STOCHASTIC DIFFERENTIAL EQUATIONS

Problem set No 2 — March 6, 2012

▷ Exercise 1. Prove directly from the definition of Itô integrals that

- (a) $\int_0^t s \, dB_s = tB_t \int_0^t B_s \, ds$;
- **(b)** $\int_0^t B_s dB_s = \frac{1}{2}B_t^2 \frac{1}{2}t;$
- (c) $\int_0^t B_s^2 dB_s = \frac{1}{3} B_t^3 \int_0^t B_s ds$. (Hint: $a^2(b-a) = (a-b)^3/3 + (b^3-a^3)/3 (b-a)^2a$.)

⊳ Exercise 2.

- (a) Show that if $X_t: \Omega \longrightarrow \mathbb{R}^n$ is a martingale w.r.t. a filtration $\{\mathcal{F}_t\}_{t\geq 0}$, then it is also a martingale w.r.t. its own filtration $\mathcal{F}_t^X := \sigma\{X_s: s\leq t\}$.
- (b) Show that if X_t is a martingale w.r.t. some filtration $\{\mathcal{F}_t\}_{t\geq 0}$, then $\mathbf{E}[X_t] = \mathbf{E}[X_0]$ for all $t\geq 0$.
- (c) Give an example of a process X_t that satisfies $\mathbf{E}[X_t] = \mathbf{E}[X_0]$ for all $t \geq 0$, but is not a martingale w.r.t. its own filtration. (Harder version: $\mathbf{E}[X_t \mid X_s] = X_s$ for all $t \geq s$.)
- \triangleright **Exercise 3.** Check directly (without Itô integrals) which of the following processes are martingales w.r.t. $\mathcal{F}_t := \sigma\{B_s : s \leq t\}$:
 - (a) $X_t = B_t + 4t$;
 - **(b)** $X_t = B_t^2$;
 - (c) $X_t = B_t^2 t$;
 - (d) $X_t = t^2 B_t 2 \int_0^t s B_s \, ds$;
 - (e) $X_t = B_t^3$;
 - (f) $X_t = B_t^3 3tB_t$;
 - (g) $X_t = B_1(t)B_2(t)$, where $(B_1(t), B_2(t))$ is a 2-dimensional Brownian motion.

 \triangleright **Exercise 4.** A famous result of Itô (1951) gives the following formula for n times iterated Itô integrals:

$$n! \int_{0 < u_1 < \dots < u_n < t} (\int_{0 < u_1 < \dots < u_n < t} dB_{u_1}) dB_{u_2}) \dots dB_{u_n} = t^{n/2} h_n(B_t/\sqrt{t}),$$

where h_n is the *Hermite polynomial* of degree n, defined by

$$h_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} (e^{-x^2/2}), \qquad n = 0, 1, 2, \dots$$

(Thus $h_0(x) = 1$, $h_1(x) = x$, $h_2(x) = x^2 - 1$, $h_3(x) = x^3 - 3x$.)

- (a) Verify that in each of these n Itô integrals the integrand satisfies the usual requirements.
- (b) Verify the formula for n = 1, 2, 3.
- (c) Deduce part (f) of the previous exercise.
- \triangleright Exercise 5. Assume that ξ_t is a stochastic process that satisfies the following:
 - (i) ξ_t is independent of ξ_s if $t \neq s$;
 - (ii) it is time-stationary;
 - (iii) $\mathbf{E}[\xi_t] = 0;$
 - (iv) it has continuous paths almost surely.

Show that ξ_t is constant zero almost surely. (Hint: consider $\mathbf{E}[(\xi_t^{(N)} - \xi_s^{(N)})^2]$, where $\xi_t^{(N)} = (-N) \vee (N \wedge \xi_t)$, for N = 1, 2, ...)

 \triangleright **Exercise 6.** Suppose $f, g \in \mathcal{V}(S, T)$ and that there exist constants C, D such that

$$C + \int_{T}^{S} f(t, \omega) dB_{t}(\omega) = D + \int_{T}^{S} g(t, \omega) dB_{t}(\omega)$$
 for a.a. $\omega \in \Omega$.

Show that C = D and $f(t, \omega) = g(t, \omega)$ for a.a. $(t, \omega) \in [T, S] \times \Omega$.

ightharpoonup **Exercise 7** (Bonus). Let $B:[0,1] \longrightarrow \mathbb{R}$ be one-dimensional Brownian motion with $B_0=0$ and let $f:[0,1] \longrightarrow \mathbb{R}$ be a deterministic Hölder (ϵ) function for some $\epsilon > 0$, i.e., there exists $C < \infty$ such that $f(x) - f(y)| < C|x - y|^{\epsilon}$ for all $x, y \in [0,1]$. Show that the Riemann sums

$$\sum_{i=0}^{n-1} f(i/n) (B_{(i+1)/n} - B_{i/n})$$

converge almost surely (not only in L^2) to the Itô integral $\int_0^1 f(t) dB_t$, as $n \to \infty$.