ON THE HADWIGER NUMBERS OF CENTRALLY SYMMETRIC STARLIKE DISKS

ZSOLT LÁNGI*
Department of Mathematics and Statistics, University of Calgary
Calgary, Alberta, Canada T2N 1N4
e-mail: zlangi@ucalgary.ca

Abstract

The Hadwiger number $H(S)$ of a topological disk S in \mathbb{R}^{2} is the maximal number of pairwise nonoverlapping translates of S that touch S. A conjecture of A. Bezdek., K. and W. Kuperberg [2] states that this number is at most eight for any starlike disk. A. Bezdek [1] proved that the Hadwiger number of a starlike disk is at most seventy five. In this note, we prove that the Hadwiger number of any centrally symmetric starlike disk is at most twelve. MSC 2000: 52A30, 52A10, 52C15 Keywords: topological disk, starlike disk, touching, Hadwiger number.

1. Introduction and Preliminaries

This paper deals with topological disks in the Euclidean plane \mathbb{R}^{2}. We make use of the linear structure of \mathbb{R}^{2}, and identify a point with its position vector. We denote the origin by o.

A topological disk, or shortly disk, is a compact subset of \mathbb{R}^{2} with a simple, closed, continuous curve as its boundary. Two disks S_{1} and S_{2} are nonoverlapping, if their interiors are disjoint. If S_{1} and S_{2} are nonoverlapping and $S_{1} \cap S_{2} \neq \emptyset$, then S_{1} and S_{2} touch. A disk S is starlike relative to a point p, if, for every $q \in S$, S contains the closed segment with endpoints p and q. In particular, a convex disk C is starlike relative to any point $p \in C$. A disk S is centrally symmetric, if $-S$ is a translate of S. If $-S=S$, then S is o-symmetric.

The Hadwiger number, or translative kissing number, of a disk S is the maximal number of pairwise nonoverlapping translates of S that touch S. The Hadwiger number of S is denoted by $H(S)$. It is well known (cf. [8]) that the Hadwiger number of a parallelogram is eight, and the Hadwiger number of any other convex disk is six. In [9], the authors showed that the Hadwiger number of a disk is at least six. Recently, Cheong and Lee [4] constructed, for every $n>0$, a disk with Hadwiger number at least n.
A. Bezdek, K. and W. Kuperberg [2] conjectured that the Hadwiger number of any starlike disk is at most eight (see also Conjecture 6, p. 95 in the book [3] of

[^0]Brass, Moser and Pach). The only result regarding this conjecture is due to A. Bezdek, who proved in [1] that the Hadwiger number of a starlike disk is at most seventy five. Our goal is to prove the following theorem.

Theorem. Let S be a centrally symmetric starlike disk. Then the Hadwiger number $H(S)$ of S is at most twelve.

In the proof, Greek letters, small Latin letters and capital Latin letters denote real numbers, points and sets of points, respectively. For $u, v \in \mathbb{R}^{2}$, the symbol $\operatorname{dist}(u, v)$ denotes the Euclidean distance of u and v. For simplicity, we introduce a Cartesian coordinate system and, for a point $u \in \mathbb{R}^{2}$ with x-coordinate α and y-coordinate β, we may write $u=(\alpha, \beta)$. The closed segment (respectively, open segment) with endpoints u and v is denoted by $[u, v]$ (respectively, by (u, v)). For a subset A of $\mathbb{R}^{2}, \operatorname{int} A, \operatorname{bd} A, \operatorname{card} A$ and conv A denotes the interior, the boundary, the cardinality and the convex hull of A, respectively.

Consider a convex disk C and two points $p, q \in \mathbb{R}^{2}$. Let $[t, s]$ be a chord of C, parallel to $[p, q]$, such that $\operatorname{dist}(s, t) \geq \operatorname{dist}\left(s^{\prime}, t^{\prime}\right)$ for any chord $\left[s^{\prime}, t^{\prime}\right]$ of C parallel to $[p, q]$. The C-distance $\operatorname{dist}_{C}(p, q)$ of p and q is defined as

$$
\operatorname{dist}_{C}(p, q)=\frac{2 \operatorname{dist}(p, q)}{\operatorname{dist}(s, t)}
$$

For the definition of C-distance, see also [10]. It is well known that the C-distance of p and q is equal to the distance of p and q in the normed plane with unit disk $\frac{1}{2}(C-C)$. The o-symmetric convex disk $\frac{1}{2}(C-C)$ is called the central symmetral of C. We note that $C \subset C^{\prime}$ yields $\operatorname{dist}_{C}(p, q) \geq \operatorname{dist}_{C^{\prime}}(p, q)$ for any $p, q \in \mathbb{R}^{2}$.

We prove the theorem in Section 2. During the proof we present two remarks, showing that as we broaden our knowledge of S, we are able to prove better and better upper bounds on its Hadwiger number.

2. Proof of the theorem

Let S be an o-symmetric starlike disk. Let $\mathfrak{F}=\left\{S_{i}: i=1,2, \ldots, n\right\}$ be a family of translates of S such that $n=H(S)$ and, for $i=1,2, \ldots, n, S_{i}=c_{i}+S$ touches S and does not overlap with any other element of \mathfrak{F}. Let $K=\operatorname{conv} S$, $X=\left\{c_{i}: i=1,2, \ldots, n\right\}, C=\operatorname{conv} X$ and $\bar{C}=\operatorname{conv}(X \cup(-X))$. Furthermore, let R_{i} denote the closed ray $R_{i}=\left\{\lambda c_{i}: \lambda \in \mathbb{R}\right.$ and $\left.\lambda \geq 0\right\}$.

First, we prove a few lemmas.
Lemma 1. The disk S is starlike relative to the origin o. Furthermore, o $\in \operatorname{int} S$.
Proof. Let S be starlike relative to $p \in S$, and assume that $p \neq o$. By symmetry, S is starlike relative to $-p$. Consider a point $q \in S$. Since S is starlike relative to p and $-p$, the segments $[p, q]$ and $[-p, q]$ are contained in S. Thus, any segment $[p, r]$, where $r \in[-p, q]$, is contained in S. In other words, we have $\operatorname{conv}\{p,-p, q\} \subset S$, which yields that $[o, q] \subset S$. The second assertion follows from the first and the symmetry of S.

Lemma 2. If $x+S$ and $y+S$ are nonoverlapping translates of S, then we have $\operatorname{dist}_{K}(x, y) \geq 1$.

Proof. Without loss of generality, we may assume that $x=o$. Suppose that $y \in$ int K. Note that there are points $p, q \in S$ such that $y \in \operatorname{int} \operatorname{conv}\{o, p, q\}$. By the symmetry of $S,[y-p, y]$ and $[y-q, y]$ are contained in $y+S$. Since $y \in$ int conv $\{o, p, q\}$, the segments $[y-p, y]$ and $[o, q]$ cross, which yields that S and $y+S$ overlap; a contradiction. Hence, $y \notin \operatorname{int} K$. Since int K is the set of points in the plane whose distance from o, in the norm with unit ball K, is less than one, we have $\operatorname{dist}_{K}(o, y) \geq 1$.

Remark 1. The Hadwiger number $H(S)$ of S is at most twenty four.
Proof. Note that, for every value of i, K and $c_{i}+K$ either overlap or touch. Since K is o-symmetric, it follows that $c_{i} \in 2 K$, and $c_{i}+\frac{1}{2} K$ is contained in $\frac{5}{2} K$. By Lemma $2,\left\{c_{i}+\frac{1}{2} K: i=1,2, \ldots, n\right\} \cup\left\{\frac{1}{2} K\right\}$ is a family of pairwise nonoverlapping translates of $\frac{1}{2} K$. Thus, $n \leq 24$ follows from an area estimate.

Lemma 3. If $j \neq i$, then $R_{i} \cap \operatorname{int} S_{j}=\emptyset$. Furthermore, $R_{i} \cap S_{j} \subset\left(o, c_{i}\right)$.
Proof. Since S and S_{i} touch, there is a (possibly degenerate) parallelogram P such that bd $P \subset\left(S \cup S_{i}\right)$ and $\left[o, c_{i}\right] \subset P($ cf. Figure 1). Note that if int $(x+S)$ intersects neither S nor S_{i}, then $x \notin P$ and $\operatorname{int}(x+S) \cap\left(o, c_{i}\right)=\emptyset$.

Figure 1
If $S_{j} \cap R_{i}=\emptyset$, we have nothing to prove. Let $S_{j} \cap R_{i} \neq \emptyset$ and consider a point $c_{j}+p \in S_{j} \cap R_{i}$. Since $o \in \operatorname{int} S, c_{j}+p \neq o$ and $c_{j}+p \neq c_{i}$. By the previous paragraph, if $c_{j}+p \in\left(o, c_{i}\right)$, then $c_{j}+p \notin \operatorname{int} S_{j}$. Thus, we are left with the case that $c_{j}+p \in R_{i} \backslash\left[o, c_{i}\right]$. By symmetry, $c_{i}-p \in S_{i}$. Note that $\left(c_{i}, c_{i}-p\right) \cap\left(o, c_{j}\right) \neq \emptyset$, which yields that int S_{i} intersects $\left(o, c_{j}\right)$; a contradiction.

Lemma 4. We have $o \in \operatorname{int} C$, and $X \subset \operatorname{bd} C$.
Proof. Assume that $o \notin \operatorname{int} C$. Note that there is a closed half plane H, containing o in its boundary, such that $C \subset H$. Let p be a boundary point of S satisfying $S \subset p+H$. Then, for $i=1,2, \ldots, n$, we have $S_{i} \subset p+H$. Observe that, for any value of $i, 2 p+S$ touches S and does not overlap S_{i}. Thus, $\mathfrak{F} \cup\{2 p+S\}$ is a family of pairwise nonoverlapping translates of S in which every element touches S, which contradicts our assumption that card $\mathfrak{F}=n=H(S)$.

Assume that $c_{i} \notin \mathrm{bd} C$ for some i, and note that there are values j and k such that $c_{i} \in \operatorname{int} \operatorname{conv}\left\{o, c_{j}, c_{k}\right\}$. Since S_{j} and S_{k} touch $S, \frac{1}{2} c_{j}$ and $\frac{1}{2} c_{k}$ are contained in K. Observe that at least one of $d_{j}=c_{i}-\frac{1}{2} c_{j}$ and $d_{k}=c_{i}-\frac{1}{2} c_{k}$ is in the exterior of the closed, convex angular domain D bounded by $R_{j} \cup R_{k}$ (cf. Figure 2). Since d_{j} and d_{k} are points of $c_{i}+K$, we obtain $\left(c_{i}+K\right) \backslash D \neq \emptyset$. On the other hand, Lemma 3 yields that $S_{i} \subset D$, hence, $c_{i}+K=\operatorname{conv} S_{i} \subset D$; a contradiction.

Figure 2

Remark 2. The Hadwiger number $H(S)$ of S is at most sixteen.

Proof. Goła̧b [7] proved that the circumference of every centrally symmetric convex disk measured in its norm is at least six and at most eight. Fáry and Makai [6] proved that, in any norm, the circumferences of any convex disk C and its central symmetral $\frac{1}{2}(C-C)$ are equal. Thus, the circumference of C measured in the norm with unit ball $\frac{1}{2}(C-C)$ is at most eight.

Since $C \subset 2 K$, we have $\operatorname{dist}_{C}(p, q) \geq \operatorname{dist}_{2 K}(p, q)=\frac{1}{2} \operatorname{dist}_{K}(p, q)$ for any points $p, q \in \mathbb{R}^{2}$. By Lemma 2, $\operatorname{dist}_{K}\left(c_{i}, c_{j}\right) \geq 1$ for every $i \neq j$. Thus, $X=\left\{c_{i}: i=\right.$ $1,2, \ldots, n\}$ is a set of n points in the boundary of C at pairwise C-distances at least $\frac{1}{2}$. Hence, $n \leq 16$.

Now we are ready to prove our theorem. By [5], there is a parallelogram P, circumscribed about \bar{C}, such that the midpoints of the edges of P belong to \bar{C}. Since the Hadwiger number of any affine image of S is equal to $H(S)$, we may assume that $P=\left\{(\alpha, \beta) \in \mathbb{R}^{2}:|\alpha| \leq 1\right.$ and $\left.|\beta| \leq 1\right\}$. Note that the points $e_{x}=(1,0)$ and $e_{y}=(0,1)$ are in the boundary of \bar{C}.

First, we show that there are two points r_{x} and s_{x} in S, with x-coordinates ρ_{x} and σ_{x}, respectively, such that $e_{x} \in \operatorname{conv}\left\{o, 2 r_{x}, 2 s_{x}\right\}$ and $\rho_{x}+\sigma_{x} \geq 1$.

Assume that $e_{x}=c_{i}$ for some value of i. Since S and S_{i} touch, there is a (possibly degenerate) parallelogram $P_{i}=\operatorname{conv}\left\{o, r_{x}, s_{x}, c_{i}\right\}$ such that $c_{i}=r_{x}+s_{x}$, $\left(\left[o, r_{x}\right] \cup\left[o, s_{x}\right]\right) \subset S$ and $\left(\left[c_{i}, r_{x}\right] \cup\left[c_{i}, s_{x}\right]\right) \subset S_{i}(\mathrm{cf}$. Figure 1). Observe that $c_{i} \in \operatorname{conv}\left\{o, 2 r_{x}, 2 s_{x}\right\}$ and $\rho_{x}+\sigma_{x}=1$. If $e_{x}=-c_{i}$, we may choose r_{x} and s_{x} similarly.

Assume that $e_{x} \in\left(c_{i}, c_{j}\right)$ for some values of i and j. Consider a parallel$\operatorname{ogram} P_{i}=\operatorname{conv}\left\{o, r_{i}, s_{i}, c_{i}\right\}$ such that $c_{i}=r_{i}+s_{i},\left(\left[o, r_{i}\right] \cup\left[o, s_{i}\right]\right) \subset S$ and $\left(\left[c_{i}, r_{i}\right] \cup\left[c_{i}, s_{i}\right]\right) \subset S_{i}$. Let L denote the line with equation $x=\frac{1}{2}$. We may assume that L separates s_{i} from o. We define r_{j} and s_{j} similarly. If the x-axis separates the points s_{i} and s_{j}, we may choose s_{i} and s_{j} as r_{x} and s_{x}. If both s_{i} and s_{j} are contained in the open half plane, bounded by the x-axis and containing c_{i} or c_{j}, say c_{i}, we may choose r_{j} and s_{j} as r_{x} and s_{x} (cf. Figure 3). If e_{x} is in $\left(-c_{i}, c_{j}\right)$ or $\left(-c_{i},-c_{j}\right)$, we may apply a similar argument.

Figure 3
Analogously, we may choose points r_{y} and s_{y} in S, with y-coordinates ρ_{y} and σ_{y}, respectively, such that $e_{y} \in \operatorname{conv}\left\{o, 2 r_{y}, 2 s_{y}\right\}$ and $\rho_{y}+\sigma_{y} \geq 1$. We may assume that $\rho_{x} \leq \sigma_{x}$ and that $\rho_{y} \leq \sigma_{y}$.

Let Q_{1}, Q_{2}, Q_{3} and Q_{4} denote the four closed quadrants of the coordinate system in counterclockwise cyclic order. We may assume that $X \cap Q_{1} \neq \emptyset$, and that Q_{1} contains the points with nonnegative x - and y-coordinates. We relabel the indices of the elements of \mathfrak{F} in a way that $R_{1}, R_{2}, \ldots, R_{n}$ are in counterclockwise cyclic order, and the angle between R_{1} and the positive half of the x-axis, measured in the counterclockwise direction, is the smallest amongst all rays in $\left\{R_{i}: i=1,2, \ldots, n\right\}$.

If $\operatorname{card}\left(Q_{i} \cap X\right) \leq 3$ for each value of i, the assertion holds. Thus, we may assume that, say, $j=\operatorname{card}\left(Q_{1} \cap X\right)>3$. By Lemma $3,\left[c_{i}, c_{i}-s_{y}\right]$ does not cross the rays R_{1} and R_{j} for $i=2,3, \ldots, j-1$. Thus, the y-coordinate of c_{i} is at least σ_{y} (cf. Figure 4, note that c_{i} is not contained in the dotted region). Similarly, the x-coordinate of c_{i} is at least σ_{x} for $i=2, \ldots, j-1$. Thus, $\sigma_{x} \leq 1$ and $\sigma_{y} \leq 1$, which yield that $\rho_{x} \geq 0$ and $\rho_{y} \geq 0$. Since $\sigma_{x} \geq 1-\rho_{x}$ and $\sigma_{y} \geq 1-\rho_{y}$, each c_{i}, with $2 \leq i \leq j-1$, is contained in the rectangle $T=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: 1-\rho_{x} \leq \alpha \leq 1\right.$ and $\left.1-\rho_{y} \leq \beta \leq 1\right\}$.

Let $B=\left\{(\alpha, \beta) \in \mathbb{R}^{2}:|\alpha| \leq \rho_{x}\right.$ and $\left.|\beta| \leq \rho_{y}\right\}$. Note that if S and $p+$ S are nonoverlapping and $u, v \in S$, then the parallelogram conv $\{o, u, v, u+v\}$ does not contain p in its interior. Thus, applying this observation with $\{u, v\} \subset$ $\left\{ \pm r_{x}, \pm \frac{\rho_{x}}{\sigma_{x}} s_{x}, \pm r_{y}, \pm \frac{\rho_{y}}{\sigma_{y}} s_{x}\right\}$, we obtain that $p \notin \operatorname{int} B$ (cf. Figure 5, the dotted parallelograms show the region "forbidden" for p).

Furthermore, if r_{x} and s_{x} do not lie on the x-axis, and r_{y} and s_{y} do not lie on the y-axis, then the interiors of these parallelograms cover B, apart from some points of S, and thus, we have $p \notin B$. If p is on a vertical side of B, then r_{y} or s_{y} lies on the y-axis (cf. Figure 6). Note that if r_{y} lies on the y-axis, then $e_{y} \in \operatorname{conv}\left\{o, 2 r_{y}, 2 s_{y}\right\}$ yields $\rho_{y} \geq \frac{1}{2}$, or that also s_{y} lies on the y-axis. Thus, it follows in this case that

Figure 4

Figure 5
$\frac{1}{2} e_{y} \in S$. Similarly, if p is on a horizontal side of B, then $\frac{1}{2} e_{x} \in S$. We use this observation several times in the next three paragraphs.

Note that $T=\left(1-\frac{\rho_{x}}{2}, 1-\frac{\rho_{y}}{2}\right)+\frac{1}{2} B$. Since for any $2 \leq i<k \leq j-1, c_{i}+\frac{1}{2} B$ and $c_{k}+\frac{1}{2} B$ do not overlap, it follows that c_{i} and c_{k} lie on opposite sides of T. By Lemma 4 , we immediately obtain that $j \leq 5$.

Assume that $j=5$. Then, we have $\operatorname{card}(X \cap T)=3$, which implies that two points of $X \cap T$ are consecutive vertices of T. Without loss of generality, we may assume that $c_{4}=\left(1-\rho_{x}, 1\right), c_{3}=(1,1)$ and $c_{2}=\left(\tau, 1-\rho_{y}\right)$ for some $\tau \in\left[1-\rho_{y}, 1\right]$. Since $c_{3}-c_{4}$ lies on a vertical side of B, we obtain that $\frac{1}{2} e_{y} \in S$. From the position of $c_{3}-c_{2}$, we obtain similarly that $\frac{1}{2} e_{x} \in S$. Thus, if c_{1} is not on the x-axis or c_{5} is not on the y-axis, then $R_{1} \cap$ int $S_{2} \neq \emptyset$ or $R_{5} \cap$ int $S_{4} \neq \emptyset$, respectively; a contradiction. Hence, from $\frac{1}{2} e_{x}, \frac{1}{2} e_{y} \in S$, it follows that $c_{1}=e_{x}$ and $c_{5}=e_{y}$. By Lemma 4, we have that $c_{2}=\left(1,1-\rho_{y}\right)$, which yields that, for example, S_{1} and S_{2} overlap; a contradiction.

We are left with the case $j=4$. We may assume that c_{2} and c_{3} lie, say, on the vertical sides of T. Then we immediately have $\frac{1}{2} e_{y} \in S$. If c_{4} is not on the y-axis,

Figure 6
then $R_{4} \cap \operatorname{int} S_{3} \neq \emptyset$, and thus, it follows that $c_{4}=e_{y}$. We show, by contradiction, that $\operatorname{card}\left(\left(Q_{1} \cup Q_{2}\right) \cap X\right) \leq 6$.

Assume that $\operatorname{card}\left(\left(Q_{1} \cup Q_{2}\right) \cap X\right)>6$. Note that in this case $\operatorname{card}\left(Q_{2} \cap X\right)=4$, and both c_{5} and c_{6} are either on the horizontal sides, or on the vertical sides of $T^{\prime}=\left(-2+\rho_{x}, 0\right)+T$. If they are on the horizontal sides, then $\frac{1}{2} e_{x} \in S, c_{5}=(-1,1)$, $c_{7}=-e_{x}$, and, by Lemma $4, c_{6}=\left(-1,1-\rho_{y}\right)$. Thus, S_{6} overlaps both S_{5} and S_{7}; a contradiction, and we may assume that c_{5} and c_{6} are on the vertical sides of T^{\prime}.

Figure 7
Since the y-coordinate of c_{2} is at least $\frac{1}{2}$, and since $\left(c_{3}, c_{3}-\frac{1}{2} e_{y}\right)$ does not intersect the ray R_{2}, we obtain that the y-coordinate of c_{3} is at least $\frac{3}{4}$. Similarly, the y-coordinate of c_{5} is at least $\frac{3}{4}$. Note that $c_{3}-s_{x}$ and $c_{5}+s_{x}$ are on the positive half of the y-axis. Then it follows from Lemma 3 that $c_{3}-s_{x}$ and $c_{5}+s_{x}$ lie on the open segment $\left(o, c_{4}\right)$. If $c_{3}-s_{x} \notin\left(\frac{1}{2} c_{4}, c_{4}\right)$ or $c_{5}+s_{x} \notin\left(\frac{1}{2} c_{4}, c_{4}\right)$, then we have $c_{5}+s_{x} \notin\left(o, c_{4}\right)$ or $c_{3}-s_{x} \notin\left(o, c_{4}\right)$, respectively. Thus, both $c_{5}+s_{x}$ and $c_{3}-s_{x}$ belong to $\left(\frac{1}{2} c_{4}, c_{4}\right)$, and a neighborhood of $\frac{1}{2} c_{4}$ intersects S_{4} in a segment, which yields that S_{4} is not a disk; a contradiction.

Assume that $\operatorname{card}\left(Q_{4} \cap X\right)>3$. Then $\operatorname{card}\left(\left(Q_{1} \cup Q_{4}\right) \cap X\right)>6$ yields that $\operatorname{card}\left(\left(Q_{3} \cup Q_{4}\right) \cap X\right) \leq 6$, and the assertion follows. Thus, we may assume that $\operatorname{card}\left(Q_{4} \cap X\right) \leq 3$.

Finally, assume that $\operatorname{card}\left(Q_{3} \cap X\right)>3$. Then we have $\operatorname{card}\left(\left(Q_{3} \cup Q_{4}\right) \cap X\right) \leq 6$ or $\operatorname{card}\left(\left(Q_{2} \cup Q_{3}\right) \cap X\right) \leq 6$. In the first case we clearly have card $X \leq 12$. In the second case, by the argument used for $Q_{1} \cap X$, we obtain that $-e_{x} \in X$ and $\operatorname{card}\left(Q_{2} \cap X\right) \leq 3$, from which it follows that $\operatorname{card}\left(\left(Q_{1} \cup Q_{2} \cup Q_{3}\right) \cap X\right) \leq 9$. Since $\operatorname{card}\left(Q_{4} \cap X\right) \leq 3$, the assertion holds.
Acknowledgement. The author is indebted to an anonymous referee and Márton Naszódi for their many helpful comments.

References

[1] A. Bezdek, On the Hadwiger number of a starlike disk, in: Intuitive Geometry (Budapest, 1995), Bolyai Soc. Math. Studies 6 (1997), 237-245.
[2] A. Bezdek, K. Kuperberg and W. Kuperberg, Mutually contiguous translates of a plane disk, Duke Math. J. 78 (1995), 19-31.
[3] P. Brass, W. Moser and J. Pach, Research problems in discrete geometry, Springer, New York, 2005.
[4] O. Cheong, M. Lee, The Hadwiger number of Jordan regions is unbounded, Discrete Comput. Geom. 37 (2007), 497-501.
[5] M. M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math. Soc. 62(2) (1947), 315-319.
[6] I. Fáry and E. Makai, Jr., Isoperimetry in variable metric, Stud. Sci. Math. Hungar. 17 (1982), 143-158.
[7] S. Goła̧b, Some metric problems of the geometry of Minkowski (in Polish), Trav. Acad. Mines Cracovie 6 (1932).
[8] B. Grünbaum, On a conjecture of H. Hadwiger, Pacific J. Math. 11 (1961), 215-219.
[9] C. J. A. Halberg, Jr., E. Levin, E. G. Straus, On contiguous congruent sets in Euclidean space, Proc. Amer. Math. Soc. 10 (1959), 335-344.
[10] M. Lassak, On five points in a plane convex body in at least unit relative distances, in: Intuitive Geometry (Szeged, 1991), Coll. Math. Soc. János Bolyai 63 (1994), 245-247.

[^0]: * Partially supported by the Alberta Ingenuity Fund.

