BAIRE PROPERTY IMPLIES CONTINUITY FOR
SOLUTIONS OF FUNCTIONAL EQUATIONS
— EVEN WITH FEW VARIABLES

ANTAL JARAI

ABSTRACT. It is proved that — under certain conditions — solutions f of the functional
equation

f(x) = h(z,y, f(g1(z,9)), .-, flgn(z,¥))), (z,y) € D CR" xR’

having Baire property are continuous, even if 1 < I < n. As a tool we introduce new
function classes which — roughly speaking — interpolate between Baire property and
continuity.

1. Introduction

In connection with his fifth problem Hilbert [6] suggested that although the
method of reduction to differential equations makes it possible to solve functional
equations in an elegant way, the inherent differentiability assumptions are typically
unnatural (see [2]). Such shortcomings can be overcome by appealing to regularity
theorems.

In this spirit the following general regularity problem for functional equations
with two variables and without iteration was formulated by the author and included

by Aczél among the most important open problems on functional equations (see Aczél
[1] and Jarai [8]):

1.1. Problem. Let X and Z be open subsets of R®* and R™, respectively, and
let D be an open subset of X x X. Let f: X — Z, g;: D — X (i=1,2,...,n) and
h:D x Z"t' — Z be functions. Suppose that
(1)

f(x) =h(z,y, f(y), f(g1(z,y)),..., f(gn(x,y))) whenever (z,y) € D;
(2) h is analytic;
(3) g; is analytic and for each x € X there exists a y for which (x,y) € D and

%(Z]j(x,y) has rank s (i =1,2,...,n).

Is it true that every f which is measurable or has the Baire property is analytic?
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2 BAIRE PROPERTY IMPLIES CONTINUITY ...

The following steps can be used:

I) Measurability implies continuity.

—
N—r

Baire property implies continuity.

(

(

(IIT) Continuous solutions are locally Lipschitz.

(IV) Locally Lipschitz solutions are continuously differentiable.
(

V) All p times continuously differentiable solutions are p 4+ 1 times continuously
differentiable.

(VI) Infinitely many times differentiable solutions are analytic.

The complete answer to the problem above is not known. The author discussed
this problem in several papers and solved problems corresponding to (I), (II), (IV)
and (V) (see [8]), and under some additional compactness condition (III) (see [9]).
References can be found in the survey paper [16]. There are some partial results in
connection with (VI). Moreover, other properties of solutions such as having locally
bounded variation or local Holder continuity are also discussed (see [13] and references
in [16]). It is possible to extend these results to manifolds, and the C*-part of the
problem is completely solved on compact manifolds [12]. The most applicable results

are treated in the booklet [11].

Regularity theorems of the type “locally integrable solutions are infinitely many
times differentiable” can be obtained using distributions. The essence of the method
is to prove that solutions in the distribution sense satisfy a differential equation having
only infinitely many times differentiable solutions. This idea was used by Swiatak [18]
to prove general regularity results for the functional equation

Z hi(z,y) f(9i(2,y)) = W@, f(gns1(2)), . Fgm(2))) + ho(z, y),

where f is the only unknown function. Roughly speaking, she applies a partial differ-
ential operator in y to the equation in the distribution sense. Of course, the nonlinear
term on the right hand side disappears. If, after substituting a fixed gy, we are fortu-
nate enough to obtain a hypoelliptic partial differential equation, then by the regularity
theory of partial differential equations all distribution solutions are in C*>°. For the
exact details of how to overcome the difficulties and for applications see her paper [18].

Further references about regularity theorems for functional equations can be
found in the survey paper [16]. Some other papers concerning the distribution method
are also referred to there.

The above equation of Swiatak is “almost linear”, so, formally, it is much less
general than equation (1). However her theorems can be applied even if the rank of

Jgi

5 is much smaller than the dimension of the domain of the unknown function f.

Roughly speaking, the present author’s results, quoted above, may be applied to prove
regularity of a solution f having m variables, only if there are at least 2m variables
in the functional equation. The method of Swiatak may be applied even if there are
only m + 1 variables. This is the minimal number of variables: in Hilbert’s paper [6]
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there is an example that for “one variable” functional equations (this may mean an
m-dimensional vector variable) no regularity theorem holds. So the results of Swiatak
suggest that the rank condition in the problem above is too strong, and the results
concerning the above problem can be extended for a much more general case.

Such “measurability implies continuity” type results were treated recently in
Jarai [14]. Well-known analogies between measurability and Baire property (see Ox-
toby [17]) suggest to try to prove analogous results for Baire property. Differences,
such as the lack of “e-technique”, convergence in measure and theorems connected
with it (for example Riesz theorem), Hausdorff measure, etc., shows that we need a
separate treatment.

In this paper we will prove a “Baire property implies continuity” type result for
the general explicit nonlinear functional equation (1) without the strong rank condition
in (3) to the inner functions. All earlier “Baire property implies continuity” type
results that I know of use the strong rank condition in (3) or some abstract version
of it. In the spirit of the “bootstrap” method corresponding to steps (I)-(VI) we
introduce a sequence of properties, which — roughly speaking — are between Baire
property and continuity. This sequence of properties gives a stairway to climb up from
Baire property to continuity. First we shall investigate the basic properties of the new
notions. Then the regularity theorem will be proved. An example is given how to
apply the theorem in nontrivial cases. A refinement of the theorem is also proved.
Finally, further properties of the new notions are investigated.

2. The new notions

2.1. Notations. If f is a function, rng f denotes the range of f. All normed
spaces are supposed to be real; the norm is denoted by | |. If f: D — Y is a function
mapping an open subset of a normed space into a normed space, then f’ shall denote
the derivative of f. If D C X7 x X5 x ... x X,,, we shall use the partial sets

Dxi = {(.’131,... sy Lj—1y L1y - - ,.fI?n) : (.’,131,...,.’13”) € D}

The partial functions f,, : Dy, — Y are defined by

fxi(.’lfl,... sy Li—1y Ljt1y .- - ,.’En) = f(.’l?l,... ,.’En)

whenever (x1,...,z,) € D (notice that z; is held constant in f,,). Also Dy, . i,
and f:c1 x;, are defined similarly. Now, if X; and Y are normed spaces and

D331,..

5 Li—13Ti415---3Tn
is an open subset of X; we define the partial derivative denoted by

of

aif, afl'zf or 8%

as the derivative of f,, . Other notions of calculus are used in the

usual way.

3 Li—1,Li4 15+ Tn "
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Concerning topology we follow the terminology and notations of Bourbaki [3].
The most important facts concerning Baire category can be found in Bourbaki [3]; see
Chapter IX, § 5, and the corresponding exercises, but here we shall use the different
(and more usual) terminology of Oxtoby [17]. For clearity we summarise the notions
and facts we shall use here.

We will say that a subset A of a topological space X is of first category, if A can
be represented as a countable union of nowhere dense sets, otherwise A is of second
category. Let E be a subset of the topological space X and let D(E) denote the set of
all points of X such that for each neighbourhood V' the set V N E is of second category.
Then D(E) = 0 if and only if F has first category. Moreover D(E) is closed and the
set E\D(FE) is of first category.

X is called a Baire space if every nonvoid open subset of X is of second category.
We will say that £ C X has the Baire property if there exists an open set V such
that the symmetric difference EAV is of first category. All subsets of X having Baire
property form a o-algebra. Of course this o-algebra contains Borel sets, the members
of the smallest o-algebra containing all open sets. A set £ C X has the Baire property
if and only if F\D(F) has first category.

Suppose that X is a topological space, E C X. The set F has Baire property if
and only if each point z of X has an open neighbourhood U such that U N E has the
Baire property in X.

Let X and Y be topological spaces and suppose that the topology of one of them
has a countable base. A subset ¥ x F' of X x Y has the Baire property if and only if
one of the sets E, F' is of first category or both of them have Baire property.

Combining these facts with the proof in Oxtoby [17], Chapter 15, we get the

3

following form of a well-known theorem of Kuratowsky and Ulam:

Theorem. [Kuratowsky, Ulam| Let X and Y be topological spaces, and suppose
that Y has a countable base. Let E be a subset of X x Y having the Baire property.
Then except for a set of points x of X which is of first category the set E, has the
Baire property. Moreover FE is of first category if and only if the set E, is of first
category in' Y with the exception of a set of x’s of first category.

The function f has the Baire property on E if the domain of f contains E except
for a set of first category, the range of f is in a topological space Y and E N f~1(W)
has the Baire property in X for every open subset W of Y. We simply say that f has
the Baire property, if it has the Baire property on X.

This definition is very similar to the definition of a Borel function. A function
f mapping some subset of a topological space X into another topological space Y is
called a Borel function, if for each open subset V of Y the set f~1(V) is a Borel subset
of X.

The properties of functions having the Baire property are very similar to the
properties of measurable functions. We shall use the following statements.

If f is any function defined on a subset of X having the Baire property then
all subsets B of Y for which f~!(B) has the Baire property form a o-algebra. Hence



BAIRE PROPERTY IMPLIES CONTINUITY ... 5

if f has values in the topological space Y and has the Baire property on a subset of
the topological space X, moreover g is a Borel function on a subset of the topological
space Y, then g o f has the Baire property on its domain.

Suppose that Y = [], Y; is a countable product of spaces each having a countable
base of topology. A function f mapping a subset of a topological space X into Y has
the Baire property if and only if all functions p; o f have the Baire property where p;
is the natural projection of Y onto Y;.

Suppose that X is a topological space, Y a metric space, and the functions f,
fn (n=1,2,...) are defined on X except for a set of first category (depending on the
function), have values in Y and have the Baire property. Then the set

3

E={z: fulz) = f(x)}

has the Baire property. Indeed, the sets E,, ,,, = {z : dist(f,(x), f(z)) < 1/m} have
the Baire property and E differs from the set

No=1 Unet Mz Ekem

only in a set of first category.

Suppose that X is a topological space, Y is a metric space, the functions f, f,
(n=1,2,...) are mappings from X into Y, the functions f, have the Baire property
for all n, and f,(z) — f(x) for all x € X except for a set of first category. Then f
has the Baire property, too. Indeed, if V is an open subset of Y and V; is the open
subset of Y containing those points of Y having distance larger than 1/i from Y\V,
then f~1(V) differs from the set

U2, Us2y MR fe ' (V3)

only in a set of first category.
The following theorem is the analogue of Luzin’s theorem:

Let f be a mapping of the topological space X into the topological space Y and
suppose that there exists a subset F' of X of first category such that the restriction
of f to the set X\F is continuous. Then f has the Baire property. Conversely, this
condition is necessary, if the topology of Y has a countable base.

From the Kuratowsky-Ulam theorem the following analogue of Fubini’s theorem
follows directly:

If X. Y and Z are topological spaces, Y and Z have countable bases, f : X XY —
Z has the Baire property, then except for a set of points x which is of first category,
the function f, has the Baire property.
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2.2. Definition. Let X be a set, Y a metric space, and f : X — Y be a
function. Let U be a topological space, and P a topological space, the “parameter
space” with a given point pg € P. Let ¢ be a function from U x P into X. We shall
think of ¢ as a surface ¢, : u — ¢(u,p) for each p, depending on the parameter p.
The analogue of Luzin’s theorem above and generalizations of the theorem of Piccard
(see [10]) suggest that the following condition is connected with the Baire property:

(S) For each sequence p,, — py we have f(p(u,pm)) — f(p(u,po)) except for a set
of first category of points u € U.

For our investigations we need the following property:
(B) u+— f(v(u,po)) has the Baire property.

We shall often check conditions (S) and (B) locally. If for each ug € U there is
a neighbourhood Uy of ug and Py of py such that ¢|Uy x Py satisfies (S), then ¢ also
satisfies (S). This easily follows from the locality of first category mentioned in 2.1.
Similarly, if for each ug € U there is a neighbourhood Uy of ug and Py of py such that
©|Uy x Py satisfies (B), then ¢ satisfies (B).

Let X be an open subset of R™ and 0 < k < n. The class of all functions f for
which the condition (S) [(B)] is satisfied whenever U is an open subset of R*, P is an
open subset of some Euclidean space, pg € P and ¢ : U x P — X is a C!-function for
which ¢, is an immersion of U into X for each p € P, will be denoted by S;(X,Y)
[Bi(X,Y)] or shortly by Sy, [Bi]. (We take R = {0}). Tt is clear that f € By, if and
only if the condition

(B’) f o1 has the Baire property

is satisfied whenever 1 is an immersion of some open subset U of R¥ into X.

2.3. Remarks. (1) Our main results will show that, roughly speaking, solutions
f from Si41 are also in §. We shall prove that Sy is the class of continuous functions,
and that all functions f : X — Y from the open subset X C R™ into some second
countable space Y and having the Baire property are in S,,. Hence, step-by-step, Baire
property of solutions implies their continuity.

(2) The analogy with the measure theoretical case is remarkable but not com-
plete. About the history of the analogous measure theoretical notions see some refer-
ences in Jarai [14].

(3) Solutions of functional equations having the Baire property were studied by
several authors. The generalized Cauchy equation

flg(x,y)) = h(z,y, f1(z), f2(y))

was studied the most. See the references in Jarai [8]. A “sequential approach” was used
by Grosse-Erdmann [4] and much earlier by Haupt [5]. The results of Grosse-Erdmann
can be applied to prove that for the functional equation

flg(z,y)) = h(y, fi(z))
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with unknown functions f, f; — under suitable conditions — Baire property of f;
implies the continuity of f. He applies his abstract results for the case where (z,y) € D,
where D is some open subset of R” xR"™, g : D — R” and det % and det g—g are nonzero.
His method has the advantage that one only needs the continuity of h with respect to
the second variable. Note that substituting ¢t = g(x, y) we have locally

f(t) =y, f1(g1(t,y)));

compare this with problem 1.1.

(4) The class Si [Bi] remains the same if we suppose only that (S) [(B)] is
satisfied whenever U is an open subset of R¥, P is an open subset of some Euclidean
space, po € P and ¢ : U x P — X is a C!-function for which ¢, is an embedding of
U into X for each p € P. This easily follows from the locality principle mentioned in
the definition. Similarly, supposing only that ¢, is an immersion, the resulting class
Sk [Bg| remains the same.

2.4. Theorem. Let Y be a topological space and X an open subset of R".
Then By(X,Y) =YX and §y(X,Y) = C(X,Y), the class of continuous functions from
X into Y.

Proof. We shall use the notations of the definition. It is trivial that By contains
all functions from X into Y.

Now let us prove that any continuous function f: X — Y is in Sy. Since U = ()
or U = {0}, clearly the function p — f(p(u,p)) is continuous for each v € U. This
implies f € Sp.

The converse is proved by contradiction: if f € Sp, but not continuous, then
there exists an z¢ € X, a sequence x,, — xg, and a neighbourhood W of f(xq) such
that f(x,) ¢ W. Let U = {0}, P = X, py = x0, ©(0,p) = p for p € P. Choosing the
sequence p,, = x,, we have

F(@(0,pm)) = f(zm) — f(z0) = f(£(0, po))

hence we obtain a contradiction.

We shall prove that functions having the Baire property over an open subset X
of R™ are in S,,. To make the connection with earlier results in [8] clear, we do the
main part of the proof in the following abstract setting:

2.5. Theorem. Let P, U and X be topological spaces. Suppose that ¢ :
U x P — X is a continuous function with the following property:
(1) If pe P and A C U is of second category then y,(A) is also of second category.

Suppose, moreover, that po € P and f has values in a topological space and the
restriction of f to the complement of some subset of first category of X is continuous.
Then for U, P, py, ¢ and f the conditions (S) and (B) are satisfied.



8 BAIRE PROPERTY IMPLIES CONTINUITY ...

Proof. Let us first prove that (B) is satisfied. Let F be a set of first category
for which f|X\F' is continuous. We may suppose that F' is a Borel set. Let V' be any
open subset of Y. Since the set A = (f|X\F)~1(V) is relatively open in X\F, it is a
Borel subset of X. The set F is of first category hence by (1) the set N = (f|F)~1(V)
is also of first category. Now let us observe that

(fowp) ' (V) =9, (A) U, ' (N).

On the left hand side, ¢, *(A) is a Borel set and by condition (1), the set ¢ 1(N) is
of first category. This means that (B) is satisfied.

Now we will show that (S) is satisfied. With the set F' above we have that
cp;"ll (F) is of first category for m = 0,1,2,.... Let E be the union of all these sets. If
u € U\E, then ¢(u, py) and ¢(u,pg) are in X\ F and ¢(u, p,) — ©(u, pg). Hence we
have £((u, pm)) — f(2(u, po)). This proves (S).

2.6. Theorem. Let X be an open subset of R". If Y is a topological space
having countable base then every function f : X — Y having the Baire property is
contained in S, (X,Y) and B, (X,Y).

Proof. By the analogue of Luzin’s theorem from 2.1, there is a subset F' of first
category of X such that f|X\F is continuous. Let U C R"™ be open, P an open subset
of some Euclidean space, pg € P, ¢ : U x P — X a C! function for which each ¢,
p € P is an embedding. We shall apply the previous theorem for ¢ locally. Let ug € U.
Choosing a neighbourhood Uy of ug and Py of py such that ¢, is a homeomorphism of
Up onto an open subset of X for each p € P, we obtain that for any subset A of Uy
which is of second category, the image ¢,(A) is also of second category.

Now, the previous theorem can be applied to ¢|Uy X Py. As it was mentioned at
the definition this is enough to prove that (S) and (B) are satisfied for f, U, P, po, .

3. The main results

3.1. Theorem. Let Z, Z; (i = 1,2,...,n) be topological spaces. Let X;
(i=1,2,...,n) and X be open subsets of Euclidean spaces and let Y C R! be open.
Let D be an open subset of X x Y. Consider the functions f : X — Z, f; : X; — Z;,
h:DxZyX...xZy—Z,9:D— X; (i=1,2,...,n). Let U C R¥ be open, P be
an open subset of some Euclidean space, pg € P, ¢ : U x P — X a C'-function, for
which ¢, is an immersion of U into X for all p € P, and suppose that the following
conditions hold:

(1) For each (x,y) € D

f(.’l)) = h('x?yufl (gl(x7y)) yone ,fn (gn(x7y))) )

(2) for each fixed y € Y, h is continuous in the other variables;
(3) the function f; is in Sp4; on X; (i =1,2,...,n);
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(4) g;isCt on D (i=1,2,...,n);
(5) for each ug € U there exists a yo such that (¢(uo,po),yo) € D and the rank of
the derivative of

(U, y) = gi(gp(’U’,pO)? y)
at (ug,yo) is k + [ for each 1 < i < n.
Then condition (S) is satisfied for f, U, P, po, ¢.

Proof. Suppose that p,, — po. Let us choose open neighbourhoods Uy, Fp, Yy
of ug, po, yo such that (o(u,p),y) is in D whenever u € Uy, p € Py, y € Yy, moreover,
the rank of the derivative of the mapping (u,y) — g;(p(u, p),y) is equal to k+1 for all
u € Uy, p € Py, y € Yy and for 1 < i < n. This is possible, because D is open, g; and
¢ are C!-functions, the rank is lower semicontinuous and U x Y has dimension k + [,
hence the rank cannot increase above k + [.

Since the function f; is in Sk4y, we have that, except for pairs (u,y) € Uy x Yj
from a set E of first category,

f1(g1(0(u, pm),v)) — fi1(g1(e(u, po),y))-

Now using that f; is in Sk4; we obtain that, except for pairs (u,y) € Uy X Yy from a
set )y of first category

f2(g2(0(u, pm), y)) — f2(g2(0(u, po), ),

etc. Finally, we obtain that except for a set E = U, E; of pairs (u,y) € Uy x Yy of
first category we have

fi(gi(o(u, pm), v)) — filgi(e(u,po),y))

for : = 1,2,...,n. By the theorem of Kuratowski and Ulam, except for a set of first
category of y’s from Y we have that the set of all u € Uy for which (u,y) € E is of first
category. Fixing any such y, from the functional equation and from the continuity of
h for fixed y we obtain that

f(go(u,pm)) - f(QO('LL,po)),

except for a set of u’s which is of first category. This is condition (S) with the function
w|Uy x Py.
By the remark in the definition we obtain that (S) is satisfied.

The following example is from [14].

3.2. Example. Let us consider the following example:

Zai(w,y)f(x +gi(y)) =0
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whenever x € R™, y € R. Suppose that the functions a; : R x R — R\ {0}
are continuous and the functions ¢g; : R — R™ are in C'. Introducing the variable
xj = x + g;(y) instead of x, we obtain

ai(z; —g;(W),y)
(1) flz;) = — flx; —g;) + gi(y)).
; aj(z; — g;(y),y)

To see that condition (5) is satisfied we have to check the rank of the matrix

() D) da® d gtV
B(u) () S ) - )
Diplm) Diplm) do™ g
() () S ()~ S ()

where cpg) are the coordinate functions of ¢,. If this is k + 1, then we may apply
our theorem with [ = 1. This means, geometrically, that the vector g;(y) — g;(y) is
not contained in the range of the linear operator ¢}, (u) (which is known to be k-
dimensional). This range can be any k-dimensional linear subspace in R™. It may
happen that for each k-dimensional linear subspace, there exists a y € R such that
none of the vectors g;(y) — ¢7(y), i # j is contained in the linear subspace. Then our
theorem can be applied directly and proves that f € Sgi1 implies f € Sg. If this is
the case for k = m — 1,m — 2,...,0 then we obtain that every solution having the
Baire property is continuous. But there are situations when this is not the case. If, for
example, the derivative of the functions g; is constant, i. e. if g;(y) = b; + yc;, then for
any fixed j, equation (1) cannot be applied to get f € Si from f € Sk11, because for
some ¢'s the range of ¢, (u) will contain some of the vectors g;(y) —g;(y) = c;—c;. But
we have the possibility to use any of the equations (1). Using the locality mentioned
in the definition, it is enough to prove that for any k-dimensional linear subspace of
R™ there exists a j such that none of the vectors ¢; — ¢;, © # j is contained in the
given subspace. For example this is the situation if n > m and the vectors ¢y, ... ,c,
are in general position. If this condition is not satisfied, then it is still possible that
our theorem can be applied. A similar (but somewhat simpler) situation was studied
in the paper [15], in the proof of Theorem 2.3.

3.3. Remark. Although, as the example above shows, Theorem 3.1 can be
applied in several cases, it is not satisfying because condition (5) is too strong. If
we want to apply theorem 3.1 to prove that f € Sx then ¢ can be arbitrary. Hence

condition (5) implicitly means that the rank of %{i’ has to be large, even if %(Z]JZ has a

large rank. This in practice means that the g; have to depend on all coordinates of =z,
which is not comfortable. We want to relax this condition. Instead of supposing that

(U, y) = G (QO(’LL,po), y)

has maximal possible rank k+1 at (ug, yo) we shall only suppose that it has a constant
rank k; (depending on ¢) on a neighbourhood of (ug, po, o). But in this case we have
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to work with functions from Si N By, and, roughly speaking, our theorem says that
solutions in Siy1 N Bi41 are also in S, N By.

First we only deal with the Baire-type condition (B). We shall use the following
lemma to prove that condition (B) for the unknown functions f; implies condition (B)
for f.

3.4. Lemma. Let X be an open subset of R", Y a topological space, 0 < k <n
and f € Bi(X,Y). If is a subimmersion of the open subset U of R™ into X with
rank k of the derivative everywhere, then f o1 has the Baire property.

Proof. The lemma directly follows from the rank theorem. Indeed, the rank
theorem implies, that for each ug € U there exists an open neighbourhood Uy such that
¥|Uy can be written as aopo 3. Here, with the notation I = |—1, 1[, the mapping 3 is a
diffeomorphism of Uy onto I"™ such that S(ug) = 0, the projection p of I"™ into I"™ has
the form p(zq, 2, ..., 2m) = (x1,22,...,Tk,0,...,0), and « is a diffeomorphism of
I™ onto an open set Xy mapping 0 into zo = 9 (ug). Identifying the set I* x {0} C I
with I* we have that a|I* is an immersion, hence (fo (04|Ik))_1 (V') has the Baire
property for each open subset V of Y. Since p~1(A) has the Baire property for each
subset A of I*¥ which has the Baire property, and $~!(B) has the Baire property for
each subset B of I"™ which has the Baire property, we obtain that f o (¢)|Up) has
the Baire property. Now using locality mentioned at the definition of (B), we get the
general case.

3.5. Theorem. Let Z be a topological space and let Z; (i = 1,2,...,n) be
topological spaces having countable bases. Let X; (i = 1,2,...,n) and X be open
subsets of Euclidean spaces and let Y C R! be open. Let D be an open subset of
X x Y. Consider the functions f : X — Z, f; : X; = Z;, h: D X Zy X ... X Z,, — Z,
gi:D— X; (i=1,2,...,n). Let U C R* be open, ¥ : U — X be a C' immersion of
U into X, and suppose that the following conditions hold:

(1) For each (z,y) € D

f(x) = h(x7y7f1 (gl(x7y)) Yo 7fn (gn(x,y))) )

(2) for each fixed y € Y, h is continuous in the other variables;

(3) the function f; is in By, on X; (i =1,2,...,n);

(4) giisClon D (i=1,2,...,n);

(5) for each ug € U there exists a yo such that (1(ug),yo) € D and the rank of the
derivative of

is k; on a neighbourhood of (ug, ) for each 1 < i < n.

Then u — f(¢(u)) has the Baire property.

Proof. Let us choose an open neighbourhood Uy of ug and Y of yg such that
(¥(u),y) is in D whenever u € Uy, y € Yy, moreover, the rank of the derivative of
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the mapping (u,y) — g;(¢¥(u),y) is equal to k; for all u € Uy, y € Yy, 1 < i < n.
This is possible by condition (5). By the previous lemma we obtain that the mapping
(u,y) — fi(gi(¢(u),y)) has the Baire property. By the analogue of Fubini’s theorem
stated in section 2.1, except for a set F; of y’s from Y, which is of first category, the
mapping u — f;(g;(¢(u),y)) has the Baire property on Uy. Hence, except for the set
E =U!_E;, for all y € Yy the mapping

u = (P(u), flgr((w),y), -, falgn (¥ (u), y)))

of Ug into D, x Z1 X - - - X Z,, has the Baire property. Since for any fixed y the function
h is continuous in other variables, we obtain that for any fixed y € Yp\ E the mapping

U — h(¢(u),y, f1(91(¢(u)7y))7 e 7fn(gn(¢(u)7y)))

has the Baire property. This means that uw+— f(1(u)) has the Baire property on Uy.
Now by the locality principle mentioned at the definition of (B) the statement
follows.

The following theorem is the key to the generalization 3.7 of theorem 3.1.

3.6. Theorem. Let U C R™, X and P be open subsets of Euclidean spaces,
po € P, Y a metric space, ¢ : U x P — X a C! function, for which rank ¢p(u) =k for
eachueU,pe P. If f € B(X,Y)NSk(X,Y) then the condition (S) is satisfied for
f, U, P, pg and .

Proof. Let ug € U, and let p; — po be a sequence. Since the rank of ¢, (ug) is
equal to k, we may write u as u = (uy, us) € R¥ x R™~* such that the determinant of

Iy

8—U1(U0,po)

is not equal to 0. Hence there exists a neighbourhood U; x U, of uy and a neighbour-
hood Py of py such that the mapping

Uy @(Ul,ump)

is an immersion of U; for each uy € Us, p € Fy. Since f € S, for each us € Us
there exists a subset F),, of U; of first category such that if uy € Up\F,, then we have

f(p(ur,u2,p5)) — f(p(ui,u2,p0)). By the previous lemma, u — f(p(u,p)) has the
Baire property. Hence the set

{(u1,ug) € Uy x Uz : f(p(u1,ua,p;)) — f(p(u1,u2,p0))}

has the Baire property (see 2.1). By the Kuratowski-Ulam theorem we obtain that its
complement is of first category.



BAIRE PROPERTY IMPLIES CONTINUITY ... 13

3.7. Theorem. Let Z be a topological space and let Z; (i = 1,2,...,n) be
separable metric spaces. Let X; (i =1,2,...,n) and X be open subsets of Euclidean
spaces and Y C R! be open. Let D be an open subset of X xY . Consider the functions
[ X—>Z fi X, —>Zi,h:DXZyxX...XZp —Z,9,:D— X; (1=1,2,...,n). Let
U C R* be open, P an open subset of some Euclidean space, po € P, p: U x P — X
a C!-function for which each ¢,, p € P is an immersion of U into X, and suppose that
the following conditions hold:

(1) For each (z,y) € D

f(.’l)) = h('x?yufl (91(~'13,y)) yoene ,fn (gn(x7y))) )

(2) for each fixed y € Y, h is continuous in the other variables;

(3) the function f; is in Sy, N By, (i =1,2,...,n);

(4) giisC' on D (i =1,2,...,n);

(5) for each uy € U there exists a yo such that (p(ug, po),y0) € D and the rank of
the derivative of

(’LL, y) = 92(90(u7p0)7 y)
is k; on a neighbourhood of the point (ug, pg, yo) for each 1 < i < n.
Then the conditions (S) and (B) are satisfied for f, U, P, po, ¢.

Proof. From Theorem 3.5 it follows that condition (B) is satisfied by f, U, P,
po, . Let us fix an ug € U and let us choose a yq for ug by (5). Let us choose open
neighbourhoods Uy, Py and Yj of wug, po and yo such that (¢(u,p),y) € D whenever
u € Uy, p € Py and y € Yy, moreover the rank of the derivative of

(u,y) = gi(e(u,po),y)

is k; on Uy x Py x Yy for each 1 < i < n. Now the proof that condition (S) is also
satisfied is exactly the same as in Theorem 3.1, but we have to use the previous theorem
instead of the definition.

4. Further investigation of the new notions

4.1. Conditions. In what follows we shall only investigate the situation, where
X is a nonvoid open subset of R™ and f maps X into a separable metric space Y,
because we want to avoid any difficulties arising only from the poor topology of the
range Y.

4.2. Remark. There is another kind of locality than the one treated after
Definition 2.2. We have f € Si(X,Y) if and only if each zy € X has an open
neighbourhood Xy C X such that f| Xy € Sg(Xo,Y). The “only if” part is trivial. To
prove the “if” part we shall use the notation of Definition 2.1. Let us note that for each
point ug € U there exist open neighbourhoods Uy and Py of ug and pg, respectively,
such that for o = @(ug, po) the set o(Uy, Ppy) is contained in Xy. This means that (S)
is satisfied for ¢|Uy x Py. Now from the locality principle in the definition we have
that f € Sp(X,Y). The same locality is true (and the same proof works) for By.



14 BAIRE PROPERTY IMPLIES CONTINUITY ...

4.3. The class Bj. Let
A = {A C X: fA € Bk(X, {0,1})}

where {0, 1} is taken as a discrete space. It is easy to see that Ay is a o-algebra, and
a function f : X — Y is in Bg(X,Y) if and only if f~1(V) is in Ay for each open
subset V' of Y. Hence the investigation of By (X,Y") is reduced to the investigation of
the o-algebra Aj. It is easy to see that A,, is the class of all subsets of X having the
Baire property and Ay is the class of all subsets of X. Each A contains the Borel
subsets of X.

We shall prove that A € Ay, if and only if A Nrng has the Baire property in
the subspace rng 1) for any embedding 1 of some open subset of R* into X. Indeed, if
A € Ay, then ¢~ 1(A) has the Baire property in dmn 1) and since 1 is a homeomorphism
of dmn ) onto rng ), the set (1 "1(A)) = ANrng has the Baire property in rng .
Similarly, if A Nrnge has the Baire property in rng, then ¢¥~1(A) has the Baire
property in dmn). By 2.3 (4) if ¢»~!(A) has Baire property for any embedding 1 of
some open subset of R¥ into X then A € Aj;.

Similarly, A € A, if and only if ANrng) has the Baire property in the subspace
rng v for any immersion 1) of some open subset of R¥ into X. Let us represent U =
dmn ) as a countable union of open subsets U; of U such that ¢|U; is an embedding of
U; into X. If A € A}, then ¢~ !(A) has the Baire property in U, hence U; N1~ (A) also
has the Baire property in U;. From this A; = (|U;)(¢»~'(A)) has the Baire property
in (U;), i. e. A;AV; C F; for some relatively open subset V; of ¢(U;) and some F;
which is of first category in ¢ (U;). Since F; is of first category in rng too, U; F; is of
first category in rng. Since

(U; A AU V) C UG F;,

we have that the symmetric difference of ANrng Y = U; A; and the o-compact set U;V;
is of first category. This proves that A Nrng has the Baire property in rng . In the
other direction, if A N1 (U;) has the Baire property, then (1/|U;)~*(A) has the Baire
property in U;, hence in U, too. Since this is true for any immersion 1 of some open
subset of R* into X, we obtain that A € A.

Finally, A € Ay if and only if AN M has the Baire property in the subspace
M for each pure k dimensional submanifold M of X. Indeed, if this is true, then in
particular A N rngy has the Baire property in rng for each immersion v of some
open subset of R* into X, hence A € A,. On the other hand, each pure k dimensional
submanifold M of X can be represented as the range of some immersion v of some
open subset of R¥. Hence AN M = ANrng has the Baire property in M = rng.

4.4. Connections between B; and S;. One of the simplest questions is,
whether f € By implies f € Si. We know that this is true for £k = n. If k < n then
the characteristic function of the intersection of X and an appropriate k-dimensional
plane is in By but not contained in Sy.

In the other direction, suppose, that f € Sy. The question is, whether f € By is
satisfied. This is trivial for £ = 0. We shall show that this cannot be proved in ZFC
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for 0 < k < n. Namely, we shall give an example f under the continuum hypothesis for
which f € S; but f ¢ Bi. By the famous results of Gédel and Cohen, the continuum
hypothesis is independent from the axioms of ZFC. This means that By C Sp cannot
be proved in ZFC.

4.5. Hierarchy between function classes belonging to different dimen-
sions. Let us fix dimensions 0 < k < [ < n and let us investigate the connection
between the classes B, and S;, and classes B; and S;.

We may hope that decreasing the dimension condition (S) becomes stronger.
One of the only two positive results in this direction is that this is true for condition
(S) under condition (B):

B.NB NS, CS;.

The proof of this statement is very similar to the proof of Theorem 3.6, therefore we
do not repeat the argument.

We shall show by a counterexample under the continuum hypothesis that for
k>0
ZFCEB. NS, C BiUS,.

Similarly we shall show by a counterexample under the continuum hypothesis
that
ZFCEB. NS, NS, C B

except for the trivial case k = 0.

It is much easier to see that inclusions in the other direction do not hold in
general. Although
Bl C BO

is satisfied trivially, in general
B, ¢ By if k> 0.
This is shown by the characteristic function of a subset in the the intersection of X

and an appropriate k dimensional plane which does not have the Baire property in the
given plane. The same example shows that

BNS ¢ Br USs.

If we take the characteristic function of the intersection of X and an appropriate k
dimensional plane, then we see that

BNS NB ¢ Sk.

We shall show that
B, NS, C By.



16 BAIRE PROPERTY IMPLIES CONTINUITY ...
Let us see the proofs.
4.6. Theorem. Under the conditions of 4.1 and 4.5 we have B; NS, C By.

Proof. This is trivial for k = 0. Otherwise, let ¢ be an immersion of an open
subset U C R*. Let ug € U and let V be an [ — k dimensional subspace of R"
orthogonal to rng v’ (ug). Let 7 : RI=F — V be a linear isometry, and let us define
¢ by ¢(u,p) = ¥(u) + m(p). Then for py = 0 we have ¢,, = 1. Let us choose open
neighbourhoods Uy and Py of ug and pg, respectively, such that ¢(Uy, Py) C X and
¢ is an immersion of Uy x Py into X. Since f € By, the mapping (u,p) — f(p(u,p))
has the Baire property. Hence, by the analogue of Fubini’s theorem (see 2.1), except
for a set of first category, for all p € Py the mapping u — f(¢(u,p)) has the Baire
property. Let us choose a sequence p,, — pg such that each u — f(¢(u,p,,)) has the
Baire property. By f € By we have that

for all u € Uy except for a set of first category. Hence u — f(1(u)) has the Baire
property on Uy, i.e. locally. This implies that f € B.

For the following counterexamples we need a lemma. The counterexamples are
related to the existence of the so-called almost invariant sets. These sets were used by
Kakutani and Oxtoby to prove that the Lebesgue measure on the complex unit circle
can be extended to an invariant measure such that the Hilbert space dimension of the
corresponding L? space becomes 2¢, where c is the cardinal number continuum. The
proof of the lemma below is a refinement of the construction from the paper [7] of
the author, where the result of Kakutani and Oxtoby was extended — among others
— to arbitrary locally compact groups. The ideas there are combined with the well-
known ideas of Sierpinski to construct under the continuum hypothesis a subset of the
unit square with outer measure 1 and containing at most two points on each line. To
better understand the following abstract lemma, we can think of the case when X is
the plane, T is the class of all diffeomorphisms mapping some open subset of the plane
onto some other open subset of the plane, F is the class of all Borel subsets of the
plane of second category, G is the class of all one dimensional C! submanifolds of the
plane and n = ¢ = Ny.

4.7. Lemma. Let X be a set and T a class of one-to-one transformations each
mapping a subset of X into X and let F, G be classes of subsets of X. Suppose that
there exists an infinite cardinal number n > Xy with the following properties:

(1) card(X) = n;

(2) card(T) < n;

(3) card(F) < n and for every F € F we have card(F) = n;

(4) card(G) < n and for every F € F and Gy C G for which card(Gy) < n we have

card(F\ U Gp) = n;

(5) The class G is T invariant, i.e. if G € G, 7 € T then 7(G) € G and 77}(G) € G.
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Then there exists a family { X, },cr of subsets X, of X with the following properties:
(6) card(T") = n;
(7) the sets X, v € I' are pairwise disjoint;
(8) for each v € I and G € G we have card(X, NG) < n;
(9) card(FF'N X,) = n whenever v € I' and F € F;
(10) for every subset Ty of T' and for every 7 € T

card (T(U’YGFOX’Y)A (r(X) N (UveFoXﬁy))> <n.

The proof was given in Jarai [14], Lemma 4.8.
4.8. Counterexample. Using the conditions of 4.1, under the continuum
hypothesis for 0 < k < n we have Sy ¢ B.

Proof. We shall give a function f € Sy for which f ¢ Bx. We want to apply
the previous lemma. We shall use only that the functions ¢ in the definition of Sk
are continuous and that by Remark 2.3.(4) we may suppose that the functions ¢,
are one-to-one. Let T denote the class of all one-to-one functions 7 which can be
represented in the form ¢, o gp;,l, where U is an open subset of R*, P is an open
subset of some Euclidean space and ¢ : U x P — X is a continuous function for which
all ¢,, p € P is one-to-one. Since the cardinality of all pairs U, P is continuum and
any continuous function ¢ is uniquely determined by the values on a countable dense
subset, the cardinality of the class T is continuum.

Let F denote the class of all subsets of X representable in the form ¢ (G) where
() 4 U c R¥ is open, ¢ : U — X is an embedding and G C U is a Borel subset of U of
second category in U. Each element of F is a Borel subset of X, hence the cardinality
of F is at most ¢ (continuum). Moreover, by a theorem of Piccard, G — G contains a
neighbourhood of the origin, hence each elements of F has cardinality c.

Applying the previous lemma with G = () we obtain a class of subsets X, v € R
of X. Our counterexample will be the characteristic function f of Xj.

If f were in By then for any embedding v of some nonvoid open subset U of R”
the set Ag = ¢¥~1(X() would be a Baire set. Ag cannot be of first category, because
then for a Borel set G C U\ 4y of second category ¥ (G) would not intersect with Xj.
Similarly, if Ay is of second category, then choosing a Borel set B C A of second
category we obtain ¢ (G) C Xj.

We shall prove that f € S;;. Let U be an open subset of R*, P be an open subset
of some euclidean space, pg € P and ¢ : U x P — X a C' function for which all ¢, is
an embedding. The set

{ueU: fop(u) # flep(u))}

is equal to the set

Pra ({7 € 0po(U) : € XoA(pp, 00, )(X0)}) -
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For the mapping 7 = ¢, © 30;1 this set is a subset of the set
Ppo ((T(X) N X0)AT(Xo))

If we suppose the continuum hypothesis then this set is countable.

4.9. Counterexample. Using the conditions of 4.1 and 4.5, under the contin-
uum hypothesis for 0 < k <1 <n we have By NSNS, ¢ B;.

Proof. We shall give an example of a function f € B, NS, NS; but f ¢ B;. We
want to apply Lemma 4.7. We shall use that by Remark 2.3.(4) we may suppose that
the functions ¢, in the definition of S; are embeddings. Let 7" denote the class of all
one-to-one functions 7 which can be represented in the form ¢, o gp;,l, where U is an

open subset of R!, P is an open subset of some Euclidean space and ¢ : U x P — X
is a C! function for which all p,, p € P is an embedding. Let F be the same as in
the previous counterexample. Let G be the class of all Borel subsets of X which are
contained in a union of countably many £ dimensional submanifolds of X. We have to
prove that G is T invariant. The domain of any 7 € T is an [ dimensional submanifold
of X. If a set G € G is contained in U7Z;M;, where each M; is a k dimensional
submanifold of X, then for each x € GNM; Ndmn 7 it is possible to find an € > 0 and
a k dimensional submanifold M of dmn 7 such that for each y for which |y —z| < e we
have y € X, moreover, that y € GNM;Ndmn 7 if and only if y € GﬁMJ’ﬂdmn 7. This
proves that the Borel set G Ndmn 7 can be covered by countably many & dimensional
submanifolds of dmn7. Hence the Borel set 7(G) can also be covered by countably
many k dimensional submanifolds.

Since the topological dimension dim = ind = Ind of any subset G of a & dimen-
sional submanifold is < k, the intersection of G with an [ dimensional submanifold L
of X is of first category in L. The same is true for any G € G, and, moreover, for the
union G of any countable subfamily Gy C G. This proves that for any ' € F the set
F\G has cardinality c. Other conditions of Lemma 4.7 have already been checked at
4.8 .

Applying Lemma 4.7 we obtain a class X, v € R where each X, contains only
countably many points from each G € G, but X, N F # () for each F € F.

Let f be the characteristic function of X. Along the same lines as in 4.8 we get
that f € S; but f ¢ B;. Since for any C' embedding ¢ of an open subset of R¥ into X
the function f o) is zero except for a countable set, we get that f € By and f € Sk,
too. Hence the statement is proved.

4.10. Counterexample. Using the conditions of 4.1 and 4.5, under the con-
tinuum hypothesis for 0 < k <1 <n we have By NS, ¢ B, U S;.

Proof. Let us apply Lemma 4.7 for the same 7', F and G as in the previous
counterexample. We obtain a class X, v € R where each X, contains only countably
many points from each G € G, but X, N F' # () for each F' € F.

Let Y be an [ dimensional plane which has a nonempty intersection with X and
let f be the characteristic function of the set Y N Xy. Then f € B NSk, but f ¢ B,
and f ¢ S;.
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