STOCHASTIC DIFFERENTIAL EQUATIONS

Problem set No 4 — March 20, 2012

- \triangleright Exercise 1. Check that the following processes solve the corresponding SDE's, where B_t is 1-dimensional Brownian motion:
 - (a) $X_t = e^{B_t}$ solves $dX_t = \frac{1}{2} X_t dt + X_t dB_t$.
 - **(b)** $X_t = \frac{B_t}{1+t}$, with $B_0 = 0$, solves

$$dX_t = \frac{-X_t}{1+t} dt + \frac{1}{1+t} dB_t, \qquad X_0 = 0.$$

(c) $X_t = \sin(B_t)$, with $B_0 = a \in (-\frac{\pi}{2}, \frac{\pi}{2})$, solves

$$dX_t = -\frac{1}{2} X_t dt + \sqrt{1 - X_t^2} dB_t, \qquad t < \inf \left\{ s > 0 : B_s \notin \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right\}.$$

(d) $(X_1(t), X_2(t)) = (\cosh(B_t), \sinh(B_t))$ solves

$$\begin{pmatrix} dX_1 \\ dX_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} dt + \begin{pmatrix} X_2 \\ X_1 \end{pmatrix} dB_t.$$

 \triangleright **Exercise 2.** Solve the following two-dimensional SDE for $X_t = (U_t, V_t)$, driven by a one-dimensional Brownian motion B_t :

$$dU_t = -\frac{1}{2} U_t dt - V_t dB_t$$

$$dV_t = -\frac{1}{2} V_t dt + U_t dB_t,$$

or in vector notation,

$$dX_t = -\frac{1}{2} X_t dt + K X_t dB_t$$
, where $K = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,

and observe that it is Brownian motion on a circle in \mathbb{R}^2 . (Hint: observe the similarity of the equation with the one for geometric Brownian motion, hence try $Z_t := U_t + iV_t$.)

▷ Exercise 3. The mean-reverting Ornstein-Uhlenbeck process is the solution of the SDE

$$dX_t = (\mu - X_t) dt + \sigma dB_t,$$

with $\mu, \sigma \in \mathbb{R}$ constants and B_t 1-dim BM. (We saw this in the special case of $\mu = 0$.)

- (a) Solve the equation.
- (b) Find $\mathbf{E}[X_t]$ and $\operatorname{Var}[X_t]$.
- (c) Let $\{X_i\}_{i\geq 0}$ be SRW on the hypercube $\{0,1\}^n$, and let $|X_i|$ be the number of 1's among the coordinates. What does

$$\frac{|X_{\lfloor nt\rfloor}| - n/2}{\sqrt{n}}, \qquad t \ge 0,$$

have to do with the Ornstein-Uhlenbeck process?

- \triangleright **Exercise 4.** Solve the following SDE's, where B_t is 1-dimensional Brownian motion:
 - (a) $dX_t = -X_t dt + e^{-t} dB_t$.
 - **(b)** $dX_t = r dt + \alpha X_t dB_t$, with $r, \alpha \in \mathbb{R}$ constants. (Hint: multiply by $\exp\left(-\alpha B_t + \frac{\alpha^2}{2}t\right)$.)
 - (c) With $X(t) = (X_1(t), X_2(t))$, and a two-dimensional Brownian motion $B(t) = (B_1(t), B_2(t))$,

$$dX_1(t) = X_2(t) dt + \alpha dB_1(t)$$

$$dX_2(t) = -X_1(t) dt + \beta dB_2(t)$$
,

or in vector notation,

$$dX(t) = JX(t) dt + A dB(t), \quad \text{where } J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}.$$

(Same hint again: multiply by e^{-Jt} . Don't leave the answer in matrix notation, but write out the coordinates using simple 1-dimensional Itô-integrals.)

- **Exercise 5.** Recall that any continuous Gaussian process X_t is determined by its means $\mathbf{E}X_t$ pairwise covariances $\mathsf{cov}(s,t) := \mathbf{E}[X_sX_t] \mathbf{E}X_s\mathbf{E}X_t$. For $a,b \in \mathbb{R}$, the **one-dimensional Brownian bridge** from a to b is such a process for $t \in [0,1]$, with $\mathbf{E}X_t = a(1-t) + bt$ and $\mathsf{cov}(s,t) = s \land t st$. Prove that the law of this process is also given by any of the following definitions:
 - (a) $X_t := a(1-t) + bt + B_t tB_1$ for $t \in [0,1]$, with BM started at $B_0 = 0$.
 - (b) $X_t := a(1-t) + bt + (1-t)B_{t/(1-t)}$. Note that it requires a tiny argument that this definition makes sense at t = 1 and gives what we want.
 - (c) $X_t := a(1-t) + bt + (1-t) \int_0^t \frac{1}{1-s} dB_s$. Note again that t=1 requires care. (Hint for that: use Doob's martingale inequality to bound the probability that $\sup \{(1-t) \int_0^t \frac{1}{1-s} dB_s : t \in [1-2^{-n}, 1-2^{-n-1})\} > \epsilon$.)
 - (d) Part (c) is in fact the strong solution of the SDE

$$dX_t = \frac{b - X_t}{1 - t} dt + dB_t, \qquad t \in [0, 1), \quad X_0 = a.$$

 \triangleright Exercise 6 (Bonus on Tanaka). Recall that Tanaka's SDE $dX_t = \text{sign}(X_t) dB_t$ has a weak solution but no strong solutions: X_t is a Brownian motion which cannot be measurable w.r.t. $\sigma\{B_s: 0 \le s \le t\}$. In the proof, we used two ingredients: Tanaka's formula

$$|B_t| - |B_0| = \int_0^t \operatorname{sign}(B_s) dB_s + L_0(t),$$

and that the integral term on the right hand side, denoted by Y_t from now on, is a Brownian motion.

- (a) Prove that Y_t is indeed a standard BM. (Hint: use the definition of Itô integrals and the fact that the zero set of BM is closed with zero Lebesgue measure.)
- (b) Using part (a), show **Lévy's theorem** relating local time at zero and the maximum process $M_t := \sup\{B_s : 0 \le s \le t\}$ to each other:

$$(|B_t|, L_0(t))_{t\geq 0} \stackrel{d}{=} (M_t - B_t, M_t)_{t\geq 0}.$$

(c) Show the following discrete Tanaka formula for SRW $S_n := \sum_{i=1}^n X_i$ on \mathbb{Z} :

$$|S_n| - |S_0| = \sum_{j=0}^{n-1} \operatorname{sign}(S_j) (S_{j+1} - S_j) + L_0(n),$$

where $L_0(n) := |\{0 \le j \le n - 1 : S_j = 0\}|.$