of continuous solutions of functional equations, Aequationes
Math. 47 (1994), 69–78.
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nonius University, Pécs, 1996, pp. 1–77.
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