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Abstract. The Hadwiger number H(S) of a topological disk S in
R

2 is the maximal number of pairwise nonoverlapping translates of
S that touch S. A conjecture of A. Bezdek., K. and W. Kuperberg
[2] states that this number is at most eight for any starlike disk.
A. Bezdek [1] proved that the Hadwiger number of a starlike disk
is at most seventy five. In this note, we prove that the Hadwiger
number of any centrally symmetric starlike disk is at most twelve.
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1. Introduction and Preliminaries

This paper deals with topological disks in the Euclidean plane R
2. We make

use of the linear structure of R
2, and identify a point with its position vector. We

denote the origin by o.

A topological disk, or shortly disk, is a compact subset of R
2 with a simple,

closed, continuous curve as its boundary. Two disks S1 and S2 are nonoverlapping,
if their interiors are disjoint. If S1 and S2 are nonoverlapping and S1 ∩ S2 6= ∅,
then S1 and S2 touch. A disk S is starlike relative to a point p, if, for every q ∈ S,
S contains the closed segment with endpoints p and q. In particular, a convex disk
C is starlike relative to any point p ∈ C. A disk S is centrally symmetric, if −S is
a translate of S. If −S = S, then S is o-symmetric.

The Hadwiger number, or translative kissing number, of a disk S is the maximal
number of pairwise nonoverlapping translates of S that touch S. The Hadwiger
number of S is denoted by H(S). It is well known (cf. [8]) that the Hadwiger
number of a parallelogram is eight, and the Hadwiger number of any other convex
disk is six. In [9], the authors showed that the Hadwiger number of a disk is at
least six. Recently, Cheong and Lee [4] constructed, for every n > 0, a disk with
Hadwiger number at least n.

A. Bezdek, K. and W. Kuperberg [2] conjectured that the Hadwiger number of
any starlike disk is at most eight (see also Conjecture 6, p. 95 in the book [3] of
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Brass, Moser and Pach). The only result regarding this conjecture is due to A.
Bezdek, who proved in [1] that the Hadwiger number of a starlike disk is at most
seventy five. Our goal is to prove the following theorem.

Theorem. Let S be a centrally symmetric starlike disk. Then the Hadwiger number

H(S) of S is at most twelve.

In the proof, Greek letters, small Latin letters and capital Latin letters denote
real numbers, points and sets of points, respectively. For u, v ∈ R

2, the symbol
dist(u, v) denotes the Euclidean distance of u and v. For simplicity, we introduce
a Cartesian coordinate system and, for a point u ∈ R

2 with x-coordinate α and
y-coordinate β, we may write u = (α, β). The closed segment (respectively, open

segment) with endpoints u and v is denoted by [u, v] (respectively, by (u, v)). For a
subset A of R

2, int A, bd A, card A and conv A denotes the interior, the boundary,
the cardinality and the convex hull of A, respectively.

Consider a convex disk C and two points p, q ∈ R
2. Let [t, s] be a chord of C,

parallel to [p, q], such that dist(s, t) ≥ dist(s′, t′) for any chord [s′, t′] of C parallel
to [p, q]. The C-distance distC(p, q) of p and q is defined as

distC(p, q) =
2 dist(p, q)

dist(s, t)
.

For the definition of C-distance, see also [10]. It is well known that the C-distance
of p and q is equal to the distance of p and q in the normed plane with unit disk
1

2
(C − C). The o-symmetric convex disk 1

2
(C − C) is called the central symmetral

of C. We note that C ⊂ C′ yields distC(p, q) ≥ distC′(p, q) for any p, q ∈ R
2.

We prove the theorem in Section 2. During the proof we present two remarks,
showing that as we broaden our knowledge of S, we are able to prove better and
better upper bounds on its Hadwiger number.

2. Proof of the theorem

Let S be an o-symmetric starlike disk. Let F = {Si : i = 1, 2, . . . , n} be a
family of translates of S such that n = H(S) and, for i = 1, 2, . . . , n, Si = ci + S
touches S and does not overlap with any other element of F. Let K = conv S,
X = {ci : i = 1, 2, . . . , n}, C = conv X and C̄ = conv

(

X ∪ (−X)
)

. Furthermore,
let Ri denote the closed ray Ri = {λci : λ ∈ R and λ ≥ 0}.

First, we prove a few lemmas.

Lemma 1. The disk S is starlike relative to the origin o. Furthermore, o ∈ int S.

Proof. Let S be starlike relative to p ∈ S, and assume that p 6= o. By symmetry, S
is starlike relative to −p. Consider a point q ∈ S. Since S is starlike relative to p
and −p, the segments [p, q] and [−p, q] are contained in S. Thus, any segment [p, r],
where r ∈ [−p, q], is contained in S. In other words, we have conv{p,−p, q} ⊂ S,
which yields that [o, q] ⊂ S. The second assertion follows from the first and the
symmetry of S. �

Lemma 2. If x + S and y + S are nonoverlapping translates of S, then we have

distK(x, y) ≥ 1.
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Proof. Without loss of generality, we may assume that x = o. Suppose that y ∈
int K. Note that there are points p, q ∈ S such that y ∈ int conv{o, p, q}. By
the symmetry of S, [y − p, y] and [y − q, y] are contained in y + S. Since y ∈
int conv{o, p, q}, the segments [y − p, y] and [o, q] cross, which yields that S and
y + S overlap; a contradiction. Hence, y /∈ int K. Since int K is the set of points
in the plane whose distance from o, in the norm with unit ball K, is less than one,
we have distK(o, y) ≥ 1. �

Remark 1. The Hadwiger number H(S) of S is at most twenty four.

Proof. Note that, for every value of i, K and ci + K either overlap or touch. Since
K is o-symmetric, it follows that ci ∈ 2K, and ci + 1

2
K is contained in 5

2
K. By

Lemma 2, {ci + 1

2
K : i = 1, 2, . . . , n}∪{ 1

2
K} is a family of pairwise nonoverlapping

translates of 1

2
K. Thus, n ≤ 24 follows from an area estimate. �

Lemma 3. If j 6= i, then Ri ∩ int Sj = ∅. Furthermore, Ri ∩ Sj ⊂ (o, ci).

Proof. Since S and Si touch, there is a (possibly degenerate) parallelogram P such
that bd P ⊂ (S ∪ Si) and [o, ci] ⊂ P (cf. Figure 1). Note that if int(x+S) intersects
neither S nor Si, then x /∈ P and int(x + S) ∩ (o, ci) = ∅.

Figure 1

If Sj ∩ Ri = ∅, we have nothing to prove. Let Sj ∩ Ri 6= ∅ and consider a point
cj + p ∈ Sj ∩ Ri. Since o ∈ int S, cj + p 6= o and cj + p 6= ci. By the previous
paragraph, if cj + p ∈ (o, ci), then cj + p /∈ int Sj . Thus, we are left with the case
that cj +p ∈ Ri \ [o, ci]. By symmetry, ci−p ∈ Si. Note that (ci, ci−p)∩(o, cj) 6= ∅,
which yields that int Si intersects (o, cj); a contradiction. �

Lemma 4. We have o ∈ int C, and X ⊂ bd C.

Proof. Assume that o /∈ int C. Note that there is a closed half plane H , containing
o in its boundary, such that C ⊂ H . Let p be a boundary point of S satisfying
S ⊂ p + H . Then, for i = 1, 2, . . . , n, we have Si ⊂ p + H . Observe that, for any
value of i, 2p+S touches S and does not overlap Si. Thus, F∪{2p+S} is a family
of pairwise nonoverlapping translates of S in which every element touches S, which
contradicts our assumption that cardF = n = H(S).
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Assume that ci /∈ bd C for some i, and note that there are values j and k such
that ci ∈ int conv{o, cj , ck}. Since Sj and Sk touch S, 1

2
cj and 1

2
ck are contained in

K. Observe that at least one of dj = ci −
1

2
cj and dk = ci −

1

2
ck is in the exterior

of the closed, convex angular domain D bounded by Rj ∪ Rk (cf. Figure 2). Since
dj and dk are points of ci + K, we obtain (ci + K) \ D 6= ∅. On the other hand,
Lemma 3 yields that Si ⊂ D, hence, ci + K = conv Si ⊂ D; a contradiction. �

Figure 2

Remark 2. The Hadwiger number H(S) of S is at most sixteen.

Proof. Go la̧b [7] proved that the circumference of every centrally symmetric convex
disk measured in its norm is at least six and at most eight. Fáry and Makai [6]
proved that, in any norm, the circumferences of any convex disk C and its central
symmetral 1

2
(C−C) are equal. Thus, the circumference of C measured in the norm

with unit ball 1

2
(C − C) is at most eight.

Since C ⊂ 2K, we have distC(p, q) ≥ dist2K(p, q) = 1

2
distK(p, q) for any points

p, q ∈ R
2. By Lemma 2, distK(ci, cj) ≥ 1 for every i 6= j. Thus, X = {ci : i =

1, 2, . . . , n} is a set of n points in the boundary of C at pairwise C-distances at
least 1

2
. Hence, n ≤ 16. �

Now we are ready to prove our theorem. By [5], there is a parallelogram P ,
circumscribed about C̄, such that the midpoints of the edges of P belong to C̄.
Since the Hadwiger number of any affine image of S is equal to H(S), we may
assume that P = {(α, β) ∈ R

2 : |α| ≤ 1 and |β| ≤ 1}. Note that the points
ex = (1, 0) and ey = (0, 1) are in the boundary of C̄.

First, we show that there are two points rx and sx in S, with x-coordinates ρx

and σx, respectively, such that ex ∈ conv{o, 2rx, 2sx} and ρx + σx ≥ 1.

Assume that ex = ci for some value of i. Since S and Si touch, there is a
(possibly degenerate) parallelogram Pi = conv{o, rx, sx, ci} such that ci = rx + sx,
([o, rx] ∪ [o, sx]) ⊂ S and ([ci, rx] ∪ [ci, sx]) ⊂ Si (cf. Figure 1). Observe that
ci ∈ conv{o, 2rx, 2sx} and ρx + σx = 1. If ex = −ci, we may choose rx and sx

similarly.
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Assume that ex ∈ (ci, cj) for some values of i and j. Consider a parallel-
ogram Pi = conv{o, ri, si, ci} such that ci = ri + si, ([o, ri] ∪ [o, si]) ⊂ S and
([ci, ri] ∪ [ci, si]) ⊂ Si. Let L denote the line with equation x = 1

2
. We may assume

that L separates si from o. We define rj and sj similarly. If the x-axis separates
the points si and sj , we may choose si and sj as rx and sx. If both si and sj are
contained in the open half plane, bounded by the x-axis and containing ci or cj ,
say ci, we may choose rj and sj as rx and sx (cf. Figure 3). If ex is in (−ci, cj) or
(−ci,−cj), we may apply a similar argument.

Figure 3

Analogously, we may choose points ry and sy in S, with y-coordinates ρy and
σy, respectively, such that ey ∈ conv{o, 2ry, 2sy} and ρy + σy ≥ 1. We may assume
that ρx ≤ σx and that ρy ≤ σy.

Let Q1, Q2, Q3 and Q4 denote the four closed quadrants of the coordinate system
in counterclockwise cyclic order. We may assume that X ∩ Q1 6= ∅, and that Q1

contains the points with nonnegative x- and y-coordinates. We relabel the indices of
the elements of F in a way that R1, R2, . . . , Rn are in counterclockwise cyclic order,
and the angle between R1 and the positive half of the x-axis, measured in the
counterclockwise direction, is the smallest amongst all rays in {Ri : i = 1, 2, . . . , n}.

If card(Qi∩X) ≤ 3 for each value of i, the assertion holds. Thus, we may assume
that, say, j = card(Q1∩X) > 3. By Lemma 3, [ci, ci−sy] does not cross the rays R1

and Rj for i = 2, 3, . . . , j−1. Thus, the y-coordinate of ci is at least σy (cf. Figure 4,
note that ci is not contained in the dotted region). Similarly, the x-coordinate of ci

is at least σx for i = 2, . . . , j−1. Thus, σx ≤ 1 and σy ≤ 1, which yield that ρx ≥ 0
and ρy ≥ 0. Since σx ≥ 1 − ρx and σy ≥ 1 − ρy, each ci, with 2 ≤ i ≤ j − 1, is
contained in the rectangle T = {(α, β) ∈ R

2 : 1 − ρx ≤ α ≤ 1 and 1 − ρy ≤ β ≤ 1}.

Let B = {(α, β) ∈ R
2 : |α| ≤ ρx and |β| ≤ ρy}. Note that if S and p +

S are nonoverlapping and u, v ∈ S, then the parallelogram conv{o, u, v, u + v}
does not contain p in its interior. Thus, applying this observation with {u, v} ⊂
{±rx,± ρx

σx

sx,±ry,±
ρy

σy

sx}, we obtain that p /∈ int B (cf. Figure 5, the dotted

parallelograms show the region “forbidden” for p).

Furthermore, if rx and sx do not lie on the x-axis, and ry and sy do not lie on the
y-axis, then the interiors of these parallelograms cover B, apart from some points of
S, and thus, we have p /∈ B. If p is on a vertical side of B, then ry or sy lies on the
y-axis (cf. Figure 6). Note that if ry lies on the y-axis, then ey ∈ conv{o, 2ry, 2sy}
yields ρy ≥ 1

2
, or that also sy lies on the y-axis. Thus, it follows in this case that
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Figure 4

Figure 5

1

2
ey ∈ S. Similarly, if p is on a horizontal side of B, then 1

2
ex ∈ S. We use this

observation several times in the next three paragraphs.

Note that T =
(

1 − ρx

2
, 1 − ρy

2

)

+ 1

2
B. Since for any 2 ≤ i < k ≤ j − 1, ci + 1

2
B

and ck + 1

2
B do not overlap, it follows that ci and ck lie on opposite sides of T . By

Lemma 4, we immediately obtain that j ≤ 5.

Assume that j = 5. Then, we have card(X ∩ T ) = 3, which implies that two
points of X ∩ T are consecutive vertices of T . Without loss of generality, we may
assume that c4 = (1−ρx, 1), c3 = (1, 1) and c2 = (τ, 1−ρy) for some τ ∈ [1−ρy, 1].
Since c3− c4 lies on a vertical side of B, we obtain that 1

2
ey ∈ S. From the position

of c3 − c2, we obtain similarly that 1

2
ex ∈ S. Thus, if c1 is not on the x-axis or

c5 is not on the y-axis, then R1 ∩ int S2 6= ∅ or R5 ∩ int S4 6= ∅, respectively; a
contradiction. Hence, from 1

2
ex, 1

2
ey ∈ S, it follows that c1 = ex and c5 = ey. By

Lemma 4, we have that c2 = (1, 1 − ρy), which yields that, for example, S1 and S2

overlap; a contradiction.

We are left with the case j = 4. We may assume that c2 and c3 lie, say, on the
vertical sides of T . Then we immediately have 1

2
ey ∈ S. If c4 is not on the y-axis,
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Figure 6

then R4 ∩ int S3 6= ∅, and thus, it follows that c4 = ey. We show, by contradiction,
that card((Q1 ∪ Q2) ∩ X) ≤ 6.

Assume that card((Q1 ∪Q2)∩X) > 6. Note that in this case card(Q2 ∩X) = 4,
and both c5 and c6 are either on the horizontal sides, or on the vertical sides of
T ′ = (−2+ρx, 0)+T . If they are on the horizontal sides, then 1

2
ex ∈ S, c5 = (−1, 1),

c7 = −ex, and, by Lemma 4, c6 = (−1, 1 − ρy). Thus, S6 overlaps both S5 and S7;
a contradiction, and we may assume that c5 and c6 are on the vertical sides of T ′.

Figure 7

Since the y-coordinate of c2 is at least 1

2
, and since

(

c3, c3 −
1

2
ey

)

does not

intersect the ray R2, we obtain that the y-coordinate of c3 is at least 3

4
. Similarly,

the y-coordinate of c5 is at least 3

4
. Note that c3−sx and c5 +sx are on the positive

half of the y-axis. Then it follows from Lemma 3 that c3 − sx and c5 + sx lie on
the open segment (o, c4). If c3 − sx /∈

(

1

2
c4, c4

)

or c5 + sx /∈
(

1

2
c4, c4

)

, then we have
c5 + sx /∈ (o, c4) or c3 − sx /∈ (o, c4), respectively. Thus, both c5 + sx and c3 − sx

belong to
(

1

2
c4, c4

)

, and a neighborhood of 1

2
c4 intersects S4 in a segment, which

yields that S4 is not a disk; a contradiction.
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Assume that card(Q4 ∩ X) > 3. Then card((Q1 ∪ Q4) ∩ X) > 6 yields that
card((Q3 ∪ Q4) ∩ X) ≤ 6, and the assertion follows. Thus, we may assume that
card(Q4 ∩ X) ≤ 3.

Finally, assume that card(Q3 ∩ X) > 3. Then we have card((Q3 ∪Q4) ∩ X) ≤ 6
or card((Q2 ∪ Q3) ∩ X) ≤ 6. In the first case we clearly have card X ≤ 12. In
the second case, by the argument used for Q1 ∩ X , we obtain that −ex ∈ X and
card(Q2 ∩X) ≤ 3, from which it follows that card((Q1 ∪Q2 ∪Q3)∩X) ≤ 9. Since
card(Q4 ∩ X) ≤ 3, the assertion holds.
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