V1.8 RANDOM WALKS 191

general random walk. No new theoretical concepts are introduced,!’ but
merely a terminology for a short and intuitive description of the process
{S.}. For example, if I is any interval (or other set), the event {S, €I}
is called a visit to I, and the study of the successive visits to a given interval
I reveals important characteristics of the fluctuations of S,,S,,.... The
index n will be interpreted as time parameter and we shall speak of the
“epoch n.”’ In this section we describe some striking features of random
walks in terms of the successive record values. The usefulness of the results
will be shown by the applications in section 9. A second (independent)
approach is outlined in section 10.

Imbedded Renewal Processes

A record value occurs at epoch n > 0 if
(8.2) S, > S, j=0,1,..., n—1.

Such indices may not exist for a given sample path; if they do exist they
form a finite or infinite ordered sequence. It is therefore legitimate to speak
of the first, second, ... ., occurrence of (8.2). Their epochs are again random
variables, but possibly defective. With these preparations we are now in a
position to introduce the important random variables on which much of the
analysis of random walks will be based.

Definition. The kth (ascending) ladder index is the epoch of th¢ kth
occurrence of (8.2). The kth ladder height is the value of S, at the kth
ladder epoch. (Both random variables are possibly defective.)

The descending ladder variables are defined in like manner with the inequality
in (8.2) reversed.'®

The term ascending will be treated as redundant and used only for emphasis
or clarity. .

In the graph of a sample path (S,, S;,...) the ladder points appear as
the points where the graph reaches an unprecedented height (record vajue).
Figure 1 represents a random walk {S,} drifting to —oo with the last
positive term at n = 31. The 5 ascending and 18 descending ladder points
are indicated by ® and O, respectively. For a random walk with Cauchy
variables see figure 2. (page 204)

17 Sarnple spaces of infinite random walks were considered. also in volume 1, but there
we had to be careful to justify notions such as “probability of ruin’’ by the obvious limiting
processes. Now these obvious passages to the limit are justified by measure theory.
(Sec 1V,6.)

18 Replacing the defining strict inequalities by > and < one gets the weak ladder
indices. This troublesome distinction is unnecessary when the underlying distribution is
continuous. In figure 1 weak ladder points are indicated by the letter w.
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Figure 1. Random Walk and the Associated Queuing Process. The variables X, of the
random walk {S,} have expectation — 1 and variance 16. Ascendingand descending ladder
points are indicated by @ and O, respectively. The seventh ladder point is (26, 16) and
represents with high probability the maximum of the entire random walk.

[The letter w indicates where a record value is assumed for a second or third time;
these are the weak ladder points defined by (8.2) when the strict inequality is replaced
by >.]

Throughout the graph S, exceeds its expected value —n. In fact, n = 135 is the first

index such that S, < —n (namely S, = —137) This accords with the fact that the
expectation of such # is infinite.
The variables X,, are of the form X, — &/, where the variables #, and &/, are

mutually independent and umformly dlstrlbuted over 1, 3,5, 7,9 and 2, 4, 6, &, 10,
respectively. In example 9(a) the variable W, represents the total waiting time of the nth
customer if the interarrival times assume the values 2, 4, 6, 8, 10 with equal probabilities
while the service times equal 1, 3, 5, 7, or 9, each with probability 3. The distribution of X,
attributes probability (5 — k)/25 to the points +2k — 1, where k =0, 1, 2,3, 4.

Example. (@) In the ““ordinary” random walk F has the atoms 1 and —1
with weights p and ¢. The ascending ladder variables are defective if
q > p, the defect plq [see 1; XI,(3.9)]. The kth ladder height necessarily
equals k and for this reason volume 1 mentions only ladder epochs. The
kth ladder index is the epoch of the first visit to the point k. Its distribution
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was found in 1; XI,4(d) and in the special case p = } already in theorem
2 of 1; IIL,4.

The first ladder index "7, is the epoch of the first entry into 0, o0, and the
first ladder height 5#°; equals Sj . The continuation of the random walk
beyond epoch J, is a probabilistic replica of the entire random walk.
Given that | = n, the occurrence of a second ladder index a an epoch
k > n depends only on X,.;,...,X,, and hence the number of trials
between the first ladder index and the second is a random variable .77, which
is independent of 77, and has the same distribution. In this way it is seen

more generally that the kth ladder index and the kth ladder height may be
written in the form

9*1+...+9*k’ %1++‘%ﬂk

where the J ; and ; are mutually independent random variables distributed,
respectively, as J | and 7). In other words, the ladder indices and heights
form (possibly terminating) renewal processes.

For terminating processes it is intuitively obvious that S, drifts to
—oo0, and with probability one S, reaches a finite' maximium. The next
section will show that the ladder variables provide a powerful tool for the
analysis of a class of processes of considerable practical interest.

Example. (b) Explicit expressions. Let F have the density defined by

abe®® if z <0 abe
a+b a+b
This random walk has the rare distinction that all pertinent distributions
can be calculated explicitly. It is of great interest in queuing theory because
f is the convolution of two exponential densities concentrated on 0, o
and —o0,0, respectively. This means that X; may be written as the
difference X;= #; — &Z; of two positive exponentially distributed random
variables. Without loss of generality we assume a < b.

The ascending ladder height H°, has the density ae®; this variable is
defective and its defect equals (b—a)/b. The ascending ladder epoch T,
has the generating function b~!p(s) where

(8.4) 2p(s) = a + b — </ (a+b): — dabs.

The defect is again (b—a)/b.
The descending ladder height 5 has density ae** for z <0, the
descending ladder epoch 7 has the generating function a 'p(s). In

—bz

(8.3)

if «>0.

the special casc a = b it reduces to 1 — J1—s, and this generating
function is familiar from ordinary random walks (or coin tossing). [For
proofs and other results see XII,4-5 and XVIII,3. See also example 4 e).]
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9. THE QUEUING PROCESS

An incredibly voluminous literature!® has been devoted to a variety of
problems connected with servers, storage facilities, waiting times, etc.
Much progress has been made towards a unification, but the abundance
of small variants obscures the view so that it is difficult to see the forest for
the trees. The power of new and general methods is still underrated. We
begin by a formal introduction of a stochastic process defined by a recursive
scheme that at first sight appears artificial. Examples will illustrate the wide
applicability of the scheme; later on we shall see that sharp results can be
obtained by surprisingly simple methods. (See XII,5.)

Definition 1. Let X,, X,,... be mutually independent random variables
with a common (proper) distribution F. The induced queuing process is the
sequence of random variables Wy, W, . . . defined recursively by W, = 0 and

wn + X-n+1 I,f wn + Xn+1 2 0

0 l,f wn+.Xn+1.§.0

In short, W, , = (W, +X,,1) UO0.
For an illustration see figure 1.

(9.1) Wa =

Examples. (a) The one-server queue. Suppose that ‘‘customers” arrive
at a “server”’ the arrivals forming a proper renewal process with inter-
arrival times® /|, & ,, . .". (the epochs of arrivals are 0, &,, &, + A, . ..
and the customers are labeled 0, 1, 2, .. ). With the nth customer there
is associated a service time % ,, and we assume that the %, are independent
of the arrivals and of each other and subject to a common distribution.
The server is either “free’” or “busy’; it is free at the initial epoch 0. The

1% For references consult the specialized books listed in the bibliography. It would be
difficult to give a brief outline of the development of the subject with a proper assignment
of credits. The most meritorious papers responsible for new methods are now rendered
obsolete by the progress which they initiated. [D. V. Lindley’s integral equation of queuing
theory (1952) is an example.] Other papers are noteworthy by their treatment of (some-
times very intricate) special problems, but they find no place in a skeleton survey of the
general theory. On the whole, the prodigal literature on the several subjects emphasizes
examples and variants at the expense of general methods.  An assignment of priorities is
made difficult also by the.many duplications. [For example, the solution of a certain
integral equation occurs in a Stockholm thesis of 1939 where it is credited to unpublished
lectures by Feller in 1934. This solution is now known under several names.] For the
history see two survey papers by D. G. Kendall of independent interest: Some problems in
the theory of queues, and Some problems in the theory of dams, J. Roy. Statist. Soc. Series
B vol. 13 (1951) pp. 151-185, and vol. 19 (1957) pp. 207-233.

20 Normally the interarrival times will be constant or exponentially distributed but it is
fashionable to permit arbitrary renewal processes; sec footnote 14 to section 7.
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sequel is regulated by the following rule. If a customer arrives at an epoch
where the server is free, his service commences without delay. Otherwise
he joins a waiting line (queue) and the server continues uninterruptedly to
serve customers in the order of their arrival®® until the waiting line dis-
appears and the server becomes “free.”” By queue length we mean the number
of customers present mcludmg the customer being served. The waiting time
W, of the nth customer is the time from his arrival to the epoch where his
service commences; the total time spent by the customer at the server is
W, + #,. (For example, if the first few service times are 4,4, 1, 3,

and the interarrival times are 2, 3, 2, 3, ..., customers number 1, 2,
join queues of length 1, 1, 2, 1,..., respectively, and have waiting times
2,3,2,2,...).

To avond trite ambiguities such as when a customer arrives at the epoch
of another’s departure we shall assume that the distributions 4 and B of
the variables &7, and %, are continuous. Then the queue length at any
epoch is well defined.

We proceed to devise a scheme for calculating the waiting times W,
recursively. By definition customer number 0 arrives at epoch 0 at a free
server and so his waiting time is W, = 0. Suppose now that the nth
customer arrives at epoch ¢ and that we know his waiting time W,. His
service time commences at epoch ¢+ W, and terminates at epoch
t + W, + %, The next customer arrives at time ¢ + &7,,,. He finds
the server free if W, + %, <&,,; and has a waiting time W,
=W, + #, — &, if this quantity is > 0. In other words, the sequence

{W.,} of waiting times coincides with the queuing process induced by the
independent random variables

(9.2) X, =%, — A, n=12,...

(b) Storage and inventories. For an intuitive description we use water
reservoirs (and dams), but the model applies equally to other storage
facilities or inventories. The content depends on the input and the output.
The input is due to supplies by rivers and rainfall, the output is regulated
by demand except that this demand can be satisfied only when the reservoir
is not empty.

Consider now the water contents?? 0, W,, W2, ... at selected epochs
0, 74, T3, . - . . Denote by X, the actual supply minus the theoretical (ideal)

21 This “queue discipline’” is totally irrelevant to queue length, duration of busy periods,
and similar problems. Only the individual customer feels the effect of the several dis-
ciplines, among which “first come first served,”” “first come last served >’ and *‘random
choice’’ are the extremes. The whole picture would change if departures were permitted.

22 For simplicity we start with an empty reservoir. An adjustment to arbitrary initial
conditions causes no difficulties [see example (c)].
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demand during 7,_;, 7, and let us pretend that all changes are instantaneous
and concentrated at the epochs 7,,7,,.... We start with W, =10 at
epoch 0. In general the change W, ., — W, should equal X, ,, except
when the demar 1 exceeds the contents. For this reason the W, must satisfy
(9.1) and so the successive contents are subject to the queuing process induced by
{Xi} provided the theoretical net changes X, are independent random
variables with a common distribution.

The problem (for the mathematician if not for the user) is to find conditions
under which the X, will appear as independent variables with a common
distribution F and to find plausible forms for F. Usually the =, will be
equidistant or else a sample from a Poisson process, but it suffices for our
purposes to assume that the 7, form a renewal process with interarrival times
&y, o, . ... The most frequently used models fall into one of the following
two categories: |

(i) The input is at a constant rate ¢, the demand &%, arbitrary. Then
X, =c, — %, We must suppose this X, to be independent of the .
“past” X,,...,X, ;. (The usual assumption that «/, and #, be in-
dependent is superfluous: there is no reason why the demand %, should
not be correlated with the duration .7,.)

(i) The output is at a constant rate, the input arbitrary. The description
is the same with the roles of ./, and %, reversed.

(¢) Queues for a shuttle train.?® A shuttle train with r places for passengers
leaves a station every hour on the hour. Prospective passengers appear
at the station and wait in line. At each departure the first r passengers in
line board the train, and the others remain in the waiting line. We suppose
that the number of passengers arriving between successive departures are
independent random variables &,, &7,,... with a common distribution.
Let W, be the number of passengers in line just after the nth departure,
and assume for simplicity Wo=10. Then W, , =W, +&,,, —r if
this quantity is positive, and W, ,; = 0 otherwise. Thus W, is the variable
of a queuing process (9.1) generated by the random walk with variables
X, =%, —r. >

We turn to a description of the queuing process {W,} in terms of the
random walk generated by the variables X,. As in section 8 we put S, = 0,
S. =X, +---+ X, and adhere to the notation for the ladder variables.
For ease of description we use the terminology appropriate for the server
of example (a).

~23p. E. Boudreau, J. S. Griffin Jr., and Mark Kac, An elementary queuing problem,
Amer. Math. Monthly, vol. 69 (1962) pp. 713-724. The purpose of this paper is didactic,
that is, it is written for outsiders without knowledge of the subject. Although a different
mode of description is used, the calculations are covered by those in example XII,4(c).
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Define » as the subscript for which S, >0,S,>0,..., S,_, >0, but
S, < 0. In this situation customers number 1,2,...,v—1 had positive
waiting times W, =S,,...,W,_, =S __ , and customer number » was

the first to find the server free (the first lucky customer). At the epoch of
his arrival the process starts from scratch as a replica of the whole process.
Now v is simply the index of the first negative sum, that is, » is the first
descending ladder index, and we denote it consistently by 7. We have
thus reached the first conclusion: The descending ladder indices correspond
to the lucky customers who find the server free. Put differently, the epochs of
arrival of the lucky customers constitute a renewal process with recurrence
times distributed as 7.

In practical cases the variable .7~ must not be defective, for its defect
p would equal the probability that a customer never finds the server free
and with probability one there would be a last lucky customer followed by
an unending queue. It will turn out that J  is proper whenever
E(4,) < E(H)). :

Suppose now that customer number ¥ —'1 arrives at epoch 7. His
waiting time. was W _, =S | and so the epoch of his departure is
T+ W,_, + %,_,. The first lucky customer (number ») arrives at epoch
T + 7, when the server was free for

MV - wv—l - ‘@v—l = —Sv—l - Xv = —S

v

time units. But by definition S, is the first descending ladder height
S . As the process starts from scratch we have reached the second con-
clusion: The durations of the free periods are independent random variables
with the same distribution as —3#] (the recurrence time for the descending
ladder heights). In other words, customer number J [ + -+ + 7 is
the rth customer who finds the server free. At the epoch of his arrival the
server has been free for —5#° time units.

It should now be cléar that between successive ladder epochs the segments
of the graph for the queuing process {W,} are congruent to those for the random
walk but displayed vertically so as to start at a point of the time axis (figure 1).
To describe this analytically denote for the moment by [n] the /ast descending
ladder index < n; in other words, [n] isa (random) index such that [#n] < n
and

(9.3) Sim < S, j=0,,...,n

‘This defines [n] uniquely with probability 1 (the distribution of X; being
continuous). Clearly

9.4) W, =S, — St

This_ relation leads to the most important conclusion if we look at the
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variables X,,...,X, in reverse order. Put for abbreviation X =
X,, ..., X, = X,. The partial sums of these variables are

S;:X;_‘_-.._‘_x;c:sn—sn_k,

and (9.4) shows that the maximal term of the sequence 0, S, . , S, has
subscript n — [n] and equals W,. But the distribution of (X, ..., X}) is
identical with that of (X,,..., X,). We have thus the basic

Theorena.?* The distribution of the queuing variable W, is identical with
the distribution of the random variable

9.5) M, =max [0, S,,...,S,]
in the underlying random walk {X,}.

The consequences of this theorem will be discussed in chapter XII.
Here we show that it permits us to reduce certain ruin problems to queuing
processes despite the dissimilarity of the appearance.

Example. (d) Ruin problems. In section 5 ruin was defined as the event
that X(r) >z + ct for some ¢ where X(¢) is the variable of a compound
Poisson process with distribution (4.2). Denote the epochs of the successive
jumps in this process by 7, 75, .... If ruin occurs at all it occurs also at
some epoch 7, and it suffices therefore to consider the probability that
S, = X(7,) — ¢7, > 2 for some n. But by the definition of a compound
Poisson process X(7,) is the sum of n independent variables Y, with
the common distribution F, while 7, is the sum of n independent expo-
nentially distributed variables ./;. Accordingly we are in effect dealing with
the random walk generated by the variables X, =Y, — cof, whose
probability density is given by the convolution |

C Jz

(96) . gf ea(.z—v)/cF{dy}. :

Ruin occurs iff in ‘the random walk the event {S, > z} takes place for some n.
To find the prqbability of ruin amounts therefore to finding the distributions
of the variables W, in the associated queuing process.

(e) A numerical illustration. The most -important queuing process arises
when the interarrival and service times are exponentially distributed with
expectations 1/a and 1/b, respectively, where a < b. From the character-
istics of this process described in example 8(b), one can conclude that the
waiting time of the nth customer has a limit distribution W with an atom of

24 Apparently first noticed by F. Pollaczek in 1952 and eiploited (in a different context)
by F. Spit;er, The Wiener-Hopf equation whose kernel is a probability density, Duke
Math. J., vol. 24 (1957) pp. 327-344. For Spitzer’s proof see problem 21.




