
BAIRE PROPERTY IMPLIES CONTINUITY FORSOLUTIONS OF FUNCTIONAL EQUATIONS| EVEN WITH FEW VARIABLES
Antal Járai

Abstract. It is proved that — under certain conditions — solutions f of the functional

equation

f(x) = h(x, y, f(g1(x, y)), . . . , f(gn(x, y))), (x, y) ∈ D ⊂ R
n × R

l

having Baire property are continuous, even if 1 ≤ l ≤ n. As a tool we introduce new

function classes which — roughly speaking — interpolate between Baire property and
continuity. 1. IntrodutionIn onnetion with his �fth problem Hilbert [6℄ suggested that although themethod of redution to di�erential equations makes it possible to solve funtionalequations in an elegant way, the inherent di�erentiability assumptions are typiallyunnatural (see [2℄). Suh shortomings an be overome by appealing to regularitytheorems.In this spirit the following general regularity problem for funtional equationswith two variables and without iteration was formulated by the author and inludedby Az�el among the most important open problems on funtional equations (see Az�el[1℄ and J�arai [8℄):1.1. Problem. Let X and Z be open subsets of R

s and R
m, respetively, andlet D be an open subset of X ×X . Let f : X → Z, gi : D → X (i = 1, 2, . . . , n) and

h : D × Zn+1 → Z be funtions. Suppose that(1)
f(x) = h(x, y, f(y), f(g1(x, y)), . . . , f(gn(x, y))) whenever (x, y) ∈ D;(2) h is analyti;(3) gi is analyti and for eah x ∈ X there exists a y for whih (x, y) ∈ D and

∂gi

∂y
(x, y) has rank s (i = 1, 2, . . . , n).Is it true that every f whih is measurable or has the Baire property is analyti?
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2 BAIRE PROPERTY IMPLIES CONTINUITY . . .The following steps an be used:(I) Measurability implies ontinuity.(II) Baire property implies ontinuity.(III) Continuous solutions are loally Lipshitz.(IV) Loally Lipshitz solutions are ontinuously di�erentiable.(V) All p times ontinuously di�erentiable solutions are p + 1 times ontinuouslydi�erentiable.(VI) In�nitely many times di�erentiable solutions are analyti.The omplete answer to the problem above is not known. The author disussedthis problem in several papers and solved problems orresponding to (I), (II), (IV)and (V) (see [8℄), and under some additional ompatness ondition (III) (see [9℄).Referenes an be found in the survey paper [16℄. There are some partial results inonnetion with (VI). Moreover, other properties of solutions suh as having loallybounded variation or loal H�older ontinuity are also disussed (see [13℄ and referenesin [16℄). It is possible to extend these results to manifolds, and the C∞-part of theproblem is ompletely solved on ompat manifolds [12℄. The most appliable resultsare treated in the booklet [11℄.Regularity theorems of the type \loally integrable solutions are in�nitely manytimes di�erentiable" an be obtained using distributions. The essene of the methodis to prove that solutions in the distribution sense satisfy a di�erential equation havingonly in�nitely many times di�erentiable solutions. This idea was used by �Swiatak [18℄to prove general regularity results for the funtional equation
n
∑

i=1 hi(x, y)f(gi(x, y)) = h(x, f(gn+1(x)), . . . , f(gm(x))) + h0(x, y),where f is the only unknown funtion. Roughly speaking, she applies a partial di�er-ential operator in y to the equation in the distribution sense. Of ourse, the nonlinearterm on the right hand side disappears. If, after substituting a �xed y0, we are fortu-nate enough to obtain a hypoellipti partial di�erential equation, then by the regularitytheory of partial di�erential equations all distribution solutions are in C∞. For theexat details of how to overome the diÆulties and for appliations see her paper [18℄.Further referenes about regularity theorems for funtional equations an befound in the survey paper [16℄. Some other papers onerning the distribution methodare also referred to there.The above equation of �Swiatak is \almost linear", so, formally, it is muh lessgeneral than equation (1). However her theorems an be applied even if the rank of
∂gi

∂y
is muh smaller than the dimension of the domain of the unknown funtion f .Roughly speaking, the present author's results, quoted above, may be applied to proveregularity of a solution f having m variables, only if there are at least 2m variablesin the funtional equation. The method of �Swiatak may be applied even if there areonly m + 1 variables. This is the minimal number of variables: in Hilbert's paper [6℄



BAIRE PROPERTY IMPLIES CONTINUITY . . . 3there is an example that for \one variable" funtional equations (this may mean an
m-dimensional vetor variable) no regularity theorem holds. So the results of �Swiataksuggest that the rank ondition in the problem above is too strong, and the resultsonerning the above problem an be extended for a muh more general ase.Suh \measurability implies ontinuity" type results were treated reently inJ�arai [14℄. Well-known analogies between measurability and Baire property (see Ox-toby [17℄) suggest to try to prove analogous results for Baire property. Di�erenes,suh as the lak of \ε-tehnique", onvergene in measure and theorems onnetedwith it (for example Riesz theorem), Hausdor� measure, et., shows that we need aseparate treatment.In this paper we will prove a \Baire property implies ontinuity" type result forthe general expliit nonlinear funtional equation (1) without the strong rank onditionin (3) to the inner funtions. All earlier \Baire property implies ontinuity" typeresults that I know of use the strong rank ondition in (3) or some abstrat versionof it. In the spirit of the \bootstrap" method orresponding to steps (I){(VI) weintrodue a sequene of properties, whih | roughly speaking | are between Baireproperty and ontinuity. This sequene of properties gives a stairway to limb up fromBaire property to ontinuity. First we shall investigate the basi properties of the newnotions. Then the regularity theorem will be proved. An example is given how toapply the theorem in nontrivial ases. A re�nement of the theorem is also proved.Finally, further properties of the new notions are investigated.2. The new notions2.1. Notations. If f is a funtion, rng f denotes the range of f . All normedspaes are supposed to be real; the norm is denoted by | |. If f : D → Y is a funtionmapping an open subset of a normed spae into a normed spae, then f ′ shall denotethe derivative of f . If D ⊂ X1 ×X2 × . . .×Xn, we shall use the partial sets

Dxi
= {(x1, . . . , xi−1, xi+1, . . . , xn) : (x1, ..., xn) ∈ D

}

.The partial funtions fxi
: Dxi

→ Y are de�ned by
fxi

(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xn)whenever (x1, . . . , xn) ∈ D (notie that xi is held onstant in fxi
). Also Dxi1 ,... ,xirand fxi1 ,... ,xir

are de�ned similarly. Now, if Xi and Y are normed spaes and
Dx1,... ,xi−1,xi+1,... ,xnis an open subset of Xi we de�ne the partial derivative denoted by
∂if, ∂xi

f or ∂f

∂xias the derivative of fx1,... ,xi−1,xi+1,... ,xn
. Other notions of alulus are used in theusual way.



4 BAIRE PROPERTY IMPLIES CONTINUITY . . .Conerning topology we follow the terminology and notations of Bourbaki [3℄.The most important fats onerning Baire ategory an be found in Bourbaki [3℄; seeChapter IX, § 5, and the orresponding exerises, but here we shall use the di�erent(and more usual) terminology of Oxtoby [17℄. For learity we summarise the notionsand fats we shall use here.We will say that a subset A of a topologial spae X is of �rst ategory , if A anbe represented as a ountable union of nowhere dense sets, otherwise A is of seondategory . Let E be a subset of the topologial spae X and let D(E) denote the set ofall points of X suh that for eah neighbourhood V the set V ∩E is of seond ategory.Then D(E) = ∅ if and only if E has �rst ategory. Moreover D(E) is losed and theset E\D(E) is of �rst ategory.
X is alled a Baire spae if every nonvoid open subset of X is of seond ategory.We will say that E ⊂ X has the Baire property if there exists an open set V suhthat the symmetri di�erene E△V is of �rst ategory. All subsets of X having Baireproperty form a σ-algebra. Of ourse this σ-algebra ontains Borel sets, the membersof the smallest σ-algebra ontaining all open sets. A set E ⊂ X has the Baire propertyif and only if E\D(E) has �rst ategory.Suppose that X is a topologial spae, E ⊂ X . The set E has Baire property ifand only if eah point x of X has an open neighbourhood U suh that U ∩E has theBaire property in X .Let X and Y be topologial spaes and suppose that the topology of one of themhas a ountable base. A subset E × F of X × Y has the Baire property if and only ifone of the sets E, F is of �rst ategory or both of them have Baire property.Combining these fats with the proof in Oxtoby [17℄, Chapter 15, we get thefollowing form of a well-known theorem of Kuratowsky and Ulam:Theorem. [Kuratowsky, Ulam℄ Let X and Y be topologial spaes, and supposethat Y has a ountable base. Let E be a subset of X × Y having the Baire property.Then exept for a set of points x of X whih is of �rst ategory the set Ex has theBaire property. Moreover E is of �rst ategory if and only if the set Ex is of �rstategory in Y with the exeption of a set of x's of �rst ategory.The funtion f has the Baire property on E if the domain of f ontains E exeptfor a set of �rst ategory, the range of f is in a topologial spae Y and E ∩ f−1(W )has the Baire property in X for every open subset W of Y . We simply say that f hasthe Baire property, if it has the Baire property on X .This de�nition is very similar to the de�nition of a Borel funtion. A funtion

f mapping some subset of a topologial spae X into another topologial spae Y isalled a Borel funtion, if for eah open subset V of Y the set f−1(V ) is a Borel subsetof X . The properties of funtions having the Baire property are very similar to theproperties of measurable funtions. We shall use the following statements.If f is any funtion de�ned on a subset of X having the Baire property thenall subsets B of Y for whih f−1(B) has the Baire property form a σ-algebra. Hene



BAIRE PROPERTY IMPLIES CONTINUITY . . . 5if f has values in the topologial spae Y and has the Baire property on a subset ofthe topologial spae X , moreover g is a Borel funtion on a subset of the topologialspae Y , then g ◦ f has the Baire property on its domain.Suppose that Y = ∏i Yi is a ountable produt of spaes eah having a ountablebase of topology. A funtion f mapping a subset of a topologial spae X into Y hasthe Baire property if and only if all funtions pi ◦ f have the Baire property where piis the natural projetion of Y onto Yi.Suppose that X is a topologial spae, Y a metri spae, and the funtions f ,
fn (n = 1, 2, . . . ) are de�ned on X exept for a set of �rst ategory (depending on thefuntion), have values in Y and have the Baire property. Then the set

E = {x : fn(x) → f(x)}has the Baire property. Indeed, the sets En,m = {x : dist(fn(x), f(x)) < 1/m} havethe Baire property and E di�ers from the set
∩∞

m=1 ∪∞
n=1 ∩∞

k=nEk,monly in a set of �rst ategory.Suppose that X is a topologial spae, Y is a metri spae, the funtions f , fn(n = 1, 2, . . . ) are mappings from X into Y , the funtions fn have the Baire propertyfor all n, and fn(x) → f(x) for all x ∈ X exept for a set of �rst ategory. Then fhas the Baire property, too. Indeed, if V is an open subset of Y and Vi is the opensubset of Y ontaining those points of Y having distane larger than 1/i from Y \V ,then f−1(V ) di�ers from the set
∪∞

i=1 ∪∞
j=1 ∩∞

k=jf
−1
k (Vi)only in a set of �rst ategory.The following theorem is the analogue of Luzin's theorem:Let f be a mapping of the topologial spae X into the topologial spae Y andsuppose that there exists a subset F of X of �rst ategory suh that the restritionof f to the set X\F is ontinuous. Then f has the Baire property. Conversely, thisondition is neessary, if the topology of Y has a ountable base.From the Kuratowsky-Ulam theorem the following analogue of Fubini's theoremfollows diretly:If X , Y and Z are topologial spaes, Y and Z have ountable bases, f : X×Y →

Z has the Baire property, then exept for a set of points x whih is of �rst ategory,the funtion fx has the Baire property.



6 BAIRE PROPERTY IMPLIES CONTINUITY . . .2.2. De�nition. Let X be a set, Y a metri spae, and f : X → Y be afuntion. Let U be a topologial spae, and P a topologial spae, the \parameterspae" with a given point p0 ∈ P . Let ϕ be a funtion from U × P into X . We shallthink of ϕ as a surfae ϕp : u 7→ ϕ(u, p) for eah p, depending on the parameter p.The analogue of Luzin's theorem above and generalizations of the theorem of Piard(see [10℄) suggest that the following ondition is onneted with the Baire property:(S) For eah sequene pm → p0 we have f(ϕ(u, pm)) → f(ϕ(u, p0)) exept for a setof �rst ategory of points u ∈ U .For our investigations we need the following property:(B) u 7→ f(ϕ(u, p0)) has the Baire property.We shall often hek onditions (S) and (B) loally. If for eah u0 ∈ U there isa neighbourhood U0 of u0 and P0 of p0 suh that ϕ|U0 × P0 satis�es (S), then ϕ alsosatis�es (S). This easily follows from the loality of �rst ategory mentioned in 2.1.Similarly, if for eah u0 ∈ U there is a neighbourhood U0 of u0 and P0 of p0 suh that
ϕ|U0 × P0 satis�es (B), then ϕ satis�es (B).Let X be an open subset of R

n and 0 ≤ k ≤ n. The lass of all funtions f forwhih the ondition (S) [(B)℄ is satis�ed whenever U is an open subset of R
k, P is anopen subset of some Eulidean spae, p0 ∈ P and ϕ : U × P → X is a C1-funtion forwhih ϕp is an immersion of U into X for eah p ∈ P , will be denoted by Sk(X, Y )[Bk(X, Y )℄ or shortly by Sk [Bk℄. (We take R

0 = {0}). It is lear that f ∈ Bk if andonly if the ondition(B′) f ◦ ψ has the Baire propertyis satis�ed whenever ψ is an immersion of some open subset U of R
k into X .2.3. Remarks. (1) Our main results will show that, roughly speaking, solutions

f from Sk+1 are also in Sk. We shall prove that S0 is the lass of ontinuous funtions,and that all funtions f : X → Y from the open subset X ⊂ R
n into some seondountable spae Y and having the Baire property are in Sn. Hene, step-by-step, Baireproperty of solutions implies their ontinuity.(2) The analogy with the measure theoretial ase is remarkable but not om-plete. About the history of the analogous measure theoretial notions see some refer-enes in J�arai [14℄.(3) Solutions of funtional equations having the Baire property were studied byseveral authors. The generalized Cauhy equation

f(g(x, y)) = h(x, y, f1(x), f2(y))was studied the most. See the referenes in J�arai [8℄. A \sequential approah" was usedby Grosse-Erdmann [4℄ and muh earlier by Haupt [5℄. The results of Grosse-Erdmannan be applied to prove that for the funtional equation
f(g(x, y)) = h(y, f1(x))



BAIRE PROPERTY IMPLIES CONTINUITY . . . 7with unknown funtions f , f1 | under suitable onditions | Baire property of f1implies the ontinuity of f . He applies his abstrat results for the ase where (x, y) ∈ D,whereD is some open subset of R
n×R

n, g : D → R
n and det ∂g

∂x
and det ∂g

∂y
are nonzero.His method has the advantage that one only needs the ontinuity of h with respet tothe seond variable. Note that substituting t = g(x, y) we have loally

f(t) = h(y, f1(g1(t, y)));ompare this with problem 1.1.(4) The lass Sk [Bk℄ remains the same if we suppose only that (S) [(B)℄ issatis�ed whenever U is an open subset of R
k, P is an open subset of some Eulideanspae, p0 ∈ P and ϕ : U × P → X is a C1-funtion for whih ϕp is an embedding of

U into X for eah p ∈ P . This easily follows from the loality priniple mentioned inthe de�nition. Similarly, supposing only that ϕp0 is an immersion, the resulting lass
Sk [Bk℄ remains the same.2.4. Theorem. Let Y be a topologial spae and X an open subset of R

n.Then B0(X, Y ) = Y X and S0(X, Y ) = C(X, Y ), the lass of ontinuous funtions from
X into Y .Proof. We shall use the notations of the de�nition. It is trivial that B0 ontainsall funtions from X into Y .Now let us prove that any ontinuous funtion f : X → Y is in S0. Sine U = ∅or U = {0}, learly the funtion p 7→ f(ϕ(u, p)) is ontinuous for eah u ∈ U . Thisimplies f ∈ S0.The onverse is proved by ontradition: if f ∈ S0, but not ontinuous, thenthere exists an x0 ∈ X , a sequene xn → x0, and a neighbourhood W of f(x0) suhthat f(xn) /∈ W . Let U = {0}, P = X , p0 = x0, ϕ(0, p) = p for p ∈ P . Choosing thesequene pm = xm we have

f(ϕ(0, pm)) = f(xm) → f(x0) = f(ϕ(0, p0))hene we obtain a ontradition.We shall prove that funtions having the Baire property over an open subset Xof R
n are in Sn. To make the onnetion with earlier results in [8℄ lear, we do themain part of the proof in the following abstrat setting:2.5. Theorem. Let P , U and X be topologial spaes. Suppose that ϕ :

U × P → X is a ontinuous funtion with the following property:(1) If p ∈ P and A ⊂ U is of seond ategory then ϕp(A) is also of seond ategory.Suppose, moreover, that p0 ∈ P and f has values in a topologial spae and therestrition of f to the omplement of some subset of �rst ategory of X is ontinuous.Then for U , P , p0, ϕ and f the onditions (S) and (B) are satis�ed.



8 BAIRE PROPERTY IMPLIES CONTINUITY . . .Proof. Let us �rst prove that (B) is satis�ed. Let F be a set of �rst ategoryfor whih f |X\F is ontinuous. We may suppose that F is a Borel set. Let V be anyopen subset of Y . Sine the set A = (f |X\F )−1(V ) is relatively open in X\F , it is aBorel subset of X . The set F is of �rst ategory hene by (1) the set N = (f |F )−1(V )is also of �rst ategory. Now let us observe that(f ◦ ϕp)−1(V ) = ϕ−1
p (A) ∪ ϕ−1

p (N).On the left hand side, ϕ−1
p (A) is a Borel set and by ondition (1), the set ϕ−1

p (N) isof �rst ategory. This means that (B) is satis�ed.Now we will show that (S) is satis�ed. With the set F above we have that
ϕ−1

pm
(F ) is of �rst ategory for m = 0, 1, 2, . . . . Let E be the union of all these sets. If

u ∈ U\E, then ϕ(u, pm) and ϕ(u, p0) are in X\F and ϕ(u, pm) → ϕ(u, p0). Hene wehave f(ϕ(u, pm)) → f(ϕ(u, p0)). This proves (S).2.6. Theorem. Let X be an open subset of R
n. If Y is a topologial spaehaving ountable base then every funtion f : X → Y having the Baire property isontained in Sn(X, Y ) and Bn(X, Y ).Proof. By the analogue of Luzin's theorem from 2.1, there is a subset F of �rstategory of X suh that f |X\F is ontinuous. Let U ⊂ R

n be open, P an open subsetof some Eulidean spae, p0 ∈ P , ϕ : U × P → X a C1 funtion for whih eah ϕp,
p ∈ P is an embedding. We shall apply the previous theorem for ϕ loally. Let u0 ∈ U .Choosing a neighbourhood U0 of u0 and P0 of p0 suh that ϕp is a homeomorphism of
U0 onto an open subset of X for eah p ∈ P0, we obtain that for any subset A of U0whih is of seond ategory, the image ϕp(A) is also of seond ategory.Now, the previous theorem an be applied to ϕ|U0×P0. As it was mentioned atthe de�nition this is enough to prove that (S) and (B) are satis�ed for f , U , P , p0, ϕ.3. The main results3.1. Theorem. Let Z, Zi (i = 1, 2, . . . , n) be topologial spaes. Let Xi(i = 1, 2, . . . , n) and X be open subsets of Eulidean spaes and let Y ⊂ R

l be open.Let D be an open subset of X × Y . Consider the funtions f : X → Z, fi : Xi → Zi,
h : D × Z1 × . . .× Zn → Z, gi : D → Xi (i = 1, 2, . . . , n). Let U ⊂ R

k be open, P bean open subset of some Eulidean spae, p0 ∈ P , ϕ : U × P → X a C1-funtion, forwhih ϕp is an immersion of U into X for all p ∈ P , and suppose that the followingonditions hold:(1) For eah (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for eah �xed y ∈ Y , h is ontinuous in the other variables;(3) the funtion fi is in Sk+l on Xi (i = 1, 2, . . . , n);



BAIRE PROPERTY IMPLIES CONTINUITY . . . 9(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for eah u0 ∈ U there exists a y0 suh that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p0), y)at (u0, y0) is k + l for eah 1 ≤ i ≤ n.Then ondition (S) is satis�ed for f , U , P , p0, ϕ.Proof. Suppose that pm → p0. Let us hoose open neighbourhoods U0, P0, Y0of u0, p0, y0 suh that (ϕ(u, p), y) is in D whenever u ∈ U0, p ∈ P0, y ∈ Y0, moreover,the rank of the derivative of the mapping (u, y) 7→ gi(ϕ(u, p), y) is equal to k+ l for all
u ∈ U0, p ∈ P0, y ∈ Y0 and for 1 ≤ i ≤ n. This is possible, beause D is open, gi and
ϕ are C1-funtions, the rank is lower semiontinuous and U × Y has dimension k + l,hene the rank annot inrease above k + l.Sine the funtion f1 is in Sk+l, we have that, exept for pairs (u, y) ∈ U0 × Y0from a set E1 of �rst ategory,

f1(g1(ϕ(u, pm), y))→ f1(g1(ϕ(u, p0), y)).Now using that f2 is in Sk+l we obtain that, exept for pairs (u, y) ∈ U0 × Y0 from aset E2 of �rst ategory
f2(g2(ϕ(u, pm), y))→ f2(g2(ϕ(u, p0), y)),et. Finally, we obtain that exept for a set E = ∪n

i=1Ei of pairs (u, y) ∈ U0 × Y0 of�rst ategory we have
fi(gi(ϕ(u, pm), y))→ fi(gi(ϕ(u, p0), y))for i = 1, 2, . . . , n. By the theorem of Kuratowski and Ulam, exept for a set of �rstategory of y's from Y0 we have that the set of all u ∈ U0 for whih (u, y) ∈ E is of �rstategory. Fixing any suh y, from the funtional equation and from the ontinuity of

h for �xed y we obtain that
f(ϕ(u, pm)) → f(ϕ(u, p0)),exept for a set of u's whih is of �rst ategory. This is ondition (S) with the funtion

ϕ|U0 × P0.By the remark in the de�nition we obtain that (S) is satis�ed.The following example is from [14℄.3.2. Example. Let us onsider the following example:
n
∑

i=0 ai(x, y)f(x+ gi(y)) = 0



10 BAIRE PROPERTY IMPLIES CONTINUITY . . .whenever x ∈ R
m, y ∈ R. Suppose that the funtions ai : R

m × R → R \ {0}are ontinuous and the funtions gi : R → R
m are in C1. Introduing the variable

xj = x+ gj(y) instead of x, we obtain(1) f(xj) = −
∑

i6=j

ai(xj − gj(y), y)
aj(xj − gj(y), y)f(xj − gj(y) + gi(y)).To see that ondition (5) is satis�ed we have to hek the rank of the matrix













∂ϕ(1)p0
∂u1 (u) . . .

∂ϕ(1)p0
∂uk

(u) d g
(1)
i

d y
(y)− d g

(1)
j

d y
(y)... ... ...

∂ϕ(m)
p0

∂u1 (u) . . .
∂ϕ(m)

p0
∂uk

(u) d g
(m)
i

d y
(y)− d g

(m)
i

d y
(y)












,where ϕ(i)p are the oordinate funtions of ϕp. If this is k + 1, then we may applyour theorem with l = 1. This means, geometrially, that the vetor g′i(y) − g′j(y) isnot ontained in the range of the linear operator ϕ′
p0(u) (whih is known to be k-dimensional). This range an be any k-dimensional linear subspae in R

m. It mayhappen that for eah k-dimensional linear subspae, there exists a y ∈ R suh thatnone of the vetors g′i(y)− g′j(y), i 6= j is ontained in the linear subspae. Then ourtheorem an be applied diretly and proves that f ∈ Sk+1 implies f ∈ Sk. If this isthe ase for k = m − 1, m − 2, . . . , 0 then we obtain that every solution having theBaire property is ontinuous. But there are situations when this is not the ase. If, forexample, the derivative of the funtions gi is onstant, i. e. if gi(y) = bi + yci, then forany �xed j, equation (1) annot be applied to get f ∈ Sk from f ∈ Sk+1, beause forsome ϕ's the range of ϕ′
p0(u) will ontain some of the vetors g′i(y)−g′j(y) = ci−cj . Butwe have the possibility to use any of the equations (1). Using the loality mentionedin the de�nition, it is enough to prove that for any k-dimensional linear subspae of

R
n there exists a j suh that none of the vetors ci − cj , i 6= j is ontained in thegiven subspae. For example this is the situation if n ≥ m and the vetors c0, . . . , cnare in general position. If this ondition is not satis�ed, then it is still possible thatour theorem an be applied. A similar (but somewhat simpler) situation was studiedin the paper [15℄, in the proof of Theorem 2.3.3.3. Remark. Although, as the example above shows, Theorem 3.1 an beapplied in several ases, it is not satisfying beause ondition (5) is too strong. Ifwe want to apply theorem 3.1 to prove that f ∈ Sk then ϕ an be arbitrary. Heneondition (5) impliitly means that the rank of ∂gi

∂x
has to be large, even if ∂gi

∂y
has alarge rank. This in pratie means that the gi have to depend on all oordinates of x,whih is not omfortable. We want to relax this ondition. Instead of supposing that(u, y) 7→ gi(ϕ(u, p0), y)has maximal possible rank k+ l at (u0, y0) we shall only suppose that it has a onstantrank ki (depending on i) on a neighbourhood of (u0, p0, y0). But in this ase we have



BAIRE PROPERTY IMPLIES CONTINUITY . . . 11to work with funtions from Sk ∩ Bk, and, roughly speaking, our theorem says thatsolutions in Sk+1 ∩ Bk+1 are also in Sk ∩ Bk.First we only deal with the Baire-type ondition (B). We shall use the followinglemma to prove that ondition (B) for the unknown funtions fi implies ondition (B)for f .3.4. Lemma. Let X be an open subset of R
n, Y a topologial spae, 0 ≤ k ≤ nand f ∈ Bk(X, Y ). If ψ is a subimmersion of the open subset U of R

m into X withrank k of the derivative everywhere, then f ◦ ψ has the Baire property.Proof. The lemma diretly follows from the rank theorem. Indeed, the ranktheorem implies, that for eah u0 ∈ U there exists an open neighbourhood U0 suh that
ψ|U0 an be written as α◦p◦β. Here, with the notation I = ℄−1, 1[, the mapping β is adi�eomorphism of U0 onto Im suh that β(u0) = 0, the projetion p of Im into In hasthe form p(x1, x2, . . . , xm) = (x1, x2, . . . , xk, 0, . . . , 0), and α is a di�eomorphism of
In onto an open set X0 mapping 0 into x0 = ψ(u0). Identifying the set Ik ×{0} ⊂ Inwith Ik we have that α|Ik is an immersion, hene (f ◦ (α|Ik))−1 (V ) has the Baireproperty for eah open subset V of Y . Sine p−1(A) has the Baire property for eahsubset A of Ik whih has the Baire property, and β−1(B) has the Baire property foreah subset B of Im whih has the Baire property, we obtain that f ◦ (ψ|U0) hasthe Baire property. Now using loality mentioned at the de�nition of (B), we get thegeneral ase.3.5. Theorem. Let Z be a topologial spae and let Zi (i = 1, 2, . . . , n) betopologial spaes having ountable bases. Let Xi (i = 1, 2, . . . , n) and X be opensubsets of Eulidean spaes and let Y ⊂ R

l be open. Let D be an open subset of
X × Y . Consider the funtions f : X → Z, fi : Xi → Zi, h : D × Z1 × . . .× Zn → Z,
gi : D → Xi (i = 1, 2, . . . , n). Let U ⊂ R

k be open, ψ : U → X be a C1 immersion of
U into X , and suppose that the following onditions hold:(1) For eah (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for eah �xed y ∈ Y , h is ontinuous in the other variables;(3) the funtion fi is in Bki
on Xi (i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for eah u0 ∈ U there exists a y0 suh that (ψ(u0), y0) ∈ D and the rank of thederivative of (u, y) 7→ gi(ψ(u), y)is ki on a neighbourhood of (u0, y0) for eah 1 ≤ i ≤ n.Then u 7→ f(ψ(u)) has the Baire property.Proof. Let us hoose an open neighbourhood U0 of u0 and Y0 of y0 suh that(ψ(u), y) is in D whenever u ∈ U0, y ∈ Y0, moreover, the rank of the derivative of



12 BAIRE PROPERTY IMPLIES CONTINUITY . . .the mapping (u, y) 7→ gi(ψ(u), y) is equal to ki for all u ∈ U0, y ∈ Y0, 1 ≤ i ≤ n.This is possible by ondition (5). By the previous lemma we obtain that the mapping(u, y) 7→ fi(gi(ψ(u), y)) has the Baire property. By the analogue of Fubini's theoremstated in setion 2.1, exept for a set Ei of y's from Y0 whih is of �rst ategory, themapping u 7→ fi(gi(ψ(u), y)) has the Baire property on U0. Hene, exept for the set
E = ∪n

i=1Ei, for all y ∈ Y0 the mapping
u 7→ (ψ(u), f1(g1(ψ(u), y)), . . . , fn(gn(ψ(u), y)))of U0 into Dy ×Z1×· · ·×Zn has the Baire property. Sine for any �xed y the funtion

h is ontinuous in other variables, we obtain that for any �xed y ∈ Y0\E the mapping
u 7→ h(ψ(u), y, f1(g1(ψ(u), y)), . . . , fn(gn(ψ(u), y)))has the Baire property. This means that u 7→ f(ψ(u)) has the Baire property on U0.Now by the loality priniple mentioned at the de�nition of (B) the statementfollows.The following theorem is the key to the generalization 3.7 of theorem 3.1.3.6. Theorem. Let U ⊂ R

m, X and P be open subsets of Eulidean spaes,
p0 ∈ P , Y a metri spae, ϕ : U × P → X a C1 funtion, for whih rankϕ′

p(u) = k foreah u ∈ U , p ∈ P . If f ∈ Bk(X, Y ) ∩ Sk(X, Y ) then the ondition (S) is satis�ed for
f , U , P , p0 and ϕ.Proof. Let u0 ∈ U , and let pj → p0 be a sequene. Sine the rank of ϕ′

p0(u0) isequal to k, we may write u as u = (u1, u2) ∈ R
k ×R

m−k suh that the determinant of
∂ϕ

∂u1 (u0, p0)is not equal to 0. Hene there exists a neighbourhood U1 ×U2 of u0 and a neighbour-hood P0 of p0 suh that the mapping
u1 7→ ϕ(u1, u2, p)is an immersion of U1 for eah u2 ∈ U2, p ∈ P0. Sine f ∈ Sk, for eah u2 ∈ U2there exists a subset Fu2 of U1 of �rst ategory suh that if u1 ∈ U1\Fu2 then we have

f(ϕ(u1, u2, pj)) → f(ϕ(u1, u2, p0)). By the previous lemma, u 7→ f(ϕ(u, p)) has theBaire property. Hene the set
{(u1, u2) ∈ U1 × U2 : f(ϕ(u1, u2, pj)) → f(ϕ(u1, u2, p0))}has the Baire property (see 2.1). By the Kuratowski-Ulam theorem we obtain that itsomplement is of �rst ategory.



BAIRE PROPERTY IMPLIES CONTINUITY . . . 133.7. Theorem. Let Z be a topologial spae and let Zi (i = 1, 2, . . . , n) beseparable metri spaes. Let Xi (i = 1, 2, . . . , n) and X be open subsets of Eulideanspaes and Y ⊂ R
l be open. Let D be an open subset of X×Y . Consider the funtions

f : X → Z, fi : Xi → Zi, h : D×Z1× . . .×Zn → Z, gi : D → Xi (i = 1, 2, . . . , n). Let
U ⊂ R

k be open, P an open subset of some Eulidean spae, p0 ∈ P , ϕ : U × P → Xa C1-funtion for whih eah ϕp, p ∈ P is an immersion of U into X , and suppose thatthe following onditions hold:(1) For eah (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for eah �xed y ∈ Y , h is ontinuous in the other variables;(3) the funtion fi is in Ski
∩ Bki

(i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for eah u0 ∈ U there exists a y0 suh that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p0), y)is ki on a neighbourhood of the point (u0, p0, y0) for eah 1 ≤ i ≤ n.Then the onditions (S) and (B) are satis�ed for f , U , P , p0, ϕ.Proof. From Theorem 3.5 it follows that ondition (B) is satis�ed by f , U , P ,
p0, ϕ. Let us �x an u0 ∈ U and let us hoose a y0 for u0 by (5). Let us hoose openneighbourhoods U0, P0 and Y0 of u0, p0 and y0 suh that (ϕ(u, p), y) ∈ D whenever
u ∈ U0, p ∈ P0 and y ∈ Y0, moreover the rank of the derivative of(u, y) 7→ gi(ϕ(u, p0), y)is ki on U0 × P0 × Y0 for eah 1 ≤ i ≤ n. Now the proof that ondition (S) is alsosatis�ed is exatly the same as in Theorem 3.1, but we have to use the previous theoreminstead of the de�nition.4. Further investigation of the new notions4.1. Conditions. In what follows we shall only investigate the situation, where
X is a nonvoid open subset of R

n and f maps X into a separable metri spae Y ,beause we want to avoid any diÆulties arising only from the poor topology of therange Y .4.2. Remark. There is another kind of loality than the one treated afterDe�nition 2.2. We have f ∈ Sk(X, Y ) if and only if eah x0 ∈ X has an openneighbourhood X0 ⊂ X suh that f |X0 ∈ Sk(X0, Y ). The \only if" part is trivial. Toprove the \if" part we shall use the notation of De�nition 2.1. Let us note that for eahpoint u0 ∈ U there exist open neighbourhoods U0 and P0 of u0 and p0, respetively,suh that for x0 = ϕ(u0, p0) the set ϕ(U0, P0) is ontained in X0. This means that (S)is satis�ed for ϕ|U0 × P0. Now from the loality priniple in the de�nition we havethat f ∈ Sk(X, Y ). The same loality is true (and the same proof works) for Bk.



14 BAIRE PROPERTY IMPLIES CONTINUITY . . .4.3. The lass Bk. Let
Ak = {A ⊂ X : ξA ∈ Bk(X, {0, 1})}where {0, 1} is taken as a disrete spae. It is easy to see that Ak is a σ-algebra, anda funtion f : X → Y is in Bk(X, Y ) if and only if f−1(V ) is in Ak for eah opensubset V of Y . Hene the investigation of Bk(X, Y ) is redued to the investigation ofthe σ-algebra Ak. It is easy to see that An is the lass of all subsets of X having theBaire property and A0 is the lass of all subsets of X . Eah Ak ontains the Borelsubsets of X .We shall prove that A ∈ Ak if and only if A ∩ rngψ has the Baire property inthe subspae rngψ for any embedding ψ of some open subset of R

k into X . Indeed, if
A ∈ Ak then ψ−1(A) has the Baire property in dmnψ and sine ψ is a homeomorphismof dmnψ onto rngψ, the set ψ(ψ−1(A)) = A ∩ rngψ has the Baire property in rngψ.Similarly, if A ∩ rngψ has the Baire property in rngψ, then ψ−1(A) has the Baireproperty in dmnψ. By 2.3 (4) if ψ−1(A) has Baire property for any embedding ψ ofsome open subset of R

k into X then A ∈ Ak.Similarly, A ∈ Ak if and only if A∩ rngψ has the Baire property in the subspaerngψ for any immersion ψ of some open subset of R
k into X . Let us represent U =dmnψ as a ountable union of open subsets Ui of U suh that ψ|Ui is an embedding of

Ui into X . If A ∈ Ak then ψ−1(A) has the Baire property in U , hene Ui∩ψ
−1(A) alsohas the Baire property in Ui. From this Ai = (ψ|Ui)(ψ−1(A)) has the Baire propertyin ψ(Ui), i. e. Ai△Vi ⊂ Fi for some relatively open subset Vi of ψ(Ui) and some Fiwhih is of �rst ategory in ψ(Ui). Sine Fi is of �rst ategory in rngψ too, ∪iFi is of�rst ategory in rngψ. Sine (∪iAi)△(∪iVi) ⊂ ∪iFi,we have that the symmetri di�erene of A∩rngψ = ∪iAi and the σ-ompat set ∪iViis of �rst ategory. This proves that A∩ rngψ has the Baire property in rngψ. In theother diretion, if A ∩ ψ(Ui) has the Baire property, then (ψ|Ui)−1(A) has the Baireproperty in Ui, hene in U , too. Sine this is true for any immersion ψ of some opensubset of R

k into X , we obtain that A ∈ Ak.Finally, A ∈ Ak if and only if A ∩M has the Baire property in the subspae
M for eah pure k dimensional submanifold M of X . Indeed, if this is true, then inpartiular A ∩ rngψ has the Baire property in rngψ for eah immersion ψ of someopen subset of R

k into X , hene A ∈ Ak. On the other hand, eah pure k dimensionalsubmanifold M of X an be represented as the range of some immersion ψ of someopen subset of R
k. Hene A ∩M = A ∩ rngψ has the Baire property in M = rngψ.4.4. Connetions between Bk and Sk. One of the simplest questions is,whether f ∈ Bk implies f ∈ Sk. We know that this is true for k = n. If k < n thenthe harateristi funtion of the intersetion of X and an appropriate k-dimensionalplane is in Bk but not ontained in Sk.In the other diretion, suppose, that f ∈ Sk. The question is, whether f ∈ Bk issatis�ed. This is trivial for k = 0. We shall show that this annot be proved in ZFC



BAIRE PROPERTY IMPLIES CONTINUITY . . . 15for 0 < k ≤ n. Namely, we shall give an example f under the ontinuum hypothesis forwhih f ∈ Sk but f /∈ Bk. By the famous results of G�odel and Cohen, the ontinuumhypothesis is independent from the axioms of ZFC. This means that Bk ⊂ Sk annotbe proved in ZFC.4.5. Hierarhy between funtion lasses belonging to di�erent dimen-sions. Let us �x dimensions 0 ≤ k < l ≤ n and let us investigate the onnetionbetween the lasses Bk and Sk and lasses Bl and Sl.We may hope that dereasing the dimension ondition (S) beomes stronger.One of the only two positive results in this diretion is that this is true for ondition(S) under ondition (B):
Bk ∩ Bl ∩ Sk ⊂ Sl.The proof of this statement is very similar to the proof of Theorem 3.6, therefore wedo not repeat the argument.We shall show by a ounterexample under the ontinuum hypothesis that for

k > 0 ZFC 2 Bk ∩ Sk ⊂ Bl ∪ Sl.Similarly we shall show by a ounterexample under the ontinuum hypothesisthat ZFC 2 Bk ∩ Sk ∩ Sl ⊂ Blexept for the trivial ase k = 0.It is muh easier to see that inlusions in the other diretion do not hold ingeneral. Although
Bl ⊂ B0is satis�ed trivially, in general

Bl 6⊂ Bk if k > 0.This is shown by the harateristi funtion of a subset in the the intersetion of Xand an appropriate k dimensional plane whih does not have the Baire property in thegiven plane. The same example shows that
Bl ∩ Sl 6⊂ Bk ∪ Sk.If we take the harateristi funtion of the intersetion of X and an appropriate kdimensional plane, then we see that
Bl ∩ Sl ∩ Bk 6⊂ Sk.We shall show that

Bl ∩ Sk ⊂ Bk.



16 BAIRE PROPERTY IMPLIES CONTINUITY . . .Let us see the proofs.4.6.Theorem. Under the onditions of 4.1 and 4.5 we have Bl ∩ Sk ⊂ Bk.Proof. This is trivial for k = 0. Otherwise, let ψ be an immersion of an opensubset U ⊂ R
k. Let u0 ∈ U and let V be an l − k dimensional subspae of R

northogonal to rngψ′(u0). Let π : R
l−k → V be a linear isometry, and let us de�ne

ϕ by ϕ(u, p) = ψ(u) + π(p). Then for p0 = 0 we have ϕp0 = ψ. Let us hoose openneighbourhoods U0 and P0 of u0 and p0, respetively, suh that ϕ(U0, P0) ⊂ X and
ϕ is an immersion of U0 × P0 into X . Sine f ∈ Bl, the mapping (u, p) 7→ f(ϕ(u, p))has the Baire property. Hene, by the analogue of Fubini's theorem (see 2.1), exeptfor a set of �rst ategory, for all p ∈ P0 the mapping u 7→ f(ϕ(u, p)) has the Baireproperty. Let us hoose a sequene pm → p0 suh that eah u 7→ f(ϕ(u, pm)) has theBaire property. By f ∈ Bk we have that

f(ϕ(u, pm)) → f(ϕ(u, p0))for all u ∈ U0 exept for a set of �rst ategory. Hene u 7→ f(ψ(u)) has the Baireproperty on U0, i.~e. loally. This implies that f ∈ Bk.For the following ounterexamples we need a lemma. The ounterexamples arerelated to the existene of the so-alled almost invariant sets. These sets were used byKakutani and Oxtoby to prove that the Lebesgue measure on the omplex unit irlean be extended to an invariant measure suh that the Hilbert spae dimension of theorresponding L2 spae beomes 2, where  is the ardinal number ontinuum. Theproof of the lemma below is a re�nement of the onstrution from the paper [7℄ ofthe author, where the result of Kakutani and Oxtoby was extended | among others| to arbitrary loally ompat groups. The ideas there are ombined with the well-known ideas of Sierpinski to onstrut under the ontinuum hypothesis a subset of theunit square with outer measure 1 and ontaining at most two points on eah line. Tobetter understand the following abstrat lemma, we an think of the ase when X isthe plane, T is the lass of all di�eomorphisms mapping some open subset of the planeonto some other open subset of the plane, F is the lass of all Borel subsets of theplane of seond ategory, G is the lass of all one dimensional C1 submanifolds of theplane and n =  = ℵ1.4.7. Lemma. Let X be a set and T a lass of one-to-one transformations eahmapping a subset of X into X and let F , G be lasses of subsets of X . Suppose thatthere exists an in�nite ardinal number n > ℵ0 with the following properties:(1) ard(X) = n;(2) ard(T ) ≤ n;(3) ard(F) ≤ n and for every F ∈ F we have ard(F ) = n;(4) ard(G) ≤ n and for every F ∈ F and G0 ⊂ G for whih ard(G0) < n we haveard(F\ ∪ G0) = n;(5) The lass G is T invariant, i.e. if G ∈ G, τ ∈ T then τ(G) ∈ G and τ−1(G) ∈ G.



BAIRE PROPERTY IMPLIES CONTINUITY . . . 17Then there exists a family {Xγ}γ∈� of subsets Xγ of X with the following properties:(6) ard(�) = n;(7) the sets Xγ , γ ∈ � are pairwise disjoint;(8) for eah γ ∈ � and G ∈ G we have ard(Xγ ∩G) < n;(9) ard(F ∩Xγ) = n whenever γ ∈ � and F ∈ F ;(10) for every subset �0 of � and for every τ ∈ Tard(τ(∪γ∈�0Xγ)△ (τ(X) ∩ (∪γ∈�0Xγ))) < n.The proof was given in J�arai [14℄, Lemma 4.8.4.8. Counterexample. Using the onditions of 4.1, under the ontinuumhypothesis for 0 < k ≤ n we have Sk 6⊂ Bk.Proof. We shall give a funtion f ∈ Sk for whih f /∈ Bk. We want to applythe previous lemma. We shall use only that the funtions ϕ in the de�nition of Skare ontinuous and that by Remark 2.3.(4) we may suppose that the funtions ϕpare one-to-one. Let T denote the lass of all one-to-one funtions τ whih an berepresented in the form ϕp ◦ ϕ−1
p′ , where U is an open subset of R

k, P is an opensubset of some Eulidean spae and ϕ : U ×P → X is a ontinuous funtion for whihall ϕp, p ∈ P is one-to-one. Sine the ardinality of all pairs U , P is ontinuum andany ontinuous funtion ϕ is uniquely determined by the values on a ountable densesubset, the ardinality of the lass T is ontinuum.Let F denote the lass of all subsets of X representable in the form ψ(G) where
∅ 6= U ⊂ R

k is open, ψ : U → X is an embedding and G ⊂ U is a Borel subset of U ofseond ategory in U . Eah element of F is a Borel subset of X , hene the ardinalityof F is at most  (ontinuum). Moreover, by a theorem of Piard, G−G ontains aneighbourhood of the origin, hene eah elements of F has ardinality .Applying the previous lemma with G = ∅ we obtain a lass of subsets Xγ, γ ∈ Rof X . Our ounterexample will be the harateristi funtion f of X0.If f were in Bk then for any embedding ψ of some nonvoid open subset U of R
kthe set A0 = ψ−1(X0) would be a Baire set. A0 annot be of �rst ategory, beausethen for a Borel set G ⊂ U\A0 of seond ategory ψ(G) would not interset with X0.Similarly, if A0 is of seond ategory, then hoosing a Borel set B ⊂ A0 of seondategory we obtain ψ(G) ⊂ X0.We shall prove that f ∈ Sk. Let U be an open subset of R

k, P be an open subsetof some eulidean spae, p0 ∈ P and ϕ : U × P → X a C1 funtion for whih all ϕp isan embedding. The set
{u ∈ U : f(ϕp0(u)) 6= f(ϕp(u))}is equal to the set

ϕ−1
p0 ({x ∈ ϕp0(U) : x ∈ X0△(ϕp0 ◦ ϕ−1

p )(X0)}) .



18 BAIRE PROPERTY IMPLIES CONTINUITY . . .For the mapping τ = ϕp0 ◦ ϕ−1
p this set is a subset of the set
ϕ−1

p0 ((τ(X) ∩X0)△τ(X0)) .If we suppose the ontinuum hypothesis then this set is ountable.4.9. Counterexample. Using the onditions of 4.1 and 4.5, under the ontin-uum hypothesis for 0 < k < l ≤ n we have Bk ∩ Sk ∩ Sl 6⊂ Bl.Proof. We shall give an example of a funtion f ∈ Bk ∩Sk ∩Sl but f /∈ Bl. Wewant to apply Lemma 4.7. We shall use that by Remark 2.3.(4) we may suppose thatthe funtions ϕp in the de�nition of Sl are embeddings. Let T denote the lass of allone-to-one funtions τ whih an be represented in the form ϕp ◦ ϕ−1
p′ , where U is anopen subset of R

l, P is an open subset of some Eulidean spae and ϕ : U × P → Xis a C1 funtion for whih all ϕp, p ∈ P is an embedding. Let F be the same as inthe previous ounterexample. Let G be the lass of all Borel subsets of X whih areontained in a union of ountably many k dimensional submanifolds of X . We have toprove that G is T invariant. The domain of any τ ∈ T is an l dimensional submanifoldof X . If a set G ∈ G is ontained in ∪∞
j=1Mj , where eah Mj is a k dimensionalsubmanifold of X , then for eah x ∈ G∩Mj ∩dmn τ it is possible to �nd an ε > 0 anda k dimensional submanifoldM ′

j of dmn τ suh that for eah y for whih |y−x| < ε wehave y ∈ X , moreover, that y ∈ G∩Mj ∩dmn τ if and only if y ∈ G∩M ′
j ∩dmn τ . Thisproves that the Borel set G∩ dmn τ an be overed by ountably many k dimensionalsubmanifolds of dmn τ . Hene the Borel set τ(G) an also be overed by ountablymany k dimensional submanifolds.Sine the topologial dimension dim = ind = Ind of any subset G of a k dimen-sional submanifold is ≤ k, the intersetion of G with an l dimensional submanifold Lof X is of �rst ategory in L. The same is true for any G ∈ G, and, moreover, for theunion G of any ountable subfamily G0 ⊂ G. This proves that for any F ∈ F the set

F\G has ardinality . Other onditions of Lemma 4.7 have already been heked at4.8 . Applying Lemma 4.7 we obtain a lass Xγ , γ ∈ R where eah Xγ ontains onlyountably many points from eah G ∈ G, but Xγ ∩ F 6= ∅ for eah F ∈ F .Let f be the harateristi funtion of X0. Along the same lines as in 4.8 we getthat f ∈ Sl but f /∈ Bl. Sine for any C1 embedding ψ of an open subset of R
k into Xthe funtion f ◦ ψ is zero exept for a ountable set, we get that f ∈ Bk and f ∈ Sk,too. Hene the statement is proved.4.10. Counterexample. Using the onditions of 4.1 and 4.5, under the on-tinuum hypothesis for 0 < k < l ≤ n we have Bk ∩ Sk 6⊂ Bl ∪ Sl.Proof. Let us apply Lemma 4.7 for the same T , F and G as in the previousounterexample. We obtain a lass Xγ, γ ∈ R where eah Xγ ontains only ountablymany points from eah G ∈ G, but Xγ ∩ F 6= ∅ for eah F ∈ F .Let Y be an l dimensional plane whih has a nonempty intersetion with X andlet f be the harateristi funtion of the set Y ∩X0. Then f ∈ Bk ∩ Sk, but f /∈ Bland f /∈ Sl.



BAIRE PROPERTY IMPLIES CONTINUITY . . . 19

References

1. J. Aczél, Some unsolved problems in the theory of functional equations II, Aequationes Math. 26

(1984), 255–260.

2. J. Aczél, The state of the second part of Hilbert’s fifth problem, Bull. Amer. Math. Soc. (N.S.)
20 (1989), 153–163.

3. N. Bourbaki, Elements of mathematics. General topology, Addison-Wesley, Reading, Mass.–Palo
Alto–London–Don Mills, Ont., 1966.

4. K.-G. Grosse-Erdmann, Regularity properties of functional equations and inequalities, Aequa-

tiones Math. 37 (1989), 233–251.
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