
BAIRE PROPERTY IMPLIES CONTINUITY FORSOLUTIONS OF FUNCTIONAL EQUATIONS| EVEN WITH FEW VARIABLES
Antal Járai

Abstract. It is proved that — under certain conditions — solutions f of the functional

equation

f(x) = h(x, y, f(g1(x, y)), . . . , f(gn(x, y))), (x, y) ∈ D ⊂ R
n × R

l

having Baire property are continuous, even if 1 ≤ l ≤ n. As a tool we introduce new

function classes which — roughly speaking — interpolate between Baire property and
continuity. 1. Introdu
tionIn 
onne
tion with his �fth problem Hilbert [6℄ suggested that although themethod of redu
tion to di�erential equations makes it possible to solve fun
tionalequations in an elegant way, the inherent di�erentiability assumptions are typi
allyunnatural (see [2℄). Su
h short
omings 
an be over
ome by appealing to regularitytheorems.In this spirit the following general regularity problem for fun
tional equationswith two variables and without iteration was formulated by the author and in
ludedby A
z�el among the most important open problems on fun
tional equations (see A
z�el[1℄ and J�arai [8℄):1.1. Problem. Let X and Z be open subsets of R

s and R
m, respe
tively, andlet D be an open subset of X ×X . Let f : X → Z, gi : D → X (i = 1, 2, . . . , n) and

h : D × Zn+1 → Z be fun
tions. Suppose that(1)
f(x) = h(x, y, f(y), f(g1(x, y)), . . . , f(gn(x, y))) whenever (x, y) ∈ D;(2) h is analyti
;(3) gi is analyti
 and for ea
h x ∈ X there exists a y for whi
h (x, y) ∈ D and

∂gi

∂y
(x, y) has rank s (i = 1, 2, . . . , n).Is it true that every f whi
h is measurable or has the Baire property is analyti
?
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2 BAIRE PROPERTY IMPLIES CONTINUITY . . .The following steps 
an be used:(I) Measurability implies 
ontinuity.(II) Baire property implies 
ontinuity.(III) Continuous solutions are lo
ally Lips
hitz.(IV) Lo
ally Lips
hitz solutions are 
ontinuously di�erentiable.(V) All p times 
ontinuously di�erentiable solutions are p + 1 times 
ontinuouslydi�erentiable.(VI) In�nitely many times di�erentiable solutions are analyti
.The 
omplete answer to the problem above is not known. The author dis
ussedthis problem in several papers and solved problems 
orresponding to (I), (II), (IV)and (V) (see [8℄), and under some additional 
ompa
tness 
ondition (III) (see [9℄).Referen
es 
an be found in the survey paper [16℄. There are some partial results in
onne
tion with (VI). Moreover, other properties of solutions su
h as having lo
allybounded variation or lo
al H�older 
ontinuity are also dis
ussed (see [13℄ and referen
esin [16℄). It is possible to extend these results to manifolds, and the C∞-part of theproblem is 
ompletely solved on 
ompa
t manifolds [12℄. The most appli
able resultsare treated in the booklet [11℄.Regularity theorems of the type \lo
ally integrable solutions are in�nitely manytimes di�erentiable" 
an be obtained using distributions. The essen
e of the methodis to prove that solutions in the distribution sense satisfy a di�erential equation havingonly in�nitely many times di�erentiable solutions. This idea was used by �Swiatak [18℄to prove general regularity results for the fun
tional equation
n
∑

i=1 hi(x, y)f(gi(x, y)) = h(x, f(gn+1(x)), . . . , f(gm(x))) + h0(x, y),where f is the only unknown fun
tion. Roughly speaking, she applies a partial di�er-ential operator in y to the equation in the distribution sense. Of 
ourse, the nonlinearterm on the right hand side disappears. If, after substituting a �xed y0, we are fortu-nate enough to obtain a hypoellipti
 partial di�erential equation, then by the regularitytheory of partial di�erential equations all distribution solutions are in C∞. For theexa
t details of how to over
ome the diÆ
ulties and for appli
ations see her paper [18℄.Further referen
es about regularity theorems for fun
tional equations 
an befound in the survey paper [16℄. Some other papers 
on
erning the distribution methodare also referred to there.The above equation of �Swiatak is \almost linear", so, formally, it is mu
h lessgeneral than equation (1). However her theorems 
an be applied even if the rank of
∂gi

∂y
is mu
h smaller than the dimension of the domain of the unknown fun
tion f .Roughly speaking, the present author's results, quoted above, may be applied to proveregularity of a solution f having m variables, only if there are at least 2m variablesin the fun
tional equation. The method of �Swiatak may be applied even if there areonly m + 1 variables. This is the minimal number of variables: in Hilbert's paper [6℄



BAIRE PROPERTY IMPLIES CONTINUITY . . . 3there is an example that for \one variable" fun
tional equations (this may mean an
m-dimensional ve
tor variable) no regularity theorem holds. So the results of �Swiataksuggest that the rank 
ondition in the problem above is too strong, and the results
on
erning the above problem 
an be extended for a mu
h more general 
ase.Su
h \measurability implies 
ontinuity" type results were treated re
ently inJ�arai [14℄. Well-known analogies between measurability and Baire property (see Ox-toby [17℄) suggest to try to prove analogous results for Baire property. Di�eren
es,su
h as the la
k of \ε-te
hnique", 
onvergen
e in measure and theorems 
onne
tedwith it (for example Riesz theorem), Hausdor� measure, et
., shows that we need aseparate treatment.In this paper we will prove a \Baire property implies 
ontinuity" type result forthe general expli
it nonlinear fun
tional equation (1) without the strong rank 
onditionin (3) to the inner fun
tions. All earlier \Baire property implies 
ontinuity" typeresults that I know of use the strong rank 
ondition in (3) or some abstra
t versionof it. In the spirit of the \bootstrap" method 
orresponding to steps (I){(VI) weintrodu
e a sequen
e of properties, whi
h | roughly speaking | are between Baireproperty and 
ontinuity. This sequen
e of properties gives a stairway to 
limb up fromBaire property to 
ontinuity. First we shall investigate the basi
 properties of the newnotions. Then the regularity theorem will be proved. An example is given how toapply the theorem in nontrivial 
ases. A re�nement of the theorem is also proved.Finally, further properties of the new notions are investigated.2. The new notions2.1. Notations. If f is a fun
tion, rng f denotes the range of f . All normedspa
es are supposed to be real; the norm is denoted by | |. If f : D → Y is a fun
tionmapping an open subset of a normed spa
e into a normed spa
e, then f ′ shall denotethe derivative of f . If D ⊂ X1 ×X2 × . . .×Xn, we shall use the partial sets

Dxi
= {(x1, . . . , xi−1, xi+1, . . . , xn) : (x1, ..., xn) ∈ D

}

.The partial fun
tions fxi
: Dxi

→ Y are de�ned by
fxi

(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xn)whenever (x1, . . . , xn) ∈ D (noti
e that xi is held 
onstant in fxi
). Also Dxi1 ,... ,xirand fxi1 ,... ,xir

are de�ned similarly. Now, if Xi and Y are normed spa
es and
Dx1,... ,xi−1,xi+1,... ,xnis an open subset of Xi we de�ne the partial derivative denoted by
∂if, ∂xi

f or ∂f

∂xias the derivative of fx1,... ,xi−1,xi+1,... ,xn
. Other notions of 
al
ulus are used in theusual way.



4 BAIRE PROPERTY IMPLIES CONTINUITY . . .Con
erning topology we follow the terminology and notations of Bourbaki [3℄.The most important fa
ts 
on
erning Baire 
ategory 
an be found in Bourbaki [3℄; seeChapter IX, § 5, and the 
orresponding exer
ises, but here we shall use the di�erent(and more usual) terminology of Oxtoby [17℄. For 
learity we summarise the notionsand fa
ts we shall use here.We will say that a subset A of a topologi
al spa
e X is of �rst 
ategory , if A 
anbe represented as a 
ountable union of nowhere dense sets, otherwise A is of se
ond
ategory . Let E be a subset of the topologi
al spa
e X and let D(E) denote the set ofall points of X su
h that for ea
h neighbourhood V the set V ∩E is of se
ond 
ategory.Then D(E) = ∅ if and only if E has �rst 
ategory. Moreover D(E) is 
losed and theset E\D(E) is of �rst 
ategory.
X is 
alled a Baire spa
e if every nonvoid open subset of X is of se
ond 
ategory.We will say that E ⊂ X has the Baire property if there exists an open set V su
hthat the symmetri
 di�eren
e E△V is of �rst 
ategory. All subsets of X having Baireproperty form a σ-algebra. Of 
ourse this σ-algebra 
ontains Borel sets, the membersof the smallest σ-algebra 
ontaining all open sets. A set E ⊂ X has the Baire propertyif and only if E\D(E) has �rst 
ategory.Suppose that X is a topologi
al spa
e, E ⊂ X . The set E has Baire property ifand only if ea
h point x of X has an open neighbourhood U su
h that U ∩E has theBaire property in X .Let X and Y be topologi
al spa
es and suppose that the topology of one of themhas a 
ountable base. A subset E × F of X × Y has the Baire property if and only ifone of the sets E, F is of �rst 
ategory or both of them have Baire property.Combining these fa
ts with the proof in Oxtoby [17℄, Chapter 15, we get thefollowing form of a well-known theorem of Kuratowsky and Ulam:Theorem. [Kuratowsky, Ulam℄ Let X and Y be topologi
al spa
es, and supposethat Y has a 
ountable base. Let E be a subset of X × Y having the Baire property.Then ex
ept for a set of points x of X whi
h is of �rst 
ategory the set Ex has theBaire property. Moreover E is of �rst 
ategory if and only if the set Ex is of �rst
ategory in Y with the ex
eption of a set of x's of �rst 
ategory.The fun
tion f has the Baire property on E if the domain of f 
ontains E ex
eptfor a set of �rst 
ategory, the range of f is in a topologi
al spa
e Y and E ∩ f−1(W )has the Baire property in X for every open subset W of Y . We simply say that f hasthe Baire property, if it has the Baire property on X .This de�nition is very similar to the de�nition of a Borel fun
tion. A fun
tion

f mapping some subset of a topologi
al spa
e X into another topologi
al spa
e Y is
alled a Borel fun
tion, if for ea
h open subset V of Y the set f−1(V ) is a Borel subsetof X . The properties of fun
tions having the Baire property are very similar to theproperties of measurable fun
tions. We shall use the following statements.If f is any fun
tion de�ned on a subset of X having the Baire property thenall subsets B of Y for whi
h f−1(B) has the Baire property form a σ-algebra. Hen
e



BAIRE PROPERTY IMPLIES CONTINUITY . . . 5if f has values in the topologi
al spa
e Y and has the Baire property on a subset ofthe topologi
al spa
e X , moreover g is a Borel fun
tion on a subset of the topologi
alspa
e Y , then g ◦ f has the Baire property on its domain.Suppose that Y = ∏i Yi is a 
ountable produ
t of spa
es ea
h having a 
ountablebase of topology. A fun
tion f mapping a subset of a topologi
al spa
e X into Y hasthe Baire property if and only if all fun
tions pi ◦ f have the Baire property where piis the natural proje
tion of Y onto Yi.Suppose that X is a topologi
al spa
e, Y a metri
 spa
e, and the fun
tions f ,
fn (n = 1, 2, . . . ) are de�ned on X ex
ept for a set of �rst 
ategory (depending on thefun
tion), have values in Y and have the Baire property. Then the set

E = {x : fn(x) → f(x)}has the Baire property. Indeed, the sets En,m = {x : dist(fn(x), f(x)) < 1/m} havethe Baire property and E di�ers from the set
∩∞

m=1 ∪∞
n=1 ∩∞

k=nEk,monly in a set of �rst 
ategory.Suppose that X is a topologi
al spa
e, Y is a metri
 spa
e, the fun
tions f , fn(n = 1, 2, . . . ) are mappings from X into Y , the fun
tions fn have the Baire propertyfor all n, and fn(x) → f(x) for all x ∈ X ex
ept for a set of �rst 
ategory. Then fhas the Baire property, too. Indeed, if V is an open subset of Y and Vi is the opensubset of Y 
ontaining those points of Y having distan
e larger than 1/i from Y \V ,then f−1(V ) di�ers from the set
∪∞

i=1 ∪∞
j=1 ∩∞

k=jf
−1
k (Vi)only in a set of �rst 
ategory.The following theorem is the analogue of Luzin's theorem:Let f be a mapping of the topologi
al spa
e X into the topologi
al spa
e Y andsuppose that there exists a subset F of X of �rst 
ategory su
h that the restri
tionof f to the set X\F is 
ontinuous. Then f has the Baire property. Conversely, this
ondition is ne
essary, if the topology of Y has a 
ountable base.From the Kuratowsky-Ulam theorem the following analogue of Fubini's theoremfollows dire
tly:If X , Y and Z are topologi
al spa
es, Y and Z have 
ountable bases, f : X×Y →

Z has the Baire property, then ex
ept for a set of points x whi
h is of �rst 
ategory,the fun
tion fx has the Baire property.



6 BAIRE PROPERTY IMPLIES CONTINUITY . . .2.2. De�nition. Let X be a set, Y a metri
 spa
e, and f : X → Y be afun
tion. Let U be a topologi
al spa
e, and P a topologi
al spa
e, the \parameterspa
e" with a given point p0 ∈ P . Let ϕ be a fun
tion from U × P into X . We shallthink of ϕ as a surfa
e ϕp : u 7→ ϕ(u, p) for ea
h p, depending on the parameter p.The analogue of Luzin's theorem above and generalizations of the theorem of Pi

ard(see [10℄) suggest that the following 
ondition is 
onne
ted with the Baire property:(S) For ea
h sequen
e pm → p0 we have f(ϕ(u, pm)) → f(ϕ(u, p0)) ex
ept for a setof �rst 
ategory of points u ∈ U .For our investigations we need the following property:(B) u 7→ f(ϕ(u, p0)) has the Baire property.We shall often 
he
k 
onditions (S) and (B) lo
ally. If for ea
h u0 ∈ U there isa neighbourhood U0 of u0 and P0 of p0 su
h that ϕ|U0 × P0 satis�es (S), then ϕ alsosatis�es (S). This easily follows from the lo
ality of �rst 
ategory mentioned in 2.1.Similarly, if for ea
h u0 ∈ U there is a neighbourhood U0 of u0 and P0 of p0 su
h that
ϕ|U0 × P0 satis�es (B), then ϕ satis�es (B).Let X be an open subset of R

n and 0 ≤ k ≤ n. The 
lass of all fun
tions f forwhi
h the 
ondition (S) [(B)℄ is satis�ed whenever U is an open subset of R
k, P is anopen subset of some Eu
lidean spa
e, p0 ∈ P and ϕ : U × P → X is a C1-fun
tion forwhi
h ϕp is an immersion of U into X for ea
h p ∈ P , will be denoted by Sk(X, Y )[Bk(X, Y )℄ or shortly by Sk [Bk℄. (We take R

0 = {0}). It is 
lear that f ∈ Bk if andonly if the 
ondition(B′) f ◦ ψ has the Baire propertyis satis�ed whenever ψ is an immersion of some open subset U of R
k into X .2.3. Remarks. (1) Our main results will show that, roughly speaking, solutions

f from Sk+1 are also in Sk. We shall prove that S0 is the 
lass of 
ontinuous fun
tions,and that all fun
tions f : X → Y from the open subset X ⊂ R
n into some se
ond
ountable spa
e Y and having the Baire property are in Sn. Hen
e, step-by-step, Baireproperty of solutions implies their 
ontinuity.(2) The analogy with the measure theoreti
al 
ase is remarkable but not 
om-plete. About the history of the analogous measure theoreti
al notions see some refer-en
es in J�arai [14℄.(3) Solutions of fun
tional equations having the Baire property were studied byseveral authors. The generalized Cau
hy equation

f(g(x, y)) = h(x, y, f1(x), f2(y))was studied the most. See the referen
es in J�arai [8℄. A \sequential approa
h" was usedby Grosse-Erdmann [4℄ and mu
h earlier by Haupt [5℄. The results of Grosse-Erdmann
an be applied to prove that for the fun
tional equation
f(g(x, y)) = h(y, f1(x))



BAIRE PROPERTY IMPLIES CONTINUITY . . . 7with unknown fun
tions f , f1 | under suitable 
onditions | Baire property of f1implies the 
ontinuity of f . He applies his abstra
t results for the 
ase where (x, y) ∈ D,whereD is some open subset of R
n×R

n, g : D → R
n and det ∂g

∂x
and det ∂g

∂y
are nonzero.His method has the advantage that one only needs the 
ontinuity of h with respe
t tothe se
ond variable. Note that substituting t = g(x, y) we have lo
ally

f(t) = h(y, f1(g1(t, y)));
ompare this with problem 1.1.(4) The 
lass Sk [Bk℄ remains the same if we suppose only that (S) [(B)℄ issatis�ed whenever U is an open subset of R
k, P is an open subset of some Eu
lideanspa
e, p0 ∈ P and ϕ : U × P → X is a C1-fun
tion for whi
h ϕp is an embedding of

U into X for ea
h p ∈ P . This easily follows from the lo
ality prin
iple mentioned inthe de�nition. Similarly, supposing only that ϕp0 is an immersion, the resulting 
lass
Sk [Bk℄ remains the same.2.4. Theorem. Let Y be a topologi
al spa
e and X an open subset of R

n.Then B0(X, Y ) = Y X and S0(X, Y ) = C(X, Y ), the 
lass of 
ontinuous fun
tions from
X into Y .Proof. We shall use the notations of the de�nition. It is trivial that B0 
ontainsall fun
tions from X into Y .Now let us prove that any 
ontinuous fun
tion f : X → Y is in S0. Sin
e U = ∅or U = {0}, 
learly the fun
tion p 7→ f(ϕ(u, p)) is 
ontinuous for ea
h u ∈ U . Thisimplies f ∈ S0.The 
onverse is proved by 
ontradi
tion: if f ∈ S0, but not 
ontinuous, thenthere exists an x0 ∈ X , a sequen
e xn → x0, and a neighbourhood W of f(x0) su
hthat f(xn) /∈ W . Let U = {0}, P = X , p0 = x0, ϕ(0, p) = p for p ∈ P . Choosing thesequen
e pm = xm we have

f(ϕ(0, pm)) = f(xm) → f(x0) = f(ϕ(0, p0))hen
e we obtain a 
ontradi
tion.We shall prove that fun
tions having the Baire property over an open subset Xof R
n are in Sn. To make the 
onne
tion with earlier results in [8℄ 
lear, we do themain part of the proof in the following abstra
t setting:2.5. Theorem. Let P , U and X be topologi
al spa
es. Suppose that ϕ :

U × P → X is a 
ontinuous fun
tion with the following property:(1) If p ∈ P and A ⊂ U is of se
ond 
ategory then ϕp(A) is also of se
ond 
ategory.Suppose, moreover, that p0 ∈ P and f has values in a topologi
al spa
e and therestri
tion of f to the 
omplement of some subset of �rst 
ategory of X is 
ontinuous.Then for U , P , p0, ϕ and f the 
onditions (S) and (B) are satis�ed.



8 BAIRE PROPERTY IMPLIES CONTINUITY . . .Proof. Let us �rst prove that (B) is satis�ed. Let F be a set of �rst 
ategoryfor whi
h f |X\F is 
ontinuous. We may suppose that F is a Borel set. Let V be anyopen subset of Y . Sin
e the set A = (f |X\F )−1(V ) is relatively open in X\F , it is aBorel subset of X . The set F is of �rst 
ategory hen
e by (1) the set N = (f |F )−1(V )is also of �rst 
ategory. Now let us observe that(f ◦ ϕp)−1(V ) = ϕ−1
p (A) ∪ ϕ−1

p (N).On the left hand side, ϕ−1
p (A) is a Borel set and by 
ondition (1), the set ϕ−1

p (N) isof �rst 
ategory. This means that (B) is satis�ed.Now we will show that (S) is satis�ed. With the set F above we have that
ϕ−1

pm
(F ) is of �rst 
ategory for m = 0, 1, 2, . . . . Let E be the union of all these sets. If

u ∈ U\E, then ϕ(u, pm) and ϕ(u, p0) are in X\F and ϕ(u, pm) → ϕ(u, p0). Hen
e wehave f(ϕ(u, pm)) → f(ϕ(u, p0)). This proves (S).2.6. Theorem. Let X be an open subset of R
n. If Y is a topologi
al spa
ehaving 
ountable base then every fun
tion f : X → Y having the Baire property is
ontained in Sn(X, Y ) and Bn(X, Y ).Proof. By the analogue of Luzin's theorem from 2.1, there is a subset F of �rst
ategory of X su
h that f |X\F is 
ontinuous. Let U ⊂ R

n be open, P an open subsetof some Eu
lidean spa
e, p0 ∈ P , ϕ : U × P → X a C1 fun
tion for whi
h ea
h ϕp,
p ∈ P is an embedding. We shall apply the previous theorem for ϕ lo
ally. Let u0 ∈ U .Choosing a neighbourhood U0 of u0 and P0 of p0 su
h that ϕp is a homeomorphism of
U0 onto an open subset of X for ea
h p ∈ P0, we obtain that for any subset A of U0whi
h is of se
ond 
ategory, the image ϕp(A) is also of se
ond 
ategory.Now, the previous theorem 
an be applied to ϕ|U0×P0. As it was mentioned atthe de�nition this is enough to prove that (S) and (B) are satis�ed for f , U , P , p0, ϕ.3. The main results3.1. Theorem. Let Z, Zi (i = 1, 2, . . . , n) be topologi
al spa
es. Let Xi(i = 1, 2, . . . , n) and X be open subsets of Eu
lidean spa
es and let Y ⊂ R

l be open.Let D be an open subset of X × Y . Consider the fun
tions f : X → Z, fi : Xi → Zi,
h : D × Z1 × . . .× Zn → Z, gi : D → Xi (i = 1, 2, . . . , n). Let U ⊂ R

k be open, P bean open subset of some Eu
lidean spa
e, p0 ∈ P , ϕ : U × P → X a C1-fun
tion, forwhi
h ϕp is an immersion of U into X for all p ∈ P , and suppose that the following
onditions hold:(1) For ea
h (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for ea
h �xed y ∈ Y , h is 
ontinuous in the other variables;(3) the fun
tion fi is in Sk+l on Xi (i = 1, 2, . . . , n);



BAIRE PROPERTY IMPLIES CONTINUITY . . . 9(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for ea
h u0 ∈ U there exists a y0 su
h that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p0), y)at (u0, y0) is k + l for ea
h 1 ≤ i ≤ n.Then 
ondition (S) is satis�ed for f , U , P , p0, ϕ.Proof. Suppose that pm → p0. Let us 
hoose open neighbourhoods U0, P0, Y0of u0, p0, y0 su
h that (ϕ(u, p), y) is in D whenever u ∈ U0, p ∈ P0, y ∈ Y0, moreover,the rank of the derivative of the mapping (u, y) 7→ gi(ϕ(u, p), y) is equal to k+ l for all
u ∈ U0, p ∈ P0, y ∈ Y0 and for 1 ≤ i ≤ n. This is possible, be
ause D is open, gi and
ϕ are C1-fun
tions, the rank is lower semi
ontinuous and U × Y has dimension k + l,hen
e the rank 
annot in
rease above k + l.Sin
e the fun
tion f1 is in Sk+l, we have that, ex
ept for pairs (u, y) ∈ U0 × Y0from a set E1 of �rst 
ategory,

f1(g1(ϕ(u, pm), y))→ f1(g1(ϕ(u, p0), y)).Now using that f2 is in Sk+l we obtain that, ex
ept for pairs (u, y) ∈ U0 × Y0 from aset E2 of �rst 
ategory
f2(g2(ϕ(u, pm), y))→ f2(g2(ϕ(u, p0), y)),et
. Finally, we obtain that ex
ept for a set E = ∪n

i=1Ei of pairs (u, y) ∈ U0 × Y0 of�rst 
ategory we have
fi(gi(ϕ(u, pm), y))→ fi(gi(ϕ(u, p0), y))for i = 1, 2, . . . , n. By the theorem of Kuratowski and Ulam, ex
ept for a set of �rst
ategory of y's from Y0 we have that the set of all u ∈ U0 for whi
h (u, y) ∈ E is of �rst
ategory. Fixing any su
h y, from the fun
tional equation and from the 
ontinuity of

h for �xed y we obtain that
f(ϕ(u, pm)) → f(ϕ(u, p0)),ex
ept for a set of u's whi
h is of �rst 
ategory. This is 
ondition (S) with the fun
tion

ϕ|U0 × P0.By the remark in the de�nition we obtain that (S) is satis�ed.The following example is from [14℄.3.2. Example. Let us 
onsider the following example:
n
∑

i=0 ai(x, y)f(x+ gi(y)) = 0



10 BAIRE PROPERTY IMPLIES CONTINUITY . . .whenever x ∈ R
m, y ∈ R. Suppose that the fun
tions ai : R

m × R → R \ {0}are 
ontinuous and the fun
tions gi : R → R
m are in C1. Introdu
ing the variable

xj = x+ gj(y) instead of x, we obtain(1) f(xj) = −
∑

i6=j

ai(xj − gj(y), y)
aj(xj − gj(y), y)f(xj − gj(y) + gi(y)).To see that 
ondition (5) is satis�ed we have to 
he
k the rank of the matrix













∂ϕ(1)p0
∂u1 (u) . . .

∂ϕ(1)p0
∂uk

(u) d g
(1)
i

d y
(y)− d g

(1)
j

d y
(y)... ... ...

∂ϕ(m)
p0

∂u1 (u) . . .
∂ϕ(m)

p0
∂uk

(u) d g
(m)
i

d y
(y)− d g

(m)
i

d y
(y)












,where ϕ(i)p are the 
oordinate fun
tions of ϕp. If this is k + 1, then we may applyour theorem with l = 1. This means, geometri
ally, that the ve
tor g′i(y) − g′j(y) isnot 
ontained in the range of the linear operator ϕ′
p0(u) (whi
h is known to be k-dimensional). This range 
an be any k-dimensional linear subspa
e in R

m. It mayhappen that for ea
h k-dimensional linear subspa
e, there exists a y ∈ R su
h thatnone of the ve
tors g′i(y)− g′j(y), i 6= j is 
ontained in the linear subspa
e. Then ourtheorem 
an be applied dire
tly and proves that f ∈ Sk+1 implies f ∈ Sk. If this isthe 
ase for k = m − 1, m − 2, . . . , 0 then we obtain that every solution having theBaire property is 
ontinuous. But there are situations when this is not the 
ase. If, forexample, the derivative of the fun
tions gi is 
onstant, i. e. if gi(y) = bi + yci, then forany �xed j, equation (1) 
annot be applied to get f ∈ Sk from f ∈ Sk+1, be
ause forsome ϕ's the range of ϕ′
p0(u) will 
ontain some of the ve
tors g′i(y)−g′j(y) = ci−cj . Butwe have the possibility to use any of the equations (1). Using the lo
ality mentionedin the de�nition, it is enough to prove that for any k-dimensional linear subspa
e of

R
n there exists a j su
h that none of the ve
tors ci − cj , i 6= j is 
ontained in thegiven subspa
e. For example this is the situation if n ≥ m and the ve
tors c0, . . . , cnare in general position. If this 
ondition is not satis�ed, then it is still possible thatour theorem 
an be applied. A similar (but somewhat simpler) situation was studiedin the paper [15℄, in the proof of Theorem 2.3.3.3. Remark. Although, as the example above shows, Theorem 3.1 
an beapplied in several 
ases, it is not satisfying be
ause 
ondition (5) is too strong. Ifwe want to apply theorem 3.1 to prove that f ∈ Sk then ϕ 
an be arbitrary. Hen
e
ondition (5) impli
itly means that the rank of ∂gi

∂x
has to be large, even if ∂gi

∂y
has alarge rank. This in pra
ti
e means that the gi have to depend on all 
oordinates of x,whi
h is not 
omfortable. We want to relax this 
ondition. Instead of supposing that(u, y) 7→ gi(ϕ(u, p0), y)has maximal possible rank k+ l at (u0, y0) we shall only suppose that it has a 
onstantrank ki (depending on i) on a neighbourhood of (u0, p0, y0). But in this 
ase we have
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tions from Sk ∩ Bk, and, roughly speaking, our theorem says thatsolutions in Sk+1 ∩ Bk+1 are also in Sk ∩ Bk.First we only deal with the Baire-type 
ondition (B). We shall use the followinglemma to prove that 
ondition (B) for the unknown fun
tions fi implies 
ondition (B)for f .3.4. Lemma. Let X be an open subset of R
n, Y a topologi
al spa
e, 0 ≤ k ≤ nand f ∈ Bk(X, Y ). If ψ is a subimmersion of the open subset U of R

m into X withrank k of the derivative everywhere, then f ◦ ψ has the Baire property.Proof. The lemma dire
tly follows from the rank theorem. Indeed, the ranktheorem implies, that for ea
h u0 ∈ U there exists an open neighbourhood U0 su
h that
ψ|U0 
an be written as α◦p◦β. Here, with the notation I = ℄−1, 1[, the mapping β is adi�eomorphism of U0 onto Im su
h that β(u0) = 0, the proje
tion p of Im into In hasthe form p(x1, x2, . . . , xm) = (x1, x2, . . . , xk, 0, . . . , 0), and α is a di�eomorphism of
In onto an open set X0 mapping 0 into x0 = ψ(u0). Identifying the set Ik ×{0} ⊂ Inwith Ik we have that α|Ik is an immersion, hen
e (f ◦ (α|Ik))−1 (V ) has the Baireproperty for ea
h open subset V of Y . Sin
e p−1(A) has the Baire property for ea
hsubset A of Ik whi
h has the Baire property, and β−1(B) has the Baire property forea
h subset B of Im whi
h has the Baire property, we obtain that f ◦ (ψ|U0) hasthe Baire property. Now using lo
ality mentioned at the de�nition of (B), we get thegeneral 
ase.3.5. Theorem. Let Z be a topologi
al spa
e and let Zi (i = 1, 2, . . . , n) betopologi
al spa
es having 
ountable bases. Let Xi (i = 1, 2, . . . , n) and X be opensubsets of Eu
lidean spa
es and let Y ⊂ R

l be open. Let D be an open subset of
X × Y . Consider the fun
tions f : X → Z, fi : Xi → Zi, h : D × Z1 × . . .× Zn → Z,
gi : D → Xi (i = 1, 2, . . . , n). Let U ⊂ R

k be open, ψ : U → X be a C1 immersion of
U into X , and suppose that the following 
onditions hold:(1) For ea
h (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for ea
h �xed y ∈ Y , h is 
ontinuous in the other variables;(3) the fun
tion fi is in Bki
on Xi (i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for ea
h u0 ∈ U there exists a y0 su
h that (ψ(u0), y0) ∈ D and the rank of thederivative of (u, y) 7→ gi(ψ(u), y)is ki on a neighbourhood of (u0, y0) for ea
h 1 ≤ i ≤ n.Then u 7→ f(ψ(u)) has the Baire property.Proof. Let us 
hoose an open neighbourhood U0 of u0 and Y0 of y0 su
h that(ψ(u), y) is in D whenever u ∈ U0, y ∈ Y0, moreover, the rank of the derivative of



12 BAIRE PROPERTY IMPLIES CONTINUITY . . .the mapping (u, y) 7→ gi(ψ(u), y) is equal to ki for all u ∈ U0, y ∈ Y0, 1 ≤ i ≤ n.This is possible by 
ondition (5). By the previous lemma we obtain that the mapping(u, y) 7→ fi(gi(ψ(u), y)) has the Baire property. By the analogue of Fubini's theoremstated in se
tion 2.1, ex
ept for a set Ei of y's from Y0 whi
h is of �rst 
ategory, themapping u 7→ fi(gi(ψ(u), y)) has the Baire property on U0. Hen
e, ex
ept for the set
E = ∪n

i=1Ei, for all y ∈ Y0 the mapping
u 7→ (ψ(u), f1(g1(ψ(u), y)), . . . , fn(gn(ψ(u), y)))of U0 into Dy ×Z1×· · ·×Zn has the Baire property. Sin
e for any �xed y the fun
tion

h is 
ontinuous in other variables, we obtain that for any �xed y ∈ Y0\E the mapping
u 7→ h(ψ(u), y, f1(g1(ψ(u), y)), . . . , fn(gn(ψ(u), y)))has the Baire property. This means that u 7→ f(ψ(u)) has the Baire property on U0.Now by the lo
ality prin
iple mentioned at the de�nition of (B) the statementfollows.The following theorem is the key to the generalization 3.7 of theorem 3.1.3.6. Theorem. Let U ⊂ R

m, X and P be open subsets of Eu
lidean spa
es,
p0 ∈ P , Y a metri
 spa
e, ϕ : U × P → X a C1 fun
tion, for whi
h rankϕ′

p(u) = k forea
h u ∈ U , p ∈ P . If f ∈ Bk(X, Y ) ∩ Sk(X, Y ) then the 
ondition (S) is satis�ed for
f , U , P , p0 and ϕ.Proof. Let u0 ∈ U , and let pj → p0 be a sequen
e. Sin
e the rank of ϕ′

p0(u0) isequal to k, we may write u as u = (u1, u2) ∈ R
k ×R

m−k su
h that the determinant of
∂ϕ

∂u1 (u0, p0)is not equal to 0. Hen
e there exists a neighbourhood U1 ×U2 of u0 and a neighbour-hood P0 of p0 su
h that the mapping
u1 7→ ϕ(u1, u2, p)is an immersion of U1 for ea
h u2 ∈ U2, p ∈ P0. Sin
e f ∈ Sk, for ea
h u2 ∈ U2there exists a subset Fu2 of U1 of �rst 
ategory su
h that if u1 ∈ U1\Fu2 then we have

f(ϕ(u1, u2, pj)) → f(ϕ(u1, u2, p0)). By the previous lemma, u 7→ f(ϕ(u, p)) has theBaire property. Hen
e the set
{(u1, u2) ∈ U1 × U2 : f(ϕ(u1, u2, pj)) → f(ϕ(u1, u2, p0))}has the Baire property (see 2.1). By the Kuratowski-Ulam theorem we obtain that its
omplement is of �rst 
ategory.



BAIRE PROPERTY IMPLIES CONTINUITY . . . 133.7. Theorem. Let Z be a topologi
al spa
e and let Zi (i = 1, 2, . . . , n) beseparable metri
 spa
es. Let Xi (i = 1, 2, . . . , n) and X be open subsets of Eu
lideanspa
es and Y ⊂ R
l be open. Let D be an open subset of X×Y . Consider the fun
tions

f : X → Z, fi : Xi → Zi, h : D×Z1× . . .×Zn → Z, gi : D → Xi (i = 1, 2, . . . , n). Let
U ⊂ R

k be open, P an open subset of some Eu
lidean spa
e, p0 ∈ P , ϕ : U × P → Xa C1-fun
tion for whi
h ea
h ϕp, p ∈ P is an immersion of U into X , and suppose thatthe following 
onditions hold:(1) For ea
h (x, y) ∈ D

f(x) = h (x, y, f1 (g1(x, y)) , . . . , fn (gn(x, y))) ;(2) for ea
h �xed y ∈ Y , h is 
ontinuous in the other variables;(3) the fun
tion fi is in Ski
∩ Bki

(i = 1, 2, . . . , n);(4) gi is C1 on D (i = 1, 2, . . . , n);(5) for ea
h u0 ∈ U there exists a y0 su
h that (ϕ(u0, p0), y0) ∈ D and the rank ofthe derivative of (u, y) 7→ gi(ϕ(u, p0), y)is ki on a neighbourhood of the point (u0, p0, y0) for ea
h 1 ≤ i ≤ n.Then the 
onditions (S) and (B) are satis�ed for f , U , P , p0, ϕ.Proof. From Theorem 3.5 it follows that 
ondition (B) is satis�ed by f , U , P ,
p0, ϕ. Let us �x an u0 ∈ U and let us 
hoose a y0 for u0 by (5). Let us 
hoose openneighbourhoods U0, P0 and Y0 of u0, p0 and y0 su
h that (ϕ(u, p), y) ∈ D whenever
u ∈ U0, p ∈ P0 and y ∈ Y0, moreover the rank of the derivative of(u, y) 7→ gi(ϕ(u, p0), y)is ki on U0 × P0 × Y0 for ea
h 1 ≤ i ≤ n. Now the proof that 
ondition (S) is alsosatis�ed is exa
tly the same as in Theorem 3.1, but we have to use the previous theoreminstead of the de�nition.4. Further investigation of the new notions4.1. Conditions. In what follows we shall only investigate the situation, where
X is a nonvoid open subset of R

n and f maps X into a separable metri
 spa
e Y ,be
ause we want to avoid any diÆ
ulties arising only from the poor topology of therange Y .4.2. Remark. There is another kind of lo
ality than the one treated afterDe�nition 2.2. We have f ∈ Sk(X, Y ) if and only if ea
h x0 ∈ X has an openneighbourhood X0 ⊂ X su
h that f |X0 ∈ Sk(X0, Y ). The \only if" part is trivial. Toprove the \if" part we shall use the notation of De�nition 2.1. Let us note that for ea
hpoint u0 ∈ U there exist open neighbourhoods U0 and P0 of u0 and p0, respe
tively,su
h that for x0 = ϕ(u0, p0) the set ϕ(U0, P0) is 
ontained in X0. This means that (S)is satis�ed for ϕ|U0 × P0. Now from the lo
ality prin
iple in the de�nition we havethat f ∈ Sk(X, Y ). The same lo
ality is true (and the same proof works) for Bk.
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lass Bk. Let
Ak = {A ⊂ X : ξA ∈ Bk(X, {0, 1})}where {0, 1} is taken as a dis
rete spa
e. It is easy to see that Ak is a σ-algebra, anda fun
tion f : X → Y is in Bk(X, Y ) if and only if f−1(V ) is in Ak for ea
h opensubset V of Y . Hen
e the investigation of Bk(X, Y ) is redu
ed to the investigation ofthe σ-algebra Ak. It is easy to see that An is the 
lass of all subsets of X having theBaire property and A0 is the 
lass of all subsets of X . Ea
h Ak 
ontains the Borelsubsets of X .We shall prove that A ∈ Ak if and only if A ∩ rngψ has the Baire property inthe subspa
e rngψ for any embedding ψ of some open subset of R

k into X . Indeed, if
A ∈ Ak then ψ−1(A) has the Baire property in dmnψ and sin
e ψ is a homeomorphismof dmnψ onto rngψ, the set ψ(ψ−1(A)) = A ∩ rngψ has the Baire property in rngψ.Similarly, if A ∩ rngψ has the Baire property in rngψ, then ψ−1(A) has the Baireproperty in dmnψ. By 2.3 (4) if ψ−1(A) has Baire property for any embedding ψ ofsome open subset of R

k into X then A ∈ Ak.Similarly, A ∈ Ak if and only if A∩ rngψ has the Baire property in the subspa
erngψ for any immersion ψ of some open subset of R
k into X . Let us represent U =dmnψ as a 
ountable union of open subsets Ui of U su
h that ψ|Ui is an embedding of

Ui into X . If A ∈ Ak then ψ−1(A) has the Baire property in U , hen
e Ui∩ψ
−1(A) alsohas the Baire property in Ui. From this Ai = (ψ|Ui)(ψ−1(A)) has the Baire propertyin ψ(Ui), i. e. Ai△Vi ⊂ Fi for some relatively open subset Vi of ψ(Ui) and some Fiwhi
h is of �rst 
ategory in ψ(Ui). Sin
e Fi is of �rst 
ategory in rngψ too, ∪iFi is of�rst 
ategory in rngψ. Sin
e (∪iAi)△(∪iVi) ⊂ ∪iFi,we have that the symmetri
 di�eren
e of A∩rngψ = ∪iAi and the σ-
ompa
t set ∪iViis of �rst 
ategory. This proves that A∩ rngψ has the Baire property in rngψ. In theother dire
tion, if A ∩ ψ(Ui) has the Baire property, then (ψ|Ui)−1(A) has the Baireproperty in Ui, hen
e in U , too. Sin
e this is true for any immersion ψ of some opensubset of R

k into X , we obtain that A ∈ Ak.Finally, A ∈ Ak if and only if A ∩M has the Baire property in the subspa
e
M for ea
h pure k dimensional submanifold M of X . Indeed, if this is true, then inparti
ular A ∩ rngψ has the Baire property in rngψ for ea
h immersion ψ of someopen subset of R

k into X , hen
e A ∈ Ak. On the other hand, ea
h pure k dimensionalsubmanifold M of X 
an be represented as the range of some immersion ψ of someopen subset of R
k. Hen
e A ∩M = A ∩ rngψ has the Baire property in M = rngψ.4.4. Conne
tions between Bk and Sk. One of the simplest questions is,whether f ∈ Bk implies f ∈ Sk. We know that this is true for k = n. If k < n thenthe 
hara
teristi
 fun
tion of the interse
tion of X and an appropriate k-dimensionalplane is in Bk but not 
ontained in Sk.In the other dire
tion, suppose, that f ∈ Sk. The question is, whether f ∈ Bk issatis�ed. This is trivial for k = 0. We shall show that this 
annot be proved in ZFC



BAIRE PROPERTY IMPLIES CONTINUITY . . . 15for 0 < k ≤ n. Namely, we shall give an example f under the 
ontinuum hypothesis forwhi
h f ∈ Sk but f /∈ Bk. By the famous results of G�odel and Cohen, the 
ontinuumhypothesis is independent from the axioms of ZFC. This means that Bk ⊂ Sk 
annotbe proved in ZFC.4.5. Hierar
hy between fun
tion 
lasses belonging to di�erent dimen-sions. Let us �x dimensions 0 ≤ k < l ≤ n and let us investigate the 
onne
tionbetween the 
lasses Bk and Sk and 
lasses Bl and Sl.We may hope that de
reasing the dimension 
ondition (S) be
omes stronger.One of the only two positive results in this dire
tion is that this is true for 
ondition(S) under 
ondition (B):
Bk ∩ Bl ∩ Sk ⊂ Sl.The proof of this statement is very similar to the proof of Theorem 3.6, therefore wedo not repeat the argument.We shall show by a 
ounterexample under the 
ontinuum hypothesis that for

k > 0 ZFC 2 Bk ∩ Sk ⊂ Bl ∪ Sl.Similarly we shall show by a 
ounterexample under the 
ontinuum hypothesisthat ZFC 2 Bk ∩ Sk ∩ Sl ⊂ Blex
ept for the trivial 
ase k = 0.It is mu
h easier to see that in
lusions in the other dire
tion do not hold ingeneral. Although
Bl ⊂ B0is satis�ed trivially, in general

Bl 6⊂ Bk if k > 0.This is shown by the 
hara
teristi
 fun
tion of a subset in the the interse
tion of Xand an appropriate k dimensional plane whi
h does not have the Baire property in thegiven plane. The same example shows that
Bl ∩ Sl 6⊂ Bk ∪ Sk.If we take the 
hara
teristi
 fun
tion of the interse
tion of X and an appropriate kdimensional plane, then we see that
Bl ∩ Sl ∩ Bk 6⊂ Sk.We shall show that

Bl ∩ Sk ⊂ Bk.



16 BAIRE PROPERTY IMPLIES CONTINUITY . . .Let us see the proofs.4.6.Theorem. Under the 
onditions of 4.1 and 4.5 we have Bl ∩ Sk ⊂ Bk.Proof. This is trivial for k = 0. Otherwise, let ψ be an immersion of an opensubset U ⊂ R
k. Let u0 ∈ U and let V be an l − k dimensional subspa
e of R

northogonal to rngψ′(u0). Let π : R
l−k → V be a linear isometry, and let us de�ne

ϕ by ϕ(u, p) = ψ(u) + π(p). Then for p0 = 0 we have ϕp0 = ψ. Let us 
hoose openneighbourhoods U0 and P0 of u0 and p0, respe
tively, su
h that ϕ(U0, P0) ⊂ X and
ϕ is an immersion of U0 × P0 into X . Sin
e f ∈ Bl, the mapping (u, p) 7→ f(ϕ(u, p))has the Baire property. Hen
e, by the analogue of Fubini's theorem (see 2.1), ex
eptfor a set of �rst 
ategory, for all p ∈ P0 the mapping u 7→ f(ϕ(u, p)) has the Baireproperty. Let us 
hoose a sequen
e pm → p0 su
h that ea
h u 7→ f(ϕ(u, pm)) has theBaire property. By f ∈ Bk we have that

f(ϕ(u, pm)) → f(ϕ(u, p0))for all u ∈ U0 ex
ept for a set of �rst 
ategory. Hen
e u 7→ f(ψ(u)) has the Baireproperty on U0, i.~e. lo
ally. This implies that f ∈ Bk.For the following 
ounterexamples we need a lemma. The 
ounterexamples arerelated to the existen
e of the so-
alled almost invariant sets. These sets were used byKakutani and Oxtoby to prove that the Lebesgue measure on the 
omplex unit 
ir
le
an be extended to an invariant measure su
h that the Hilbert spa
e dimension of the
orresponding L2 spa
e be
omes 2
, where 
 is the 
ardinal number 
ontinuum. Theproof of the lemma below is a re�nement of the 
onstru
tion from the paper [7℄ ofthe author, where the result of Kakutani and Oxtoby was extended | among others| to arbitrary lo
ally 
ompa
t groups. The ideas there are 
ombined with the well-known ideas of Sierpinski to 
onstru
t under the 
ontinuum hypothesis a subset of theunit square with outer measure 1 and 
ontaining at most two points on ea
h line. Tobetter understand the following abstra
t lemma, we 
an think of the 
ase when X isthe plane, T is the 
lass of all di�eomorphisms mapping some open subset of the planeonto some other open subset of the plane, F is the 
lass of all Borel subsets of theplane of se
ond 
ategory, G is the 
lass of all one dimensional C1 submanifolds of theplane and n = 
 = ℵ1.4.7. Lemma. Let X be a set and T a 
lass of one-to-one transformations ea
hmapping a subset of X into X and let F , G be 
lasses of subsets of X . Suppose thatthere exists an in�nite 
ardinal number n > ℵ0 with the following properties:(1) 
ard(X) = n;(2) 
ard(T ) ≤ n;(3) 
ard(F) ≤ n and for every F ∈ F we have 
ard(F ) = n;(4) 
ard(G) ≤ n and for every F ∈ F and G0 ⊂ G for whi
h 
ard(G0) < n we have
ard(F\ ∪ G0) = n;(5) The 
lass G is T invariant, i.e. if G ∈ G, τ ∈ T then τ(G) ∈ G and τ−1(G) ∈ G.



BAIRE PROPERTY IMPLIES CONTINUITY . . . 17Then there exists a family {Xγ}γ∈� of subsets Xγ of X with the following properties:(6) 
ard(�) = n;(7) the sets Xγ , γ ∈ � are pairwise disjoint;(8) for ea
h γ ∈ � and G ∈ G we have 
ard(Xγ ∩G) < n;(9) 
ard(F ∩Xγ) = n whenever γ ∈ � and F ∈ F ;(10) for every subset �0 of � and for every τ ∈ T
ard(τ(∪γ∈�0Xγ)△ (τ(X) ∩ (∪γ∈�0Xγ))) < n.The proof was given in J�arai [14℄, Lemma 4.8.4.8. Counterexample. Using the 
onditions of 4.1, under the 
ontinuumhypothesis for 0 < k ≤ n we have Sk 6⊂ Bk.Proof. We shall give a fun
tion f ∈ Sk for whi
h f /∈ Bk. We want to applythe previous lemma. We shall use only that the fun
tions ϕ in the de�nition of Skare 
ontinuous and that by Remark 2.3.(4) we may suppose that the fun
tions ϕpare one-to-one. Let T denote the 
lass of all one-to-one fun
tions τ whi
h 
an berepresented in the form ϕp ◦ ϕ−1
p′ , where U is an open subset of R

k, P is an opensubset of some Eu
lidean spa
e and ϕ : U ×P → X is a 
ontinuous fun
tion for whi
hall ϕp, p ∈ P is one-to-one. Sin
e the 
ardinality of all pairs U , P is 
ontinuum andany 
ontinuous fun
tion ϕ is uniquely determined by the values on a 
ountable densesubset, the 
ardinality of the 
lass T is 
ontinuum.Let F denote the 
lass of all subsets of X representable in the form ψ(G) where
∅ 6= U ⊂ R

k is open, ψ : U → X is an embedding and G ⊂ U is a Borel subset of U ofse
ond 
ategory in U . Ea
h element of F is a Borel subset of X , hen
e the 
ardinalityof F is at most 
 (
ontinuum). Moreover, by a theorem of Pi

ard, G−G 
ontains aneighbourhood of the origin, hen
e ea
h elements of F has 
ardinality 
.Applying the previous lemma with G = ∅ we obtain a 
lass of subsets Xγ, γ ∈ Rof X . Our 
ounterexample will be the 
hara
teristi
 fun
tion f of X0.If f were in Bk then for any embedding ψ of some nonvoid open subset U of R
kthe set A0 = ψ−1(X0) would be a Baire set. A0 
annot be of �rst 
ategory, be
ausethen for a Borel set G ⊂ U\A0 of se
ond 
ategory ψ(G) would not interse
t with X0.Similarly, if A0 is of se
ond 
ategory, then 
hoosing a Borel set B ⊂ A0 of se
ond
ategory we obtain ψ(G) ⊂ X0.We shall prove that f ∈ Sk. Let U be an open subset of R

k, P be an open subsetof some eu
lidean spa
e, p0 ∈ P and ϕ : U × P → X a C1 fun
tion for whi
h all ϕp isan embedding. The set
{u ∈ U : f(ϕp0(u)) 6= f(ϕp(u))}is equal to the set

ϕ−1
p0 ({x ∈ ϕp0(U) : x ∈ X0△(ϕp0 ◦ ϕ−1

p )(X0)}) .



18 BAIRE PROPERTY IMPLIES CONTINUITY . . .For the mapping τ = ϕp0 ◦ ϕ−1
p this set is a subset of the set
ϕ−1

p0 ((τ(X) ∩X0)△τ(X0)) .If we suppose the 
ontinuum hypothesis then this set is 
ountable.4.9. Counterexample. Using the 
onditions of 4.1 and 4.5, under the 
ontin-uum hypothesis for 0 < k < l ≤ n we have Bk ∩ Sk ∩ Sl 6⊂ Bl.Proof. We shall give an example of a fun
tion f ∈ Bk ∩Sk ∩Sl but f /∈ Bl. Wewant to apply Lemma 4.7. We shall use that by Remark 2.3.(4) we may suppose thatthe fun
tions ϕp in the de�nition of Sl are embeddings. Let T denote the 
lass of allone-to-one fun
tions τ whi
h 
an be represented in the form ϕp ◦ ϕ−1
p′ , where U is anopen subset of R

l, P is an open subset of some Eu
lidean spa
e and ϕ : U × P → Xis a C1 fun
tion for whi
h all ϕp, p ∈ P is an embedding. Let F be the same as inthe previous 
ounterexample. Let G be the 
lass of all Borel subsets of X whi
h are
ontained in a union of 
ountably many k dimensional submanifolds of X . We have toprove that G is T invariant. The domain of any τ ∈ T is an l dimensional submanifoldof X . If a set G ∈ G is 
ontained in ∪∞
j=1Mj , where ea
h Mj is a k dimensionalsubmanifold of X , then for ea
h x ∈ G∩Mj ∩dmn τ it is possible to �nd an ε > 0 anda k dimensional submanifoldM ′

j of dmn τ su
h that for ea
h y for whi
h |y−x| < ε wehave y ∈ X , moreover, that y ∈ G∩Mj ∩dmn τ if and only if y ∈ G∩M ′
j ∩dmn τ . Thisproves that the Borel set G∩ dmn τ 
an be 
overed by 
ountably many k dimensionalsubmanifolds of dmn τ . Hen
e the Borel set τ(G) 
an also be 
overed by 
ountablymany k dimensional submanifolds.Sin
e the topologi
al dimension dim = ind = Ind of any subset G of a k dimen-sional submanifold is ≤ k, the interse
tion of G with an l dimensional submanifold Lof X is of �rst 
ategory in L. The same is true for any G ∈ G, and, moreover, for theunion G of any 
ountable subfamily G0 ⊂ G. This proves that for any F ∈ F the set

F\G has 
ardinality 
. Other 
onditions of Lemma 4.7 have already been 
he
ked at4.8 . Applying Lemma 4.7 we obtain a 
lass Xγ , γ ∈ R where ea
h Xγ 
ontains only
ountably many points from ea
h G ∈ G, but Xγ ∩ F 6= ∅ for ea
h F ∈ F .Let f be the 
hara
teristi
 fun
tion of X0. Along the same lines as in 4.8 we getthat f ∈ Sl but f /∈ Bl. Sin
e for any C1 embedding ψ of an open subset of R
k into Xthe fun
tion f ◦ ψ is zero ex
ept for a 
ountable set, we get that f ∈ Bk and f ∈ Sk,too. Hen
e the statement is proved.4.10. Counterexample. Using the 
onditions of 4.1 and 4.5, under the 
on-tinuum hypothesis for 0 < k < l ≤ n we have Bk ∩ Sk 6⊂ Bl ∪ Sl.Proof. Let us apply Lemma 4.7 for the same T , F and G as in the previous
ounterexample. We obtain a 
lass Xγ, γ ∈ R where ea
h Xγ 
ontains only 
ountablymany points from ea
h G ∈ G, but Xγ ∩ F 6= ∅ for ea
h F ∈ F .Let Y be an l dimensional plane whi
h has a nonempty interse
tion with X andlet f be the 
hara
teristi
 fun
tion of the set Y ∩X0. Then f ∈ Bk ∩ Sk, but f /∈ Bland f /∈ Sl.
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11. A. Járai, Regularity properties of functional equations. Leaflets in Mathematics, Janus Pannonius
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