
KIRCHBERGER–TYPE THEOREMS FOR SEPARATION BY

CONVEX DOMAINS
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Abstract. We say that a convex set K in R
d strictly separates the set A

from the set B if A ⊂ int(K) and B ∩ cl K = ∅. The well–known Theorem
of Kirchberger states the following. If A and B are finite sets in R

d with the
property that for every T ⊂ A ∪B of cardinality at most d + 2, there is a half
space strictly separating T ∩ A and T ∩ B, then there is a half space strictly
separating A and B. In short, we say that the strict separation number of the
family of half spaces in R

d is d + 2.
In this note we investigate the problem of strict separation of two finite sets

by the family of positive homothetic (resp., similar) copies of a closed, convex
set. We prove Kirchberger–type theorems for the family of positive homothets
of planar convex sets and for the family of homothets of certain polyhedral
sets. Moreover, we provide examples that show that, for certain convex sets,
the family of positive homothets (resp., the family of similar copies) has a large
strict separation number, in some cases, infinity. Finally, we examine how our
results translate to the setting of non–strict separation.

1. Introduction and Preliminaries

A fundamental theorem in the study of separation properties of sets in Euclidean
d–space R

d is the Theorem of Kirchberger [7]. It states that, for any two finite sets
A and B in R

d, A and B are strictly separable by a half space, if for any T ⊂ A∪B
of cardinality at most d+2, T ∩A and T ∩B are strictly separable by a half space.

Let Bd[x, r] denote the closed Euclidean ball of radius r with x as centre in
R

d. Houle [6] proved the following. If A and B are finite sets in R
d, and, for

any T ⊂ A ∪ B of cardinality at most d + 2, there is a ball Bd[xT , rT ] such that
T ∩ A ⊂ intBd[xT , rT ] and T ∩ B ⊂ R

d \ Bd[xT , rT ], then there is a ball Bd[x, r]
such that A ⊂ intBd[x, r] and B ⊂ R

d \ Bd[x, r].

In [1] the following strengthening of this result is proved: If for every T , we
have that rT ≤ 1 in the preceding statement, then there is a ball Bd[x, r] strictly
separating A from B with r ≤ 1.

For simplicity, we call a (possibly unbounded) closed, convex set with non–empty
interior a convex domain. A compact convex domain is a convex body. We define
separation of sets by convex domains as follows.
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2 Z. LÁNGI AND M. NASZÓDI

Definition 1.1. Let A, B ⊂ R
d, and K ⊂ R

d be a convex domain. We say that K
strictly separates (resp., separates) A from B if A ⊂ intK and B ∩K = ∅ (resp., if
A ⊂ K and B ∩ intK = ∅).

Note the order of A and B in the preceding definition.

Definition 1.2. Let F be a family of convex domains in R
d. Let n be the smallest

positive integer (if it exists) such that the following holds for every two finite sets
A, B ⊂ R

d: If for every T ⊂ A ∪ B with cardT ≤ n, there is a member of F that
strictly separates T ∩ A from T ∩ B, then there is a member of F that strictly
separates A from B. We call n the strict separation number of F , and denote it by
sepF . If there is no such n, then we set sepF := ∞.

Definition 1.3. Let K ⊂ R
d be a convex set with non–empty interior. Let H(K)

and S(K) denote, respectively, the family of positive homothetic images of K, and
the family of the images of K under orientation–preserving similarities.

In the present note, we find sep(H(K)) and sep(S(K)) for various convex do-
mains in R

d. First, in Section 2, we show that sep(H(K)) = 4 for any plane convex
body K. In Section 3, we study strict separation by certain types of polyhedral sets.
Next, in Section 4, we construct convex domains with large separation numbers.
Finally, in Section 5, we state the analogues of our results for non–strict separation.

We denote the origin by o, and the standard basis vectors of R
d by e1, . . . , ed.

For x, y ∈ R
d, we denote the closed segment with endpoints x and y by [x, y].

2. Strict separation in the plane

Theorem 2.1. Let K be a convex body in R
2.Then for every two finite sets A, B ⊂

R
2 the following holds: If for every subset T of A∪B of at most four points, T ∩A

is strictly separated from T ∩ B by a positive homothetic copy of K of homothety
ratio less than one then A is strictly separated from B by a positive homothetic copy
of K of homothety ratio less than one.

Combining this Theorem with Remark 4.7, we obtain the following.

Corollary 2.2. We have sep(H(K)) = 4.

The main tool used in the proof of Theorem 2.1 is a topological version of Helly’s
Theorem (cf. [3] and [2]).

Definition 2.3. A homology cell is a topological space whose singular homology
groups are isomorphic to those of a point. Note that homology cells are non–empty,
and that all non–empty contractible spaces are homology cells.

Theorem 2.4 (Topological Helly Theorem). Let F be a finite family of open subsets
of R

d such that the intersection of each n elements of F is a homology cell for all
n ≤ d + 1. Then the intersection of all elements of F is a homology cell.

Proof of Theorem 2.1. First, we prove the theorem in the case that K is strictly
convex. Let A, B ⊂ R

2 be two finite sets such that for every four–point subset T
of A ∪ B, T ∩ A is strictly separated from T ∩ B by a positive homothetic copy of
K of homothety ratio less than one. We may assume that A is not empty.
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For every a ∈ A let Ca := {(p, r) ∈ R
2 × (0, 1) : a ∈ int(rK + p)}.

For every b ∈ B let Cb := R
2 × (−1, 1) \ {(p, r) ∈ R

2 × [0, 1) : b ∈ rK + p}.

Let F := {Ca : a ∈ A} ∪ {Cb : b ∈ B}. We show that the intersection of any
at most four members of F is contractible, and hence, a homology cell. Clearly,
members of F are open homology cells in R

2 × (−1, 1). By the assumption, every
four members of F intersect. Let T be a set of at most four points from A∪B. Let
A′ := T ∩ A, B′ := T ∩ B. Let (q, ρ) be an arbitrary element of ∩F ′, where F ′ :=
{Cs : s ∈ T }. We describe a contraction of ∩F ′ onto (q, ρ), which, by Theorem 2.4,
implies our statement (Theorem 2.4 applies as R

2 × (−1, 1) is homeomorphic to
R

3). We may assume that A′ and B′ are non–empty, otherwise ∩F ′ is clearly
contractible to a point. Let (p, r) be in ∩F ′. Now,

(2.1) A′ ⊂ (int(rK) + p) ∩ (int(ρK) + q) and B′ ∩ [(rK + p) ∪ (ρK + q)] = ∅.

We define a path

ℓ(p,r) : [0, 1] −→ ∩F ′, t 7→ (p(t), r(t))

such that ℓ(p,r)(0) = (p, r) and ℓ(p,r)(1) = (q, ρ). It is well known that the inter-
section of a convex planar curve with a positive homothetic copy of itself has at
most two connected components (cf. p. 16 of [4]). Since K is strictly convex,
bd(rK + p) ∩ bd(ρK + q) contains exactly two points, say u and v. We have two
cases.

Case 1, the longest chord of (rK +p) parallel to the line uv is in the same closed
half plane bounded by uv as the longest chord of ρK + q parallel to uv. Then, it
is easy to see that there is a unique path p : [0, 1] −→ R

2 starting at p(0) := p and
ending at p(1) := q such that for all t ∈ [0, 1]

(2.2) (rK + p) ∩ (ρK + q) ⊆ ((1 − t)rp + tρ)K + p(t) ⊆ (rK + p) ∪ (ρK + q).

We note that at any time, u, v ∈ [((1 − t)rp + trq)K + p(t)]. We define ℓ(p,r)(t) :=
(p(t), (1 − t)rp + tρ).

Case 2, the longest chord of (rK + p) parallel to the line uv is not in the same
closed half plane bounded by uv as the longest chord of ρK + q parallel to uv.
Then, we define ℓ(p,r) piecewise. First, let 0 < r̄ be such that the longest chord of
r̄K parallel to uv is of length dist(u, v). Clearly, r̄ < r. Now, there is a unique
path p(t) : [0, 1

2 ] −→ R
2 starting at p(0) := p such that for all t ∈ [0, 1

2 ]

(2.3) (rK + p) ∩ (ρK + q) ⊆ ((1 − 2t)rp + 2tr̄)K + p(t) ⊆ (rK + p) ∪ (ρK + q).

For t ∈ [0, 1
2 ], we define ℓ(p,r)(t) := (p(t), (1−2t)rp +2tr̄). Next, we can continue

this path p(t) : [12 , 1] −→ R
2 in a unique way such that

(2.4) (rK + p)∩ (ρK + q) ⊆ ((2− 2t)r̄ +(2t− 1)ρ)K + p(t) ⊆ (rK + p)∪ (ρK + q).
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For t ∈
[

1
2 , 1

]

, we define ℓ(p,r)(t) := (p(t), (2 − 2t)r̄ + (2t − 1)ρ). By Equations
(2.1-2.4), ℓ(p,r)(t) is in ∩F ′. Clearly, ℓ : ∩F ′ × [0, 1] −→ ∩F ′; ((p, r), t) 7→ ℓ(p,r)(t)
is a contraction of F ′ onto (q, ρ).

Next, we drop the assumption that K is strictly convex. Let A, B ⊂ R
2 be

finite sets such that every four of their points are strictly separated by a positive
homothetic copy of K of homothety ratio less than one.

Let ε > 0 be such that for every 4–point subset T of A∪B there is an (xT , rT ) ∈
R

2 × (0, 1) such that (T ∩ A) + B2[o, ε] ⊂ (1 − ε) intK and ((T ∩ B) + B2[o, ε]) ∩
(1 + ε)K = ∅.

Next, let Kn be a sequence of strictly convex bodies in R
2 converging to K such

that (1−ε)K ⊂ Kn ⊂ (1+ε)K for all n. Let Ā := A+B2[o, ε] and B̄ := B+B2[o, ε].
By the choice of ε, for every n, every four points of Ā ∪ B̄ are strictly separated
by a positive homothetic copy of Kn of homothety ratio less than one. Hence, by
the previous paragraph, for any finite subset S of Ā∪ B̄, Ā∩S is strictly separated
from B̄ ∩ S by a positive homothetic copy of Kn of homothety ratio less than one.
Thus, Blaschke’s Selection Theorem yields that there is a positive homothetic copy
rnKn + xn of Kn (0 < rn < 1) that (not necessarily strictly) separates Ā from B̄.

We may assume that A 6= ∅. Then, {xn} is a bounded sequence in R
2 and {rn} is

bounded in R. By taking a suitable subsequence of {Kn}, we may assume that both
{xn} and {rn} converge, say x := limxn and r := lim rn. Clearly, if cardA > 1,
then 0 < r, and rK + x separates Ā from B̄. Hence, it strictly separates A from
B. �

We note that a slight modification of the above proof yields a new proof of the
result in [1] cited in the Introduction.

3. Polyhedral Sets

Theorem 3.1. Let K be the intersection of m closed half spaces, where 1 ≤ m ≤ d,
such that their outer normal vectors are linearly independent. Then sep(H(K)) =
m + 1. Furthermore, if K is a d–simplex, then sep(H(K)) = d + 2.

Proof. Let K be a cone as in the theorem or a simplex in R
d, and let m be the

number of its facets. Let A, B ⊂ R
d be finite sets, and assume that for every

T ⊂ A ∪ B with cardT ≤ m + 1, a member of H(K) strictly separates T ∩ A from
T ∩ B .

Let N(K) := {ui : i = 1, 2, . . . , m} be the family of the outer normal vectors of
the facet hyperplanes K. Note that if K ′ is the intersection of m closed half spaces
with outer normal vectors u1, u2, . . . , um, then K ′ ∈ H(K). Vica versa, K ′ ∈ H(K)
yields N(K ′) = N(K).

Let αi := max{〈a, ui〉 : a ∈ A}, and let ai ∈ A be a point such that 〈ai, ui〉 = αi.
Observe that M :=

⋂m

i=1{x ∈ R
d : 〈x, ui〉 ≤ αi} is a member of H(K) containing

A, and that a positive homothet of K contains A if, and only if, it contains M .
Similarly, a positive homothet of K contains {ai : 1, 2, . . . , m} if, and only if, it
contains M . By our assumption, B ∩ M = ∅, since otherwise {ai : i = 1, 2, . . . , m}
is not strictly separable from {b} for any b ∈ B ∩M . Thus, the finiteness of B and
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N(K) yields the existence of a positive homothet of K strictly separating A from
B. It follows that sep(H(K)) ≤ m + 1.

Now, assume that K is a simplex. Let A be the set of centres of the d + 1 facets
of K and let B be the singleton containing the centroid of K. This example shows
that sep(H(K)) ≥ d + 2.

Next, let K be a cone with m ≤ d facets as in the theorem. In order to show
that sep(H(K)) ≥ m + 1 we consider an m − 1 dimensional affine subspace H of
R

d such that K ∩H is a simplex of dimension m− 1 in H , and choose A and B in
H as in the paragraph above. �

Our next theorem shows that no similar statement holds for sep(S(K)) of the
same objects. For simplicity, we call the intersection of two nonparallel closed half
spaces a wedge, and say that the angle of a wedge is π minus the angle between the
outer normal vectors of these two half spaces.

Theorem 3.2. Let k ≥ 5 be odd, and let W ⊂ R
d be a wedge with an angle strictly

less than π
k
. Then sep(S(W )) ≥ 3k+1

2 .

Proof. First, we prove the statement for d = 2. Let B be the vertex set of a regular
k–gon with centre at the origin. It follows from the Inscribed Angle Theorem that
the angle between two diameters of B, sharing a point of B, is equal to π

k
. Let

A := tB, where t is chosen in a way that every point of A lies on a diameter of B.

For p /∈ conv A, let Wp denote the intersection of the closed half planes H+

such that A ⊂ H+ and p ∈ bd H+. Note that Wp is a wedge with apex p such
that the union of the two supporting lines of convA contains the boundary of Wp.
Furthermore, there is a wedge with apex p strictly separating A from B if, and
only if, B ∩ Wp = ∅. Let Yp denote the unbounded component of Wp \ conv A (cf.
Figure 1).

Figure 1

Assume that W is a wedge, with apex p, that strictly separates A from B. Then
B ∩ Wp = ∅, which yields that p /∈ Yb for any b ∈ B. Observe that

⋃

b∈B Yb = R
2,
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which shows that there is no wedge of any angle that strictly separates A from B.
On the other hand, Wb separates A from B for any b ∈ B, and the angle of Wb is
π
k
.

Let T ⊂ A∪B with cardT ≤ 3k−1
2 and let 0 ≤ α ≤ π

k
. Note that if there is a point

b ∈ B \ T , then Wb may be modified to a wedge W of angle α with T ∩A ⊂ intW
and T ∩ B ⊂ R

2 \ W . On the other hand, if B ⊂ T , then A ∩ T ≤ k−1
2 , and A \ T

contains two consecutive vertices of A, which yields the existence of a wedge of
angle α with the same separation property.

Assume that d ≥ 3. Let us embed the example in the planar case into an affine
plane P of R

d, and note that there is no strip in P bounded by two parallel lines
that strictly separates A from B. Since the intersection of a wedge in R

d with P is
a wedge or a strip in P , the assertion follows from the planar case. �

Problem 3.3. Determine sep(S(W )) for a wedge W in R
2 with angle α, for every

α ∈ (0, π).

We mention one more result about strictly separating by polyhedral sets. Let
ai, bi ∈ R, with ai < bi, for i = 1, 2, . . . , d. The set [a1, b1] × [a2, b2] × . . . × [ad, bd]
is called an axis-parallel brick. We denote the family of axis-parallel bricks in R

d

by Bd. The problem of strictly separating two sets by axis-parallel bricks has been
examined by Lay in [8]. In particular, he proved the following theorem (cf. Theorem
2 in [8]).

Theorem 3.4 (Lay). We have sep(Bd) = d + 1.

4. Convex Domains with Large Strict Separation Numbers

In this section, we find convex domains with large strict separation numbers. For
1 ≤ p < ∞, we denote the unit ball of the ℓd

p–space by Bd
p := {(x1, x2, . . . , xd) ∈

R
d :

d
∑

i=1

|xi|
p ≤ 1}, and the cube by Bd

∞ := {(x1, x2, . . . , xd) ∈ R
d :

d
max
i=1

|xi| ≤ 1}.

Since Euclidean balls appear often, we keep our old notation Bd[o, 1] for Bd
2.

Theorem 4.1. We have sep(H(Bd
∞)) = ∞, where d ≥ 3.

Proof. Let k be given. First, we set A0 := {o} ⊂ R
2, and construct a set B ⊂ R

2 of
cardinality at least k such that there is no translate of B2

∞ that strictly separates A0

from B whereas, for every b ∈ B, there is a translate of B2
∞ that strictly separates

A0 from B \ {b}.

Note that x + B2
∞ strictly separates A0 from B if, and only if, x ∈ intB2

∞ and
x /∈ b + B2

∞ for any b ∈ B. Thus, it is sufficient to show that for any k, there is a
set B, of cardinality k, such that

B2
∞ ⊂

⋃

b∈B

(

b + B2
∞

)

, and B2
∞ 6⊂

⋃

b′∈B,b′ 6=b

(

b′ + B2
∞

)

for every b ∈ B. The way to construct such a set for k = 14 is shown in Figure 2.
We note that, in our construction, there is no homothetic copy of B2

∞ of at least
unit homothety ratio that strictly separates A0 from B.
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Figure 2

Now we embed R
2 into R

d as the plane P := span{e1, e2}. Let A := {−e3, e3}.
Note that any homothetic copy of Bd

∞ containing A is of homothety ratio at least
one, and contains o. Furthermore, its intersection Z with P is a square of side
length at least two. Thus, Z contains a point of B, which yields that there is no
homothetic copy of Bd

∞ strictly separating A from B. On the other hand, removing
any point from A ∪ B, the remaining points of A ∪ B are strictly separable. �

It is easy to modify the proof of Theorem 4.1 to prove the following.

Corollary 4.2. For every dimension d ≥ 3, and for every positive integer k, there
is a value p(k) such that sep(H(Bd

p)) ≥ k with p > p(k). In particular, for every k,
there is a strictly convex, smooth o–symmetric convex body K with sep(H(K)) ≥ k.

Problem 4.3. Prove or disprove that sep(H(Bd
p)) is finite for any 1 < p < ∞.

Problem 4.4. Determine sep(H(Bd
1)) for the cross–polytope Bd

1.

The following two problems are from K. Bezdek (oral communication).

Problem 4.5. Prove or disprove that sep(H(K)) is finite for any (centrally sym-
metric) smooth and strictly convex body K.

Problem 4.6. Prove or disprove that there is a neighborhood of the d–dimensional
Euclidean ball of unit radius (in the sense of the Hausdorff metric) such that
sep(H(K)) is finite for any convex body in that neighborhood.

A point b on the boundary of a convex set K is called regular if K has a unique
support hyperplane at b.
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Remark 4.7. For every convex body K ⊂ R
d, we have sep(H(K)) ≥ d + 2. To

prove this assertion, we consider d+1 affinely independent directions u1, . . . , ud+1 ∈
S

d−1 such that the support hyperplanes of K that are orthogonal to ui support K
at a regular boundary point for all i. Now, let A be the set of vertices of the simplex
S := {x ∈ R

d : 〈x, ui〉 ≤ 1, i = 1, . . . , d + 1} and B be a singleton set containing an
arbitrary interior point of S. Clearly, any d+1 points of A∪B are strictly separated
by a sufficiently large positive homothetic copy of K but there is no K ′ ∈ H(K)
that separates A from B.

Theorem 4.8. Let C0 be a strictly convex body in R
d−1 and let K be the cylinder

over C0; that is, K := C0 × [−1, 1] ⊂ R
d. Then sep(H(K)) = ∞.

Proof. For any k > 0, we construct two sets A and B with the property that for
any k–point subset T of A ∪ B, there is a positive homothetic copy K ′ of K such
that T ∩ A ⊂ int(K ′) and T ∩ B ∩ K ′ = ∅, but there is no positive homothet of K
that strictly separates A and B.

Let A := {−ed, ed} and let H := {x ∈ R
d : 〈x, ed〉 = 0}. By Lemma 4.9, there is

a minimal covering b1 −C0, b2 −C0, . . . , bl −C0 of −C0 by at least k + 1 translates
of −C0.

By the minimality of the covering, we have that for every i = 1, . . . , l there is
a point pi in −C0 that is contained in bi − C0 and is not contained in the other
members of the covering. Let B := {b1, . . . , bl}.

We show that A and B are as promised. First, let T be a subset of A ∪ B of k
points. Then, by the construction, there is a positive homothet of K that contains
T ∩A in the interior and does not intersect T ∩B, namely (1 + ε)K + pi, if bi /∈ T
and ε > 0 is sufficiently small. On the other hand, it is not difficult to see that no
positive homothet separates A from B. �

Lemma 4.9. Let C be a strictly convex body in R
d, and let k > 0. Then there is

a covering of C with at least k translates of C which is minimal; that is, omitting
any of the translates yields a family of translates that does not cover C.

Proof. Let u ∈ S
d−1 be an arbitrary direction. Let A := {x ∈ bd C : there is a t >

0 such that x + tu ∈ intC}. Next, choose translation vectors b1, . . . , bl such that
for all i = 1, . . . , l we have

(4.1) Vold−1(bdC ∩ (bi + C)) <
Vold−1(A)

k

and
l

⋃

i=1

(bi + intC) ⊇ bdC.

This is possible, since C is strictly convex. Now, for a sufficiently small ε > 0 we
have that the family {bi+C : i = 1, . . . , l}∪{εu+C} covers C. We choose a minimal
covering of C from this family of l + 1 sets. By (4.1) and since (εu + C) ∩ A = ∅,
it follows that this minimal covering family has at least k members. �

We provide the following example to show that, for every ε > 0, there is a convex
body K at a Hausdorff distance less than ε from the Euclidean unit ball Bd in R

d,
where d ≥ 3, such that sep(H(K)) ≥ d + 3. This example shows that the result
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of Houle about the strict separation number of the family of Euclidean balls is not
stable.

Example 4.10. Let Hα := {x ∈ R
d : 〈x, ed〉 = α}, H ′ := {x ∈ R

d : 〈x, ed−1〉 = 0}
and L := H0 ∩ H ′. It is not hard to see that there is an o–symmetric convex body
K within Hausdorff distance ε from Bd with the following properties. Denoting the
sections Hα ∩ K of K by Kα (where 0 ≤ α), we have

(1) Kα is a homothetic image of a (d − 1)–dimensional ellipsoid,

(2) the centre of Kα is αed,

(3) K1 = {ed},

(4) K0 is not a Euclidean ball, and Kα is a Euclidean (d − 1)–ball for exactly
one α > 0, and

(5) K ∩ H ′ is a Euclidean (d − 1)–ball.

Let A0 be the vertex set of a regular simplex inscribed in Bd[o, 1] ∩ L and let
B := {ed−1,−ed−1}. First, we show that the unique homothet of the Euclidean
ball Bd[o, 1]∩H0 in the hyperplane H0 that (not necessarily strictly) separates A0

from B is itself.

Consider a point x ∈ H0 with x 6= o. Clearly, if x ∈ {λed−1 : λ ∈ R}, then no ball
Bd[x, r] separates A0 from B. Hence, we may assume that x /∈ {λed−1 : λ ∈ R},
and that L separates x and −ed−1. This yields that ∠xoed−1 ≤ π

2 . Let Pa := {y ∈
H0 : 〈y, a〉 ≥ 0} for any a ∈ A0, and note that

⋂

a∈A0
Pa = {λed−1 : λ ∈ R}. Thus,

there is a point a of A0 such that ∠aox > π
2 . Since ||a|| = ||ed−1|| = 1, it follows

that ||a − x|| > ||ed−1 − x||. Hence, there is no r > 0 such that A0 ⊂ Bd[x, r] and
B ⊂ H0 \ intBd[x, r].

Using this argument, it is easy to show that if δ > 0, then there is no homothetic
copy of the ellipsoid K0 that separates A0 from B. Thus, by property (4) of K,
there are exactly two distinct homothetic copies K1 and K2 of K that separate A0

from B. These copies are in a symmetric position about the hyperplane H0. Let
A′ := {λed,−λed} such that λed ∈ intK1 \K2 and |λ| < 1. Clearly, no homothetic
copy of K separates A := A′ ∪ A0 from B, but, removing any of the points from
A ∪ B, the remaining points are separable. Finally, moving the points of A ∪ B a
little in suitable directions, we obtain two point sets Â and B̂, of cardinality d + 1
and 2, respectively, such that Â cannot be strictly separated from B̂, but any d+2
points of Â ∪ B̂ are strictly separable.

5. Non–strict Separation

We may define the non–strict separation number sep(F) of a family F of convex
domains by modifying Definition 1.2 in the obvious way. Then, one might study
sep(H(K)) and sep(S(K)) for any convex domain K ∈ R

d. We list which of our
results hold, or how they need to be modified, for these two quantities.

Theorem 2.1 and Corollary 2.2 are valid if K is a planar strictly convex body. The
only ingredient of the proof of Theorem 2.1 that needs to be modified is Theorem 2.4
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(the Topological Helly Theorem). Luckily enough, its statement remains valid if
we replace the word “open” with the word “closed” everywhere (cf. [3]).

However, the example of A := {±e1,±e2} and B := {o} shows that sep(H(K)) ≥
5 if K is an axis–parallel square.

Theorem 3.1 holds also for sep(H(K)). With regard to Theorem 3.2, we have
the following.

Theorem 5.1. Let k ≥ 6 be even, and let W ⊂ R
d be a wedge with an angle less

than or equal to 2π
k

. Then sep(S(W )) ≥ k.

The separation number of the family Bd of axis–parallel bricks is different from
the strict separation number:

Theorem 5.2. We have sep(Bd) = 2d + 1.

Proof. To prove that sep(Bd) ≤ 2d + 1, we consider the smallest brick S ∈ B that
contains A. Then, there is a set A0 ⊂ A of cardinality at most 2d such that each
facet of S contains at least one point of A0. Clearly, A is separated from B by a
brick if, and only if, B ∩ S = ∅, which can be verified by checking it for sets of the
form T = A0 ∪ {b}, where b ∈ B.

To show that sep(Bd) ≥ 2d + 1, we consider the sets A and B, where A is the
set of vertices of the cross–polytope Bd

1 and B := {o}. �

The results in Section 4 are valid also for sep(H(K)).
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