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The number of dots • is the value of an exercise. Hand in solutions for 12 points by April 19 Monday

11:59 am. If you have seriously tried to solve some problem, but got stuck, I will be happy to help. Also,

if your final solution to a problem has some mistake but has some potential to work, then I will give it back

and you can try and correct the mistake.

The first exercise would have been better in the first set, but I forgot to put it there:

ExerciseB 1.•• Recall that a discrete P -harmonic function f : V −→ R on the state space of a Markov chain

P is one that satisfies Pf(x) = f(x) for every x ∈ V .

(a) Show that if P is irreducible on a finite set V , then every harmonic function is constant.

(b) Let (Xn)n≥0 be simple random walk on the 3-regular infinite tree, T3, with Markov operator P . Take

any vertex o ∈ V (T3), and let A be one of the three connected components of T3 \ {o}. Show that

f(x) := Px[∃n0 : Xn ∈ A ∀n ≥ n0 ] is a non-constant bounded harmonic function, where, remember,

Px[ · ] means that X0 = x.

(c) Consider the lamplighter graph G = Z2 oZ3, with the standard 7 generators (six for moving the marker

in the city Z3, one for switching the lamp where the marker is). Give an example of a non-constant

bounded harmonic function for SRW on G. (Hint: follow the strategy of the previous part, but with

a different notion of “what happens eventually”. Namely, note that the marker visits the origin of Z3

only a finite number of times, hence there is a “final” state of the lamp there.)

Remark: If you recall the “amazing theorem” mentioned in class, that the existence of bounded harmonic

functions on a transitive graph is equivalent to the speed of the SRW being positive, then this Z2 o Z3

is an example where the graph is amenable, but the speed is positive.

Now, finite Markov chains.

ExerciseB 2.•• This is a linear algebra reminder on why there is an orthonormal basis of real-valued eigen-

vectors for any reversible Markov chain on a finite set. We have partly done this in class, and you should

have seen it in some linear algebra course anyway, so please hand it in only if it is new for you.

When the state space V has n elements, and π is a reversible distribution, recall that for u, v ∈ Cn we

defined the inner product (u, v) = (u, v)π :=
∑
x∈V u(x)v(x)π(x).

(a) Show that (v, u) = (u, v), and (Pu, v) = (u, Pv). Deduce that if v ∈ Cn is an eigenvector of P with

eigenvalue λ, then λ ∈ R.

(b) From the fundamental theorem of algebra we know that det(P − λI) has a root λ ∈ C. Recall that

this implies that there exists a nonzero vλ ∈ Cn in the kernel of P −λI, hence λ is an eigenvalue, with

eigenvector vλ.

(c) Show that v⊥ := {u ∈ Cn : (u, v) = 0} is a linear subspace for any v, and Pv⊥λ ⊆ v⊥λ , when vλ is the

eigenvector found in the previous part.
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(d) Prove by induction that P has an orthonormal basis of eigenvectors v1, . . . , vn ∈ Cn, with all real

eigenvalues λ1, . . . , λn.

(e) Show that P also has an orthonormal basis of eigenvectors u1, . . . , un ∈ Rn, with the same eigenvalues.

ExerciseB 3.• Let P be a reversible Markov chain on n states; that is, the random walk on a finite graph

G with symmetric edge-weights. We have seen that P has eigenvalues −1 ≤ λn ≤ · · · ≤ λ1 = 1. Show that

λn > −1 if and only if G is not bipartite.

ExerciseB 4.• Let P be any reversible finite Markov chain. Let P̄ be its 1/2-lazy version: in each step, with

probability 1/2 we stay put, while with probability 1/2 we take a step according to P . This is a usual way

to get rid of periodicity. Show that the spectrum of P̄ is contained in the interval [0, 1].

ExerciseB 5.•• For simple random walk on any finite or infinite d-regular graph, show that after any even

number of steps the most likely position is the starting vertex.

ExerciseB 6.•• Let P be a reversible Markov chain on a finite state space V , with reversible distribution π.

Recall that the chain is then just the random walk w.r.t. the symmetric edge-weights c(x, y) := π(x)p(x, y).

There is the following version of the Courant-Fisher-Rayleigh theorem (which you don’t have to prove):

λ2 = sup

{
(Pf, f)π
‖f‖π

: Eπ[ f ] :=
∑
x∈V

f(x)π(x) = 0

}
.

Using this, show that the spectral gap has the following formula:

1− λ2 = inf

{
1
2

∑
x,y

(
f(x)− f(y)

)2
c(x, y)

Varπ[f ]
: Varπ[f ] := Eπ[f2]− (Eπf)2 6= 0

}
.

Show that the numerator can be written as EX0∼π

[
Var
[
f(X1)

∣∣X0

] ]
. Thus, this formula is the infimum

ratio of the local variance to the global one.

ExerciseB 7. Finding good functions in the formula of the previous exercise will give you upper bounds on

the spectral gap (hence lower bounds on the relaxation time, see the next exercise) of reversible Markov

chains. Using this strategy, show:

(a)• On the cycle Cn, the gap is at most O(1/n2).

(b)• On the hypercube {0, 1}k, the gap is at most O(1/k).

(c)• On the dumbbell graph (two complete graphs Kn joined by a single edge), the gap is at most O(1/n2).

(d)• What bound can you give on the following lollipop graph: a complete graph Kn, with a length n2

path emanating from it?

ExerciseB 8.•• Consider a reversible Markov chain P on a finite state space V with reversible distribution

π and absolute spectral gap gabs. This exercise explains why Trelax = 1/gabs is called the relaxation time.

Show that gabs > 0 implies that limt→∞ P tf(x) = Eπf for all x ∈ V . Moreover,

Varπ[P tf ] ≤ (1− gabs)2t Varπ[f ] ,

with equality at the eigenfunction corresponding to the λi giving gabs = 1 − |λi|. Hence Trelax is the time

needed to reduce the standard deviation of any function to 1/e of its original standard deviation.

We have accepted that the total variation distance between probability measures can be written as

dTV(µ, ν) = min
{
P[X 6= Y ] : (X,Y ) is a coupling of µ and ν

}
. (1)

Consider now any Markov chain with a unique stationary measure π, and define

d(t) := sup
x∈V

dTV

(
pt(x, ·), π(·)

)
and d̄(t) := sup

x,y∈V
dTV

(
pt(x, ·), pt(y, ·)

)
.
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Furthermore, define the total variation mixing time by

Tmix(ε) := inf
{
t : d(t) ≤ ε

}
and Tmix := Tmix(1/4).

The following exercise explains why we introduced d̄(t) and why this 1/4 definition is a good one.

ExerciseB 9.

(a)• Show that d(t) ≤ d̄(t) ≤ 2d(t).

(b)• Using (1), show that d̄(t+ s) ≤ d̄(t) d̄(s).

(c)• Conclude from the previous two parts that Tmix(2−`) ≤ ` Tmix(1/4).

ExerciseB 10.•• Consider simple random walk on the dumbbell graph: take two copies of the complete graph

Kn, add a loop at each vertex (so that the degrees become n), except at one distinguished vertex in each

copy, which will be connected to each other by an edge. Show that d(1) = 1/2, but Tmix ≥ cn2 for some

uniform c > 0. That is, in the definition of Tmix, the 1/4 should not be replaced by 1/2.

ExerciseB 11.•• Consider lazy SRW on the cycle Cn. Using the Central Limit Theorem, show that for any

t > 0 there exists δ0(t), δ1(t) > 0, such that, for any n, we have δ0(t) < d(tn2) < 1− δ1(t). Moreover, show

that one can achieve limt→0 δ0(t) = 1. This proves the lower bound Tmix ≥ cn2 for some uniform c > 0.

Note that (1) implies that, for any coupling of two copies of the Markov chain, x = X0, X1, . . . and

y = Y0, Y1, . . . on V ,

dTV

(
pt(x, ·), pt(y, ·)

)
≤ P[Xt 6= Yt | X0 = x, Y0 = y ] .

If we choose y = Y0 according to the stationary measure, then Yt is also stationary, hence, in any coupling,

d(t) ≤ max
x

P[Xt 6= Yt | X0 = x, Y0 ∼ π ] .

This results in the coupling method to give upper bounds on the TV-mixing time, as in the next exercise.

ExerciseB 12.•• For lazy SRW on the cycle Cn, show by coupling that limt→∞ δ1(t) = 1 can also be achieved

in the previous exercise, hence the mixing time is Tmix ≤ O(n2), so altogether � n2.

The following three exercises together prove that the total variation mixing time of the 1/2-lazy random

walk X0, X1, . . . on the hypercube {0, 1}k is ∼ 1
2k log k.

ExerciseB 13.•• Let Yt be the number of missing coupons at time t in the coupon collector’s problem with

k coupons. Show that, for α ∈ (0, 1) fixed,

EYαk log k ∼ k1−α and DYαk log k = o(k1−α).

Using Markov’s and Chebyshev’s inequalities, deduce that Yαk log k/
√
k → 0 or∞ in probability, for α > 1/2

and < 1/2, respectively.

ExerciseB 14.•• Let N(µ, σ2) denote the normal distribution. Show that, for any sequence σk → σ ∈ (0,∞),

we have that dTV

(
N(0, σ2), N(µk, σ

2
k)
)
→ 0 or 1, for µk → 0 and µk → ∞, respectively. Using this and the

local version of the de Moivre–Laplace theorem, prove that

dTV

(
Binom(k, 1/2), Binom(k − kβ , 1/2) + kβ

)
→

0 if β < 1/2 ,

1 if β > 1/2 .

ExerciseB 15.

(a)• For X0 = (0, 0, . . . , 0) ∈ {0, 1}k, let the distribution of Xt be µt. What is it, conditioned on ‖Xt‖1 = `?

(b)• What is the distribution of ‖Z‖1, where Z has distribution π, uniform on {0, 1}k?
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(c)•• Let Yt be the number of coordinates that have not been rerandomized by time t in Xt. Compare the

distribution of k − ‖Xt‖1, conditioned on Yt ≥ y, to Binom(k − y, 1/2) + y. Deduce from the previous

parts and the previous exercises that dTV

(
µαn logn, π

)
→ 0 or 1, for α > 1/2 and < 1/2, respectively.

The L∞- or uniform mixing time of a Markov chain is usually defined as

T∞mix := inf

{
t : sup

x,y

∣∣∣∣pt(x, y)

π(y)
− 1

∣∣∣∣ < 1

e

}
.

ExerciseB 16.•• Using Exercise 13, show that the uniform mixing time of the hypercube {0, 1}k is ∼ k log k.

ExerciseB 17. This exercise explains why it is hard to construct large expander graphs. A covering map

ϕ : G′ −→ G between graphs is a surjective graph homomorphism that is locally an isomorphism: denoting

by NG(v) the subgraph induced by v ∈ G and all its neighbours, we require that each connected component

of the subgraph of G′ induced by the full inverse image ϕ−1(NG(v)) be isomorphic to NG(v).

(a)• If G′ −→ G is a covering map of infinite graphs, then the spectral radii satisfy ρ(G′) ≤ ρ(G),

i.e., the larger graph is more non-amenable. In particular, if G is an infinite k-regular graph, then

ρ(G) ≥ ρ(Tk) = 2
√
k−1
k . (Hint: use the return probability definition of ρ(G).)

(b)• If G′ −→ G is a covering map of finite graphs, then λ2(G′) ≥ λ2(G), i.e., the larger graph is a worse

expander. (Hint: eigenfunctions on G can be “lifted” to G′.
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