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Abstract

We investigate various problems related to convexity in the three spaces of constant

curvature (the Euclidean space, the hyperbolic space and the sphere) and in normed

spaces.

Our first problem is due to Erdős and Szekeres, who, in 1935, made the conjecture

that in a set S of 2k−2 +1 points in the Euclidean plane, if no three points of S lie on

the same line, then there are k points in convex position. In 2006, a computer-based

proof of this conjecture for k = 6 was given by Peters and Szekeres. We give a proof

of the conjecture, without the use of computers, for k = 6 if the convex hull of S is

a pentagon.

Next, we introduce variants of convex sets and polyhedral domains in Euclidean d-

space, called spindle convex sets and ball-polyhedra, respectively, and examine their

properties. We prove the following theorem for the three planes of constant curvature.

Among simple ‘polygonal’ curves of a given perimeter and with k circle arcs as ‘edges’,

the regular one encloses the largest area. Then we disprove a conjecture of Maehara

about spheres in the Euclidean n-space for n ≥ 4, formulate variants of the conjecture

for the hyperbolic and the spherical spaces, and prove similar results.

Lassak [39] proposed the problem of finding point sets in an oval at pairwise dis-

tances, measured in the norm relative to the oval, as large as possible. In Chapter 9,

we show that, among seven points in an oval, there is a pair at a distance at most

one, measured in the norm relative to the oval.
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Chapter 1

Introduction

We investigate problems related to convexity in the Euclidean space, in the hyper-

bolic space, on the sphere and in normed spaces.

In Chapters 2 and 3, we introduce the geometries we work with: the three spaces

of constant curvature, and normed spaces. We present the tools we use in our inves-

tigation. In Chapter 3, we prove several theorems for the Euclidean, the hyperbolic

and the spherical spaces, including a characterization of curves of constant geodesic

curvature.

Our first problem involves finite point sets in the Euclidean plane E2, and it

is discussed in Chapter 4. In 1935, Paul Erdős and George Szekeres proved the

existence of a positive integer M for every integer k ≥ 3, such that among M points

in the plane in general position (that is, no three points lie on the same line), there

are k points in convex position. They conjectured that the smallest such integer is

equal to 2k−2 + 1. Their conjecture is trivial for k = 3, was proven for k = 4 by

Esther Klein in the 1930s, and for k = 5 by J. D. Kalbfleish, J. G. Kalbfleish and

Stanton (cf. [36]) in 1970. In 2006, Peters and Szekeres gave a computer-based proof

of the conjecture for k = 6. Our main result is a proof of this conjecture, without

the use of computers, for k = 6 if the convex hull of the points is a pentagon.

In Chapter 5, we introduce a variant of the notion of convexity, called spindle

convexity. A set S, in the Euclidean n-space, is spindle convex if for any two points

p, q ∈ S, S contains the intersection of all the unit balls containing p and q. Spindle

1



2

convexity is a special case of the concept of “Überkonvexität”, defined by Mayer

in [42], who, in his definition, used translates of a given convex body instead of

unit balls. Our goal is to find analogues, for spindle convex sets, of theorems from

the theory of (linearly) convex sets. In Section 5.1, we prove a theorem about

separating two spindle convex sets by a unit sphere. The main result of Section 5.2

is a Kirchberger-type theorem for separating two finite sets by a sphere of radius at

most one. In Section 5.3, we prove counterparts of the Theorems of Carathéodory

and Steinitz about a point contained in the convex hull (respectively, in the interior

of the convex hull) of a point set. Finally, Section 5.4 deals with an Erdős-Szekeres

type question. For k ≥ 3, what is the smallest integer M̂n(k) satisfying the following:

If S is a set of M̂n(k) points in the Euclidean n-space such that any n + 1 points are

in spindle convex position, then S contains k points in spindle convex position?

Our goal in Chapter 6 is to examine ball-polyhedra. A ball-polyhedron is the

nonempty intersection of finitely many unit balls in En. Our study is motivated by

polyhedral domains, which were the subject of research for the ancient Greeks as well

as for today’s geometers. In particular, ball-polyhedra were studied, for example, by

Heppes [32] and by Sallee [45]. In Section 6.1, we prove the Euler-Poincaré formula

for a special class of 3-dimensional ball-polyhedra, called standard ball-polyhedra.

The results presented in Section 6.2 are motivated by the famous Kneser-Poulsen

Conjecture. This conjecture states that the area of the intersection of finitely many

Euclidean balls does not decrease under a contraction of the centres of the balls.

The conjecture has been proven in the plane by K. Bezdek and Connelly [4], and is

still open for n ≥ 3. We prove that the inradius of the intersection of finitely many

unit balls does not decrease under a contraction, and show that no similar statement
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holds for the diameter, the circumradius and the minimal width of the intersection.

In Section 6.3, we examine the edge-graphs of 3-dimensional standard ball-poly-

hedra. Our research is motivated by the characterization of the edge-graphs of 3-

dimensional polytopes by Steinitz (cf. [50], pp. 103-126). In Section 6.4, we prove

the following conjecture of K. Bezdek for the special class of ball-polyhedra: If C is

a convex body in E3 such that any planar section of C is axially symmetric, then C

is either a body of revolution or an ellipsoid. In Section 6.5, we present a variant of

the Discrete Isoperimetric Inequality for 2-dimensional ball-polyhedra. The results

in Chapters 5 and 6 are obtained in collaboration with K. Bezdek, M. Naszódi and

P. Papez.

In Chapter 7, we generalize the isoperimetric problem discussed in Section 6.5.

We consider a simple closed polygon Γ in E2, or H2 or S2, and replace the edges of Γ

by the shortest closed curves of constant geodesic curvature kg ≥ 0 facing outwards

(respectively, inwards). We call this object an outer kg-polygon (respectively, inner

kg-polygon). If M = S2, we assume also that Γ lies in an open hemisphere. We prove

that, among inner kg-polygons with a given perimeter and with a given number of

vertices, the regular one has the largest area. Similarly, among outer kg-polygons

with a given perimeter ` and with a given number of vertices, the regular one has

maximal area in the case that ` is not equal to the perimeter of a circle of geodesic

curvature kg. Otherwise, the area of an outer kg-polygon is maximal if, and only if,

the vertices of the kg-polygon lie on a circle of geodesic curvature kg. The results

discussed in Chapter 7 are obtained in collaboration with B. Csikós and M. Naszódi.

Maehara [40] proved the following theorem. Let F be a family of at least n + 3

distinct (n − 1)-spheres in En. If any n + 1 spheres in F have a point in common,
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then all of them have a point in common. Maehara conjectured for n ≥ 3 that

the assertion is valid if F is a family of n + 2 distinct unit (n − 1)-spheres in En.

In Chapter 8, we construct a family F of n + 2 distinct unit (n − 1)-spheres, with

n ≥ 4, such that any n + 1 members of F have a point in common, but
⋂

F = ∅.

We prove a variant of Maehara’s theorem for the hyperbolic and the spherical space,

and examine also the counterparts of his conjecture. The results in Chapter 8 are a

joint work with K. Bezdek, M. Naszódi and P. Papez.

Lassak [39] proposed the problem of finding point sets in a plane convex body C

at pairwise distances, measured in the norm relative to C, as large as possible. In

Chapter 9, we prove that, in a set of seven points in a plane convex body C, there

is a pair at a distance at most one, measured in the norm relative to C. This result

verifies a conjecture stated in [11]. We give a partial characterization of the plane

convex bodies and point sets for which the minimal pairwise distance of the points

is equal to one. Our results yield also that if seven homothetic copies of a plane

convex body C, with a positive homothety ratio λ, are packed into C, then λ ≤ 1
3
.

The results in this chapter are a joint work with A. Joós.

Theorems, proposition, definitions, etc. are numbered by chapter and section. In

case of a theorem from the literature, the names of the authors are given in brackets

following the word ‘Theorem’. In case of new theorems, there are no names listed.

Thus, a theorem, with names after it, is not officially included in the work of the

author, even if his name appears in the list (e.g. Theorem 9.1.1).



Chapter 2

The Euclidean space and normed spaces

2.1 The Euclidean space and its affine properties

Consider the vector space Rn of the real n-tuples over the field R of real numbers.

An element of Rn is a vector or a point. The zero vector (0, 0, . . . , 0) is the origin

of Rn, which we denote by o. For any two vectors x = (α1, α2, . . . , αn) and y =

(β1, β2, . . . , βn), we define

< x, y >= α1β1 + α2β2 + . . . + αnβn,

which we call the standard inner product, or simply the inner product of x and y.

The n-dimensional Euclidean space En is the real vector space Rn equipped with the

function < ., . >: Rn × Rn → R.

For x ∈ En, we call ‖x‖ =
√

< x, x > the Euclidean norm of x. The Euclidean

distance of points x, y ∈ En is defined as dist(x, y) = ‖y − x‖. It is easy to see that

Rn with the Euclidean distance function is a metric space. The topology induced by

this metric function is the usual topology of En.

The distance dist(A, B) of the nonempty sets A, B ⊂ En is inf{dist(a, b) : a ∈

A and b ∈ B}. The angle of two nonzero vectors x, y ∈ En is

^(x, y) = arccos

(
< x, y >

‖x‖ · ‖y‖

)
.

A function f : En → En that satisfies dist(f(x), f(y)) = dist(x, y) for any x, y ∈ En

is an isometry of En.

5
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There is a natural extension of vector operations for subsets of En. Namely, for

A, B ⊂ En distinct from the empty set and α, β ∈ R, we set

αA + βB = {αa + βb : a ∈ A and b ∈ B}.

The set A+B is called the vector sum or Minkowski sum of A and B (cf. Figure 2.1).

For simplicity, we denote {a} + B by a + B. A set A ⊂ En that satisfies A = −A is

called an o-symmetric set.

Figure 2.1: Minkowski sum

A set in the form K = x + L, where L is a linear subspace in En and x ∈ En,

is an affine subspace of En of dimension dim K = dim L. It is convenient to call

the empty set ∅ a (−1)-dimensional subspace. Affine subspaces of dimension 0, 1,

2 and n − 1, called, respectively, points, lines, planes or hyperplanes, often play an

important role. Hyperplanes correspond to the level surfaces of nondegenerate linear

functionals. Affine subspaces of the form x + L and y + L, where x, y ∈ En and L is

a linear subspace of En, are parallel. Parallel hyperplanes are different level surfaces

of the same nondegenerate linear functional.

The intersection of (finitely or infinitely many) affine subspaces is an affine sub-

space. For any nonempty set A ∈ En, the intersection of all the affine subspaces
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that contain A is the affine hull of A, denoted by aff A. For a1, a2, . . . , ak ∈ En and

λ1, λ2, . . . , λk ∈ R with
∑k

i=1 λi = 1, the point λ1a1 + λ2a2 + . . . + λkak is an affine

combination of a1, a2, . . . , ak. It is easy to show that, for any nonempty A ⊂ En,

aff A consists of all the affine combinations of points of A.

The restriction of the standard inner product to an affine subspace K ⊂ En

of dimension k, where 1 ≤ k ≤ n, induces a topology. This topological space is

homeomorphic to Ek. For any set A ⊂ En, the interior or boundary of A with

respect to the topology in aff A, is, respectively, the relative interior of A, denoted

by relint A, or the relative boundary of A, denoted by relbd A.

A set A ⊂ En is said to be affinely independent if no point a of A is an affine

combination of points of A distinct from a. Equivalently, A is affinely independent,

if
∑k

i=1 λiai = 0 and
∑k

i=1 λi = 0 implies that λ1 = λ2 = . . . = λk = 0 for any

a1, a2, . . . , ak ∈ A. The points of a set A ⊂ En are in general position, if any n + 1

of them are affinely independent.

Let A ⊂ En. If dim aff A = k, then we say that the dimension of A is dim A = k.

In this case, an affinely independent subset B ⊂ A contains at most k + 1 points.

Furthermore, aff B = aff A if, and only if, B contains exactly k + 1 points.

An affine transformation is a transformation h : En → En with the property that

h(l) is a line for every line l in En. Every affine transformation may be written as

h(x) = y + g(x), where g is a linear transformation with det g 6= 0 and y ∈ En.

Let (a1, a2, . . . , an+1) be an ordered (n + 1)-tuple of affinely independent points

in En. Then the determinant D = det(a2 − a1, a3 − a1, . . . , an+1 − a1) is not zero.

The orientation of (a1, a2, . . . , an+1) is the sign of the determinant D. In the plane,

three points are in counterclockwise, respectively clockwise, order, if their orientation
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is positive, respectively negative. The points a1, a2, . . . , ak = a0 ∈ E2 are in counter-

clockwise, respectively clockwise, order, if ai−1, ai and ai+1 are in counterclockwise,

respectively clockwise, order for i = 1, 2, . . . , k.

2.2 Convex sets and their separation properties

Let a, b ∈ En. The closed and open segment with endpoints a and b are, respectively,

the sets [a, b] = {λa + (1−λ)b : 0 ≤ λ ≤ 1} and (a, b) = {λa + (1−λ)b : 0 < λ < 1}.

The closed (resp., open) half line with endpoint p ∈ En and direction v ∈ En is the

set {p + λv : λ ∈ [0,∞)} (resp., {p + λv : λ ∈ (0,∞)}). Two segments or half lines

are parallel, if their affine hulls are parallel. If [a, b], [c, d] ⊂ En are parallel segments

and c 6= d, then

‖a − b‖
‖c − d‖ =

‖h(a) − h(b)‖
‖h(c) − h(d)‖

for any affine transformation h.

A set C ⊂ En is convex if a, b ∈ C implies that [a, b] ⊂ C. Clearly, affine

subspaces of En are convex. Furthermore, the intersection of (finitely or infinitely

many) convex sets is convex.

If A and B are two nonempty sets, then their direct sum is defined as

A × B = {(a, b) : a ∈ A and b ∈ B}.

If A ⊂ Ek and B ⊂ El are nonempty and convex, then A × B ⊂ Ek+l is convex.

The intersection of all the convex sets that contain a given nonempty set A ⊂ En is

the convex hull of A, denoted by conv A or [A] (cf. Figure 2.2). For A1, A2, . . . , Ak ⊂

En distinct from ∅, we define [A1, A2, . . . , Ak] = [A1∪A2∪. . .∪Ak] and, (A1, A2, . . . , Ak) =
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relint[A1∪A2∪. . .∪Ak]. Here, for simplicity, we omit the curly brackets if some of the

sets are singletons. Thus, [a, B] denotes [{a}, B]. If, for any x ∈ A, x /∈ conv(A\{x}),

we say that the points of A are in convex position.

Figure 2.2: Convex hull of a set

A point in the form
∑k

i=1 λiai, where ai ∈ En and λi ≥ 0 for i = 1, 2, . . . , k such

that
∑k

i=1 λi = 1, is called a convex combination of a1, a2, . . . , ak. For a nonempty

set A ⊂ En, [A] consists of all the convex combinations of points of A. The centroid

of the finite set A = {a1, a2, . . . , ak} is the point (
∑k

i=1 ai)/k.

Carathéodory’s Theorem states that if x ∈ [A] and A ∈ En, then x is the convex

combination of k ≤ n+1 points of A. In other words, if x ∈ [A] then x ∈ [B] for some

B ⊂ A with card B ≤ n + 1. If A = {a1, a2, . . . , an+1} is an affinely independent set

and x is the centroid of A, we see that n+1 in Carathéodory’s Theorem is necessary.

A similar theorem is due to Steinitz: If x ∈ (A), then x is in the interior of the

convex hull of at most 2n points of A. If A = {±a1,±a2, . . . ,±an}, where the points

a1, a2, . . . , an are linearly independent, then the origin o is not in the interior of the

convex hull of any proper subset of A. This shows that 2n in Steinitz’s Theorem is

necessary.

For any hyperplane H , En \ H consists of two convex, open, connected com-
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ponents, whose boundary is H . These two components are the open half spaces

bounded by H . Their closures are the closed half spaces bounded by H . Two sets

A, B ⊂ En, contained in distinct closed (respectively, open) half spaces bounded by

the hyperplane H , are said to be separated (respectively, strictly separated) by H .

Figure 2.3: Separation of convex sets

Let C and D be nonempty convex sets. Then there is a hyperplane that separates

C and D if, and only if, their relative interiors do not intersect (cf. Figure 2.3). If C

and D are disjoint nonempty closed convex sets and at least one of them is compact,

then there is a hyperplane that strictly separates C and D.

Kirchberger’s theorem states that if A, B ∈ En are compact and, for any T ⊂

A∪B with card T ≤ n + 2, T ∩A and T ∩B are strictly separated by a hyperplane,

then A and B are strictly separated by a hyperplane. The proof of Kirchberger’s

theorem is based on Helly’s theorem, one of the most fundamental theorems in the

theory of convex sets. According to Helly’s theorem, if C1, C2, . . . , Ck, k ≥ n + 1,

are convex sets such that any n + 1 of them have a nonempty intersection, then

⋂k
i=1 C + i 6= ∅. There is an infinite version of Helly’s theorem: if {Ci : i ∈ I} is an

infinite family of closed convex sets at least one of which is compact, and any n + 1

of them have a nonempty intersection, then
⋂

i∈I Ci 6= ∅.
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2.3 Convex bodies

An important class of convex sets is the family of convex bodies. A convex body is a

compact, convex set with nonempty interior. We call a plane convex body an oval.

We denote the family of ovals by C and the family of o-symmetric ovals by M. Let

C, C1, C2, . . . , Ck ∈ C. If
⋃k

i=1 Ci ⊂ C, and Ci ∩ Cj = ∅ for every i 6= j, we say that

C is packed by C1, C2, . . . , Ck. If C ⊂ ⋃k
i=1 Ci, we say that C1, C2, . . . , Ck cover C.

An important convex body in En is the closed n-dimensional unit ball with centre

o: Bn[o] = {x ∈ En : ‖x‖ ≤ 1}. For c ∈ En and r > 0, Bn[c, r] = c + rBn[o] is

the closed n-dimensional ball of radius r and centre c, Bn(c, r) = int Bn[c, r] is the

open n-dimensional ball of radius r and centre c and Sn−1(c, r) = bdBn[c, r] is the

(n − 1)-dimensional sphere of radius r and centre c. A k-dimensional ball of radius

r and centre c is the intersection of Bn[c, r] with an affine k-space that contains c.

We define lower dimensional spheres similarly. Note that a 0-dimensional sphere is

a pair of points, and a 0-dimensional ball is a singleton.

For simplicity, we set Bn[c] = Bn[c, 1], Bn(c) = Bn(c, 1) and Sn−1(c) = Sn−1(c, 1).

Furthermore, for a nonempty set X ⊂ En, B[X] =
⋂

x∈X Bn[x] and B(X) =

⋂
x∈X Bn(x). We define B[∅) and B(∅) as the ambient space En. If x ∈ Sn−1(c1, r1)∩

Sn−1(c2, r2) then the angle of Sn−1(c1, r1) and Sn−1(c2, r2) is π − ^(x − c1, x − c2).

Consider a convex set C ⊂ En and a point x ∈ bd C. Due to the separation

properties of convex sets, there is a hyperplane H that separates x and C. Clearly,

x ∈ H and H ∩ int C = ∅. We say that H supports C at x. Given a hyperplane H

and a convex body C in En, there are exactly two hyperplanes parallel to H that

support C.
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Let C, D ⊂ En be convex bodies. The Hausdorff distance of C and D is

min{δ ∈ [0,∞) : C ⊂ D + δBn(o) and D ⊂ C + δBn(o)}.

It is easy to see that the Hausdorff distance of convex bodies defines a metric on the

family of n-dimensional convex bodies. We call this metric the Hausdorff metric.

Blaschke’s Selection Theorem states that, in every infinite family F = {Ci : i ∈ I}

of n-dimensional convex bodies contained in a given ball Bn(c, r), there is a subfamily

{Ck : k = 1, 2, 3 . . .} ⊂ F such that limk→∞ Ck exists with respect to Hausdorff

distance.

Let C ⊂ En be a convex body. If x, y ∈ C implies that (x, y) ⊂ int C, then we say

that C is strictly convex. In other words, C is strictly convex if it does not contain

a segment in its boundary. If, for every x ∈ bd C, there is a unique hyperplane that

supports C at x, we say that C is smooth.

Figure 2.4: Width in the direction u and minimal width
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The diameter of a bounded set P is

diam P = sup{dist(x, y) : x, y ∈ P}.

If C is a convex body and u ∈ Sn−1(o), then

wu(C) = max{< x, u >: x ∈ C} − min{< x, u >: x ∈ C}

is the width of C in the direction u. This number is equal to the distance between the

two supporting hyperplanes of C, perpendicular to u (cf. Figure 2.4). The minimal

width of C is

w(C) = min{wu(C) : u ∈ Sn−1(o)}.

Figure 2.5: Circumsphere and insphere

For every bounded set C ⊂ En, there is a unique smallest ball Bn[c′, R] that

contains C. The circumball, circumsphere, circumradius and circumcentre of C are

Bn[c′, R], Sn−1(c′, R), R and c′, respectively. We denote the circumradius of C by

cr(C).
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The radius of a largest open ball contained in the bounded, convex set C ⊂ Ed

is the inradius of C, denoted by ir(C). If there is a unique largest ball Bn(c, r)

contained in C, then Bn[c, r], Sn−1(c, r) and c are called the inball, insphere and

incenter of C, respectively (cf. Figure 2.5).

If H is a hyperplane that supports a convex body C then H ∩ C is a face of C.

We regard C as a face of itself. A face F of C with dim aff F = k is a k-face of

C. The empty set is a (−1)-dimensional face of C. If {x} is a face of C, then x is

an exposed point of C. A point x ∈ C that is not contained in any open segment

(y, z) ⊂ C is an extreme point of C. We denote the set of extreme points of C by

ext C and the set of exposed points of C by exp C. Clearly, exp C ⊂ ext C, but these

sets are generally not equal (cf. Figure 2.6). The Krein-Milman Theorem states that

C = [ext C] = [cl exp C].

Figure 2.6: An extreme point which is not an exposed point

2.4 Convex polytopes

The convex hull of a finite point set S is a convex polytope or simply a polytope.

The intersection of finitely many closed half spaces is a polyhedral domain. A set
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is a polytope if, and only if, it is a bounded polyhedral domain. Two-dimensional

polytopes are called polygons.

A 0-face, or a 1-face, or an (n − 1)-face of a polytope P ∈ En, is a vertex, or

edge, or facet of P , respectively. The set of the vertices of P is called the vertex set

of P , and is denoted by V (P ). A face of a polytope P is [S] for some S ⊂ V (P ).

Furthermore, if F1 = [S1] and F2 = [S2] are faces of a polytope P , S1, S2 ⊂ V (P ),

then F1 ∩ F2 = [S1 ∩ S2] is a face of P . Hence, the family of faces of P forms a

(bounded) lattice.

Let fk denote the number of k-faces of P . The Euler-Poincaré Formula is:

n−1∑

i=0

fk = 1 + (−1)n−1.

A sequence of faces of P , F0, F1, . . . , Fn−1, Fn = P such that dim Fk = k and

Fk ⊂ Fk+1, is called a flag of P . If, for every two flags F1 and F2 of P , there is

an isometry h : En → En that maps F1 into F2, then P is a regular polytope. In

particular, a polygon is regular if, and only if, the lengths of its edges and its angles

are equal.

2.5 Volume and surface area

Let [αi, βi] be an interval in the ith coordinate axis. Then [α1, β1] + [α2, β2] + . . . +

[αn, βn] ⊂ En is an elementary brick. We set λn(B) =
∏n

i=1(βi − αi) and call this

quantity the volume of B.

Let {Bi : i = 1, 2, . . . , k} be a family of elementary bricks such that any two

elements have disjoint interiors. We say that {Bi : i = 1, 2, . . . , k} is a packing of

elementary bricks. We define λn(
⋃k

i=1 Bi) =
∑k

i=1 λn(Bi). It is easy to check that
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this quantity is independent of the way
⋃k

i=1 Bi is decomposed into a packing of

elementary bricks. We note also that the union of finitely many elementary bricks

may be decomposed into a packing of elementary bricks, which enables us to define

the volume of the union of elementary bricks.

If A ⊂ En is a bounded set, then the infimum of λn(
⋃k

i=1 Bi), over all finite

families {Bi : i = 1, 2, . . . , k} of elementary bricks whose union contains A, is the

outer measure λout
n (A) of A. Similarly, the supremum of λn(

⋃k

i=1 Bi) over all finite

families of elementary bricks whose union is contained in A, is the inner measure

λin
n (A) of A. If int A = ∅, we set λin

n (A) = 0. If λout
n (A) = λin

n (A), then we say that

the n-dimensional volume of A is voln(A) = λout
n (A). Note that voln(U) = λn(U),

if U is a union of elementary bricks. It is known that every n-dimensional bounded

convex set has n-dimensional volume. The 2-dimensional volume of a set A ⊂ E2 is

called the area of A, denoted by area(A).

Some properties of the volumes of convex sets are the following.

• If A, B ⊂ En are bounded, convex sets with disjoint interiors and A ∪ B is

convex, then voln(A ∪ B) = voln(A) + voln(B).

• If A ⊂ En is bounded and convex, and α ∈ R, then voln(αA) = |α|n voln(A).

• For every isometry h : En → En and every bounded, convex set A ⊂ En,

voln(h(A)) = voln(A).

• If h : En → En is an affine transformation, A, B ⊂ En are bounded and convex,

and voln(B) > 0, then

voln(h(A))

voln(h(B))
=

voln(A)

voln(B)
.
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Let C ⊂ En be a convex body. The limit

surf(C) = lim
t→0

voln(C + tBn[o]) − voln(C)

t

is the surface area of C. This limit exists for every convex body. For an oval C, we

may use the term perimeter perim(C) of C for surf(C).

There is another, equivalent way to define perim(C). Let γ : [0, 1] → En be a

continuous curve. If the set S = {∑k
i=1 ‖γ(ti) − γ(ti−1)‖ : k = 1, 2, 3, . . . and 0 =

t0 ≤ t1 ≤ . . . ≤ tk = 1} is bounded, we say that γ is rectifiable and the arc length of

γ is arclength(γ) = sup S. If γ is continuously differentiable, then

arclength(γ) =

∫ 1

0

‖γ̇(t)‖dt.

The boundary of an oval C is a simple, closed, continuous curve with arc length

perim(C).

2.6 Normed spaces

Observe that the Euclidean norm ‖(x1, x2, . . . , xn)‖ =
√

x2
1 + x2

2 + . . . + x2
n is a map

‖.‖ : En → R with the following properties:

• ‖x‖ ≥ 0 for x ∈ En with equality if, and only if, x = 0;

• ‖λx‖ = |λ| · ‖x‖ for λ ∈ R and x ∈ En;

• ‖x + y‖ ≤ ‖x‖ + ‖y‖ for x, y ∈ En.

This suggests the following definition.

Definition 2.6.1. Consider the n-dimensional real vector space Rn. If a function

f : Rn → R satisfies
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• f(x) ≥ 0 for x ∈ Rn with equality if, and only if, x = 0;

• f(λx) = |λ|f(x) for λ ∈ R and x ∈ Rn;

• f(x + y) ≤ f(x) + f(y) for x, y ∈ Rn;

then f is a norm in Rn. The vector space Rn equipped with a norm is a normed

space or, if n = 2, a normed plane.

Obviously, the Euclidean norm is a norm. Furthermore, if C is an o-symmetric

convex body in En, then the function f : Rn → R, f(x) = min{λ : x ∈ λC, λ ≥ 0}

is a norm, which we denote by ‖.‖C : Rn → R. On the other hand, consider a norm

f : Rn → R. The set C = {x ∈ Rn : f(x) ≤ 1} is the unit ball of the norm. The unit

ball of any norm is an o-symmetric convex body in En. Hence any norm f is ‖.‖C ,

where C is the unit ball of f .

A norm ‖.‖C is strictly convex if its unit ball C is strictly convex in En. A norm

is smooth if its unit ball is smooth. Observe that distC : Rn ×Rn → R, distC(x, y) =

‖y − x‖C is a metric, which we call the metric defined by the norm ‖.‖C . The

quantity distC(x, y) is the normed distance of points x and y. The normed distance

of the nonempty sets X, Y ⊂ Rn is distC(X, Y ) = min{distC(x, y) : x ∈ X, y ∈ Y }.

We may denote the Euclidean norm ‖.‖ and distance dist(., .) by ‖.‖E and distE(., .),

respectively.

If X ⊂ Rn is bounded and ‖.‖C : Rn → R is a norm, then the diameter of X

with respect to the norm ‖.‖C is diamC(X) = sup{distC(x, y) : x, y ∈ X}. Consider

a convex body D ∈ En. If, for any u ∈ Sn−1(o), the normed distance of the two

supporting hyperplanes of D, orthogonal to u, is equal to a constant d, then D is

of constant width d with respect to the norm ‖.‖C. We note that D is of constant
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width two with respect to ‖.‖C if, and only if, 1/2(D − D) = C. The convex body

1/2(D − D) is the central symmetral of D.

Figure 2.7: Relative distance of points x and y

The norm with unit ball C = 1/2(D − D) is the relative norm of D. The D-

distance of points x, y ∈ Rn is distD(x, y) = distC(x, y), where C = 1/2(D − D). In

other words,

distD(x, y) =
2‖y − x‖E

‖p − q‖E

,

where p, q ∈ D such that q − p is parallel to y − x, and there are no points p′, q′ ∈ D

such that ‖q′ − p′‖E > ‖q − p‖E and q′ − p′ is parallel to y − x (cf. Figure 2.7). If

it is clear which convex body D we write about, we may also use the term relative

distance.

Observe that if C ⊂ D ⊂ En are convex bodies, then dC(x, y) ≥ dD(x, y) for

every x, y ∈ En. Furthermore, a convex body C is a body of constant width two in

its relative norm. More generally, for any λ ∈ [0, 1], λC + (1 − λ)(−C) is a body of

constant width two in the relative norm of C.



Chapter 3

Hyperbolic and spherical spaces

3.1 Riemannian manifolds

Definition 3.1.1. Let S be a nonempty set and F be a subfamily of the family P (S)

of the subsets of S. If

1. ∅, S ∈ F,

2. any intersection of (finitely or infinitely many) elements of F is in F, and

3. the union of any finitely many elements of F is in F,

then we say that S is a topological space with the topology F. Elements of F are called

open subsets of S. A neighborhood of p ∈ S is a subset of S which has an open subset

containing p. The complement of an open set is a closed set.

Let S1 and S2 be topological spaces. A function f : S1 → S2 is called continuous,

if the pre-image of any open subset of S2 is open in S1. The topological spaces S1

and S2 are homeomorphic, if there is a continuous bijection f : S1 → S2 such that

its inverse is also continuous. Then f is called a homeomorphism.

Let S be a topological space and A ⊂ S. The topology F′ = {F ∩ A : F ∈ F} is

called the topology induced by the topology of S. If any pair of points p, q ∈ S have

disjoint neighborhoods, we say that S is a Hausdorff topological space. A topological

space is connected, if it is not the union of two disjoint, open subsets. If every point

20
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of a connected Hausdorff topological space S is contained in an open subset U which

is homeomorphic to an open subset of En, then S is locally n-dimensional Euclidean.

A pair (φ, U), where U ⊂ S is open and φ is a homeomorphism to an open subset

of En, is an n-coordinate pair. Let ui : En → R be defined as ui((x1, x2, . . . , xn)) = xi.

Then, with a little abuse of notation, xi = ui ◦ φ is called a coordinate function and

x1, x2, . . . , xn is the coordinate system defined by φ. We say that U is the domain of

this coordinate system.

Let M be a locally n-dimensional Euclidean topological space. Two n-coordinate

pairs (φ, U) and (θ, V ) are Cr-related, if φ ◦ θ−1 and θ ◦ φ−1 possess continuous rth

partial derivatives on their domains. In this case, we say that φ ◦ θ−1 and θ ◦φ−1 are

Cr functions. A Cr n-subatlas on M is a family F = {(φi, Ui) : i ∈ I} of n-coordinate

pairs, any two of which are Cr-related, and
⋃

i∈I Ui = M . A Cr n-subatlas maximal

with respect to containment is a Cr n-atlas. The space M equipped with a Cr n-atlas

is a Cr-manifold. A C∞-manifold is a smooth manifold. An example of a smooth

manifold is the n-dimensional Euclidean space.

Let f : M → N , where M and N are smooth manifolds. If f has the property

that, for any n-coordinate pairs (φ, U) of M and (θ, V ) of N , the function θ ◦ f ◦φ−1

is C∞, we say that f is smooth. Smooth functions f : M → En, where dim M = n,

form an algebra over the field of real numbers. We denote this algebra by C∞(M). If

f : M → N is smooth, bijective and its inverse is smooth, then f is a diffeomorphism,

and M and N are diffeomorph.

In the following part of this section, we deal only with smooth manifolds. Let

p ∈ M . We introduce an equivalence relation on the family of smooth functions
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defined on a neighborhood of p. We say that

f : U → R ∼ g : V → R if, and only if, p has a neighborhood W ⊂ U ∩ V

such that f |W = g|W .

The equivalence classes of this relation are the germs at p of smooth functions.

Germs form an algebra C∞
p (M) over the field of real numbers.

A derivation on C∞
p (M) is a linear map σ : C∞

p (M) → R such that

σ(fg) = gσ(f) + fσ(g) (3.1)

for any f, g ∈ C∞
p (M). A derivation on C∞

p (M) is also called a tangent vector to M

at p. Every derivation σ is of the form

σ(f) =
n∑

i=1

σ(xi)
∂f

∂xi

∣∣∣∣
0

,

where n is the dimension of M . We denote the set of tangent vectors to M at p by

TpM . Note that TpM has an n-dimensional vector space structure inherited from

the vector space structure of En.

A derivation on C∞(M) is a linear map σ : C∞(M) → R which has the property

in (3.1) for any f, g ∈ C∞(M). The disjoint union of the tangent spaces TpM over

all the points p of M is the vector bundle TM of M . The vector bundle of an n-

dimensional smooth manifold M may be equipped with a (2n)-dimensional smooth

manifold structure. A vector field on M is a smooth function V : M → TM . The

set of vector fields of M is denoted by Γ(TM). This set coincides with the set of

derivations on C∞(M). Note that the composition of derivations might not be a

derivation. On the other hand, it is easy to show that [X, Y ] = XY − Y X is a
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derivation for any X, Y ∈ Γ(TM). We call the vector field [X, Y ] the Lie bracket

of X, Y . Note that [., .] : Γ(TM) × Γ(TM) → Γ(TM) is an antisymmetric, bilinear

function.

Let f : M → N be smooth, where dim M = m and dim N = n. Consider a point

p ∈ M , an m-coordinate pair (φ, U) of M and an n-coordinate pair (θ, V ) of N , such

that p ∈ U and f(p) ∈ V . The differential map Tpf of f at p ∈ M is the map

Tpf : TpM → Tf(p)N

defined as

Dφ(p)(θ ◦ f ◦ φ−1),

where Dφ(p)(θ ◦ f ◦ φ−1) denotes the differential map of the real function θ ◦ f ◦ φ−1

at the point φ(p) ∈ Em. This definition does not depend on the choice of the two

coordinate pairs. If f is injective, and Tpf is injective for every p ∈ M , then we say

that f is an injective immersion. If f is a homeomorphism between M and f(M),

then f is an embedding. If M ⊂ N and the identity map id : M → N is an injective

immersion, then M is a submanifold of N .

Definition 3.1.2. Let M be a smooth manifold of dimension n, and gp : Tp(M) ×

Tp(M) → R be a positive definite, symmetric bilinear form such that the function

p 7→ gp(X(p), Y (p)) is smooth for any X, Y ∈ Γ(TM). The function g(p) = gp is

called the metric tensor of M , and M is a Riemannian manifold.

For u, v ∈ TpM , we may write u =
∑n

i=1 ui
∂

∂xi

∣∣∣
p

v =
∑n

i=1 vi
∂

∂xi

∣∣∣
p
. Then

gp(u, v) =
∑n

i,j=1 gij(p)uivj , where

gij(p) = gp

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
.
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Note that the matrix [gij(p)] is symmetric.

If M is a submanifold of N , and for p ∈ M , gp is the restriction of hp to TpM , we

say that (M, g) is a Riemannian submanifold of (N, h). If u ∈ TpM , then the length

of u is
√

gp(u, u). If u, v ∈ TpM are not zero, the angle between u and v is

^(u, v) = arccos
gp(u, v)√

gp(u, u)
√

gp(v, v)
.

If γ : [0, a] → M is a curve of class C1, the arc length of γ is defined as

arclength(γ) =

∫ a

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

We define the arc length of piecewise C1 class curves similarly. We say that c is

an arc-length parametrized curve, if gγ(t)(γ̇(t), γ̇(t)) = 1 for t ∈ [0, a]. For points

p, q ∈ M , the distance distM(p, q) is defined as the infimum of the arc lengths of

piecewise C1 curves connecting p and q.

Let (M, g) and (N, h) be Riemannian manifolds. A map f : M → N is an

isometry, if f is a diffeomeorphism, and for every p ∈ M , u, v ∈ TpM , we have

hf(p)(Tpf(u), Tpf(v)) = gp(u, v).

If a family of diffeomorphisms ft, where t ∈ I for an interval I that contains 0,

satisfies ft ◦ ft′ = ft+t′ for every t, t′, t + t′ ∈ I, then {ft : t ∈ I} is a one parameter

group.

A connection on a smooth manifold M is a bilinear map D : Γ(TM)×Γ(TM) →

Γ(TM) such that, for any X, Y ∈ Γ(TM) and f ∈ C∞(M), we have

1. DfXY = fDXY ;

2. DX(fY ) = (Xf)Y + fDXY ;
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3. DXY − DY X = [X, Y ].

Note that DfXY = fDXY implies that, given Y , DXY |p depends only on X|p.

Hence, we may regard a connection as a bilinear map D : TpM ×Γ(TM) → Γ(TM),

and talk about DvY , where v ∈ TpM , p ∈ M and Y ∈ Γ(TM).

For every Riemannian manifold (M, g), there is a unique connection D, called

the canonical connection or Levi-Civita connection, which satisfies the following:

Xg(Y, Z) = g(DXY, Z) + g(Y, DXZ).

In the following, D denotes only the canonical connection.

For an n-coordinate pair (φ, U), where p ∈ U ⊂ M , we may write a vector field

as a linear combination of the derivations ∂
∂xi

, where i = 1, 2, . . . , n. In particular,

D ∂
∂xj

∂

∂xk

=
n∑

i=1

Γi
jk

∂

∂xi

.

The quantities Γi
jk are called the Christoffel symbols of M . Note that Γi

jk = Γi
kj. It

is known (see [25]) that

Γi
jk =

1

2

n∑

s=1

gil

(
∂gkl

∂xj

+
∂glj

∂xk

− ∂gjk

∂xl

)
.

Let γ : I → M be a smooth curve on the interval I ⊂ R. A vector field A along

the curve γ is a smooth function A : I → TM such that A(t) ∈ Tγ(t)M for every

t ∈ I. If X, Y ∈ Γ(TM) and X ◦ γ = X ′ ◦ γ, then Dγ̇(t)X = Dγ̇(t)Y for any τ ∈ I.

Hence, we may talk about Dγ̇X for a vector field X along the curve γ. If Dγ̇ γ̇ = 0,

then γ is called a geodesic. A geodesic is complete, if it is not a proper subset of a

geodesic. A geodesically complete Riemannian manifold is a manifold in which all the

geodesics may be extended to geodesics defined on R. A totally geodesic submanifold

of M is a submanifold in which all the geodesics are geodesics of M .
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The trilinear form Rp : Tp(M) × Tp(M) × Tp(M) → Tp(M) defined as

R(x, y)z = DY (DXZ) − DX(DY Z) + D[X,Y ]Z

where X, Y, Z ∈ Γ(TM), x = Xp, y = Yp and z = Zp, is called the curvature tensor

of M at p ∈ M . Let P ⊂ TpM be a given plane. Then

K(x, y) =
gp(R(x, y)x, y)

gp(x, x)gp(y, y) − gp(x, y)2
,

where x, y ∈ P are linearly independent, is independent of x and y. The quantity

K(x, y) is called the sectional curvature of M at p in the plane spanned by x, y ∈

TpM .

Now we define the geodesic curvature of a curve in a 2-dimensional Riemannian

manifold M in two steps. Let M be a 2-dimensional submanifold of E3, and let

γ : I → M be an arc-length parametrized curve, where I is an interval. Then the

geodesic curvature of γ at point γ(t) is the length of the orthogonal projection of γ̈(t)

onto the tangent plane of M at γ(t). In particular, kg = ‖γ̈(t)‖ if M = E2.

If γ(t) = (x(t), y(t)) in a 2-coordinate pair (φ, U), where γ(t) ∈ U , then the

orthogonal projection of γ̈(t) is of the form

γ̈(t)proj = λ
∂

∂x
+ ν

∂

∂y
, (3.2)

where

λ = ẍ(t) + Γ1
11ẋ

2(t) + 2Γ1
12ẋ(t)ẏ(t) + Γ1

22ẏ
2(t) (3.3)

and

ν = ÿ(t) + Γ2
11ẋ

2(t) + 2Γ2
12ẋ(t)ẏ(t) + Γ2

22ẏ
2(t) (3.4)

(see, for example, [49]).
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Note that the expressions in (3.3) and (3.4) use only intrinsic quantities of M .

This allows us to define the geodesic curvature of an arc-length parametrized curve

γ(x(t), y(t)) in a 2-coordinate pair of any 2-dimensional Riemannian manifold M .

More specifically, we define kg as the length of the vector in (3.2):

kg =
√

λ2g11 + 2λνg12 + ν2g22, (3.5)

where λ and ν are defined by (3.3) and (3.4). In the literature, geodesic curvature is

often defined as a signed quantity in a so-called oriented Riemannian manifold. For

this definition, the reader is referred to [28].

A variation of a smooth curve γ : [a, b] → M is a smooth function H : [a, b] ×

[−ε, ε] → M such that H(s, 0) = γ(s) for any s ∈ [a, b]. The partial derivative

∂H
∂t

∣∣
(s,0)

is a vector field along γ, called the inital speed vector field of H .

3.2 Hyperbolic space

For two thousand years, many mathematicians tried to derive Euclid’s parallel pos-

tulate from his other four postulates. The idea that the parallel postulate is an

independent one appeared first in a treatise of Lobachevsky in 1830 and the famous

Appendix of J. Bolyai in 1832. Bolyai described a non-Euclidean geometry based

on the negation of the parallel postulate. The first models of this geometry were

introduced by Beltrami in 1868. His models are known as the projective disk model,

the conformal disk model and the conformal half-plane model. He used his models to

show that this new geometry, called hyperbolic geometry, is equiconsistent with the

Euclidean geometry. In this section, we introduce and describe hyperbolic geometry

by means of a higher dimensional analogue of the conformal disk model.
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Consider the open unit ball Bn = Bn(o) as a submanifold of the smooth manifold

En. We define the inner product

gH
p (x, y) =

4

(1 − ‖p‖2)2

(
n∑

i=1

αiβi

)
, (3.6)

where p ∈ Bn and x = (α1, α2, . . . , αn), y = (β1, β2, . . . , βn) ∈ TpB
n. This yields

a Riemannian manifold, which we call the n-dimensional hyperbolic space Hn. The

sphere Sn−1 = bd Bn is called the sphere at infinity. This space has a constant

sectional curvature −1.

Note that since gH
p (x, y) is pointwise proportional to the standard inner product

of En, the hyperbolic angle of any two vectors is the same as their Euclidean angle

when we regard them as vectors of the Riemannian manifold En. In other words, we

say that this model of hyperbolic geometry is conformal.

Figure 3.1: Hyperbolic lines
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A complete geodesic of a hyperbolic space is a hyperbolic line (cf. Figure 3.1). It is

the intersection of Bn with either a line of En passing through o or a Euclidean circle

that is orthogonal to the sphere at infinity. Similarly, the intersection of Bn with

either a k-dimensional affine subspace passing through o or a k-dimensional sphere

Sk(c, r) which is orthogonal to Sn−1 is a hyperbolic k-space. The totally geodesic,

geodesically complete submanifolds of Hn are exactly the hyperbolic k-spaces of

Hn. A hyperbolic (n − 1)-space is also called a hyperbolic hyperplane. A hyperbolic

hyperplane dissects Hn into two open, connected components, which are called open

hyperbolic half spaces. Their closures are closed hyperbolic half spaces.

The hyperbolic arc length of a continuously differentiable curve γ : [0, 1] → Hn is

arclengthH(γ) =

∫ 1

0

2γ̇(t)

1 − ‖γ(t)‖2
dt. (3.7)

From this, we have that the hyperbolic distance distH(p, q) of points p, q ∈ Hn is

cosh(distH(p, q)) = 1 +
2‖p − q‖

(1 − ‖p‖2)(1 − ‖q‖2)
.

Figure 3.2: Inversion with respect to the sphere Sn−1(c, r)

To describe the isometries of Hn, we need a little preparation. Consider a sphere
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Sn−1(c, r) ⊂ En. The transformation h : En \ {c} → En \ {c} defined as

h(p) = c +
r2

‖p − c‖2
(p − c)

is the inversion with respect to the sphere Sn−1(c, r) or the reflection about the sphere

Sn−1(c, r) (cf. Figure 3.2). The reflection about a sphere Sn−1(c, r) is a conformal

mapping. In other words, the angle of two objects is the same as the angle of their

images. The reflection about Sn−1(c, r) has also the property that the image of a

sphere or a hyperplane is a sphere or a hyperplane. Furthermore, the image of a

hyperplane or a sphere is itself if, and only if, it is orthogonal to Sn−1(c, r). A

function f : Hn → Hn is an isometry of Hn if, and only if, f is the restriction to Bn

of the composition of finitely many reflections about a sphere or hyperplane, each

of which is orthogonal to the sphere at infinity. It is easy to see that the group of

isometries acts transitively on Hn.

A set C ⊂ Hn is hyperbolic convex, if the hyperbolic segment with endpoints p

and q is contained in S for any p, q ∈ C. The hyperbolic convex hull of a set S ⊂ Hn is

the intersection of the hyperbolic convex sets that contain S. Hyperbolic polytopes,

polygons, edges, faces, etc. are defined similarly to their Euclidean counterparts.

Let S ⊂ Bn be a closed set which has Euclidean volume. Then the following

integral exists and is finite:

volH(S) =

∫

S

2n

(1 − ‖x‖2)n
dA,

which we call the hyperbolic volume of S. Two-dimensional volume is called area.

For the definition of volume in a Riemannian manifold, the reader is referred to [25].

If T is a hyperbolic triangle with angles α, β, γ, then the area of T is:

areaH(T ) = π − α − β − γ. (3.8)



31

3.3 Spheres, horospheres and hyperspheres in Hn

Let cH ∈ Hn, rH ∈ (0,∞). The set A = {x ∈ Hn : distH(x, cH) = rH} is called

the hyperbolic sphere of radius rH and centre cH . Hyperbolic spheres correspond to

the spheres of En that are contained in Bn, but generally the hyperbolic centre and

radius of a sphere Sn−1(c, r) ⊂ Bn are not c and r. The area of a hyperbolic disk D

of radius rH is

areaH(D) = 4π sinh2 rH

2
. (3.9)

Consider an (n−1)-sphere or a hyperplane S ⊂ En and assume that A = S∩Bn 6=

∅. If S is tangent to Sn−1, A is called a horosphere. If S intersects Sn−1 at an angle

α, where 0 < α < π/2, then A is a hypersphere (cf. Figure 3.3).

Figure 3.3: Hyperspheres and horospheres

Since reflections about spheres are conformal transformations, it is easy to see

that any two horospheres are congruent, and two hyperspheres are congruent if, and

only if, the Euclidean (n− 1)-spheres that they are contained in intersect the sphere



32

at infinity at the same angle.

Proposition 3.3.1. A set S ∈ Hn is a hypersphere if, and only if, there is a hyper-

bolic hyperplane H and a real number d > 0 such that S = {x ∈ H1 : distH(x, H) =

d}, where H1 is one of the two open hyperbolic half spaces bounded by H.

Proof. First, we prove the “only if” direction.

Figure 3.4: Hyperspheres are distance-hypersurfaces

Let S = Sn−1(c, r)∩Bn be a hypersphere and H be the hyperbolic hyperplane that

intersects Sn−1 in Sn−1(c, r) ∩ Sn−1. Using the transitivity of the isometry group of

Hn, we may assume that H passes through the origin o, and hence it can be extended

to a Euclidean hyperplane. Consider the intersection q of S and the hyperbolic line

orthogonal to H and passing through a point p of H . We show that distH(p, q) is

independent of p. Using the spherical symmetry of the conformal ball model, we

may assume that n = 2 and H is the open segment with endpoints a = (−1, 0) and
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b = (1, 0). We may also assume that the Euclidean centre c of the circle S1(c, r) is

on the negative half of the y-axis. This yields that c = (0,−
√

r2 − 1). We may also

assume that p has a nonnegative x-coordinate.

If p is the origin then q = (0, r −
√

r2 − 1) whence cosh distH(p, q) = r/
√

r2 − 1.

If p is not the origin, then the hyperbolic segment with endpoints p and q may be

extended to a Euclidean circle S1(C, R) with C on the x-axis (cf. Figure 3.4). An

elementary calculation yields that

p = (
√

R2 + 1 − R, 0), and (3.10)

q =

(
r

r
√

R2 + 1 + R
√

r2 − 1
,

R

r
√

R2 + 1 + R
√

r2 − 1

)
. (3.11)

From this, we obtain that cosh distH(p, q) = r/
√

r2 − 1 is independent of R. We

note that f(r) = arccosh(r/
√

r2 − 1) is a bijective mapping from (1,∞) to (0,∞).

From this follows the ”‘if”’ direction of Proposition 3.3.1.

Even though the parallel postulate does not hold for Hn, it is often useful to talk

about parallel lines in the following sense. Let L1, L2 ⊂ Hn be directed lines, which

are represented by the open circular arcs C1 and C2 in En. Let ri and si denote the

starting point and the endpoint of Ci. We say that L1 and L2 are parallel, if s1 = s2.

It is easy to see that if L1 is a directed line passing through a point p, then,

on every directed line L2 parallel to L1, there is a unique point q such that the

hyperbolic segment with endpoints p and q meets L1 and L2 at equal angles. This

point q is conjugate to p with respect to L1.

Proposition 3.3.2. Let S ⊂ Hn containing a point p. Then S is a horosphere if,

and only if, there is a directed hyperbolic line L passing through p such that S consists

of the points conjugate to p with respect to L.
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Proof. First, we prove the “only if ” direction. We may assume that n = 2, p = o

and S = S1((0, 1/2), 1/2)∩B2. We show that the hyperbolic line L is the intersection

of B2 with the Euclidean line x = 0.

Consider a hyperbolic line L′ = S1(c, r)∩B2 such that S1(c, r) contains the point

(0, 1). We may assume that c has a positive x-coordinate. Denote the point of

S1(c, r)∩ S1((0, 1/2), 1/2), distinct from (1, 0), by q. We show that q is conjugate to

p with respect to L.

The equation of S1(c, r) is (x − r)2 + (y − 1)2 = r2 for some r > 0. Thus,

q =

(
2r

4r2 + 1
,

1

4r2 + 1

)
.

Figure 3.5: Horospheres consist of conjugate points

Observe that the Euclidean segment connecting p and q is also a hyperbolic

segment. Denote the angle between the segment [p, q] and the x-axis by α, and the

angle between the Euclidean line passing through p, q, and the segment [q, c] by β

(cf. Figure 3.5). We note that q is conjugate to p if, and only if, α = β. An easy
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calculation yields

cos β − cos α =
< c − q, q >

‖c − q‖‖q‖ − 2r√
4r2 + 1

= 0,

which implies the “only if” direction of our assertion. The “if” part immediately

follows from the uniqueness of the conjugate point on any directed line parallel to

L.

Propositions 3.3.1 and 3.3.2 allow us to define horospheres and hyperspheres in

an alternative way, using only their model independent, geometric properties. This

approach is followed, for example, in the Appendix of J. Bolyai.

3.4 The spherical space

Consider the unit sphere Sn = Sn(o) as an n-dimensional Riemannian submanifold of

the (n+1)-dimensional Riemannian manifold En+1. Then, for p ∈ Sn and x, y ∈ TpS
n,

we have

gS
p (x, y) =< x, y > .

The sphere Sn is a Riemannian manifold of constant sectional curvature 1, which we

call n-dimensional spherical space.

The spherical distance of points p, q ∈ Sn, which is derived from the inner product

gS
p of Sn, is the angle of p and q in the Euclidean space En+1; that is,

distS(p, q) = ^(p, q).

Two points at spherical distance π are antipodal. Note that Sn is conformal: the

angle between the vectors x, y ∈ TpS
n is the same as their angle when regarded as

Euclidean vectors.
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The set Sn∩L, where L is a (k +1)-dimensional linear subspace of En+1, is called

a k-dimensional great-sphere of Sn. In particular, Sn is a great-sphere of itself. A

1-dimensional great-sphere is a great-circle. The complete geodesics of Sn are the

great-circles, and the totally geodesic, geodesically complete submanifolds of Sn are

the great-spheres of Sn. If p and q are not antipodal, then the shorter geodesic that

connects them is the closed spherical segment with endpoints p and q. Removing p

and q from this geodesic, we obtain the open spherical segment with endpoints p and

q.

An (n−1)-dimensional great-sphere Sn−1(o) of Sn dissects Sn into two connected

components, called open hemispheres, the boundaries of which are Sn−1(o). The

closure of an open hemisphere is a closed hemisphere. An open hemisphere is the

intersection of Sn with an open half space of En+1 that contains o in its boundary.

The spherical centre of the open hemisphere Sn ∩ {x ∈ En+1 :< x, u >> 0, u ∈ Sn}

is u.

Assume that the dimension of the affine subspace of smallest dimension, contain-

ing a set A ⊂ Sn, is k. Then we say that the dimension of A with respect to Sn is

k − 1.

A set C ⊂ Sn is spherically convex, if C is contained in an open hemisphere of

Sn, and p, q ∈ C implies that the spherical segment connecting p and q is contained

in C. If S ⊂ Sn is contained in an open hemisphere, then the spherical convex hull

of S is the intersection of all the spherically convex sets that contain S.

Remark 3.4.1. There is a natural extension of the notions of spherically convex

sets and spherical convex hulls for subsets of any given k-sphere Sk(c, r), where



37

0 ≤ k ≤ n − 1. The spherical convex hull of S ⊂ Sk(c, r) with respect to Sk(c, r) is

denoted by Sconv
(
S, Sk(c, r)

)
.

Let = c ∈ Sn and r > 0. An open spherical cap of radius r and centre c is the

intersection Bn+1(c, 2 sin(r/2))∩Sn. A closed spherical cap is the closure of the open

spherical cap in the relative topology of Sn.

Figure 3.6: Central and stereographic projections

Consider the open hemisphere Su = Sn ∩ {x ∈ En+1 :< x, u >> 0, u ∈ Sn} and

the hyperplane Hu = {x ∈ En+1 :< x, u >= 1}. Note that Hu is the hyperplane

tangent to Sn at u. The central projection of Su onto Hu is the mapping

f : Su → Hu, f(x) =
x

< x, u >
.

Note that a set C ⊂ Su is spherically convex if, and only if, f(C) is convex in Hu.

The stereographic projection of Sn from −u onto Hu is

g : Sn \ {−u} → Hu, g(x) = −u +
4

‖x + u‖

(cf. Figure 3.6). Observe that g is the restriction to Sn of the reflection about the

sphere Sn(−u, 2), and thus, it is conformal.
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Note that if C ⊂ Sn is spherically convex, then the set [o, C] is convex in En+1.

Hence, it makes sense to define the n-dimensional spherical volume of C as

volSn(C) =
ωn

κn+1
voln+1([o, C]), (3.12)

where ωn = surf(Sn) and κn+1 = voln+1(B
n+1). Two-dimensional spherical volume

is called spherical area. The area of a spherical triangle T with angles α, β, γ is

areaS(T ) = α + β + γ − π.

The area of a spherical cap of spherical radius r is

4π sin2 r

2
.

3.5 Curves of constant geodesic curvature

The aim of this section is to characterize curves of constant geodesic curvature in

the planes of constant sectional curvature K : E2 (K = 0), H2 (K = −1) and S2

(K = 1).

Theorem 3.5.1. A curve of constant geodesic curvature kg is a segment or a circle

arc in E2, a hyperbolic segment, or a hypercycle arc, or a horocycle arc or a hyperbolic

circle arc in H2, a spherical segment or a spherical circle arc in S2.

The following chart shows a connection between kg and geometric property of

the curve γ.
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E2 H2 S2

kg = 0 Euclidean hyperbolic segment spherical segment

segment

0 < kg < 1 hypercycle arc with distance

circle arc d from a line, kg = tanh d circle arc of

kg = 1 of radius r horocycle arc spherical radius r

1 < kg kg = 1/r circle arc of kg = cot r

radius r, kg = coth r

Proof. First, we prove the assertion for E2. Consider an arc-length parametrized

curve γ : [0, α] → E2 of geodesic curvature kg. We may assume that γ is twice con-

tinuously differentiable. Since γ is parametrized with arc length, we have ‖γ̇(s)‖ = 1.

Hence γ̇(s) = (cos f(s), sin f(s)) for some continuously differentiable function f . The

geodesic curvature of this curve is kg = ‖γ̈(s)‖ = |ḟ(s)|. This geodesic curvature is

constant if, and only if, f is a linear function.

Next, we prove the statement for H2. Since kg, γ(0) and γ̇(0) determine the

arc-length parametrized curve γ : [0, α] → H2 of constant geodesic curvature kg, it

is sufficient to show that hypercycles, horocycles and circles have constant geodesic

curvature as in the chart above.

We show this for hypercycles and circles. For horocycles it is the immediate

consequence of a limit argument.
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From (3.6), the Christoffel symbols of H2 are

2x

1 − x2 − y2
= Γ1

11 = Γ2
12 = −Γ1

22, and

2y

1 − x2 − y2
= Γ2

22 = Γ1
12 = −Γ2

11

Assume that γ is a hypercycle such that the angle, between γ and the circle at

infinity, is α. Under a suitable isometry of H2, the image of γ is the intersection of B2

with the horizontal line y = cos α. Hence, we may assume that γ(s) = (x(s), cos α)

where s is hyperbolic arc length. Then dx/ds = (1 − x2 − cos2 α)/2 = 1/
√

E,

dy/ds = 0, and (3.3) and (3.4) simplify to

λ = 0, ν = − cos α
1 − x2 − cos2 α

2
.

Hence, from (3.5) we obtain kg = cos α, and it is independent of x.

Figure 3.7: Geodesic curvature of a hypercycle

Consider the hyperbolic line L = S1(c, r)∩B1 that intersects the sphere at infinity

at the points (− sin α, cos α) and (sin α, cos α). Clearly, this is the line such that every
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point g of γ is at a distance d from L independently of g. Let p, respectively q, be

the point of L, respectively γ, with 0 as the x-coordinate (cf. Figure 3.7). Then d =

distH(p, q). We note that the Euclidean radius and centre of the circle S1(c, r) are,

respectively, r = tan α and c = (0,
√

tan2 α + 1). Hence, p = (0, (1 − sin α)/ cos α)

and

cosh d = 1 +
2‖p − q‖2

(1 − ‖p‖2)(1 − ‖q‖2)
=

1

sin α
=

1√
1 − k2

g

.

From this, an identity about hyperbolic functions yields kg = tanh d.

Now we assume that γ is a circle of hyperbolic radius rH . We may also assume

that the hyperbolic centre of γ is o. Then γ coincides with a Euclidean circle S1(o, r).

By symmetry, it is clear that γ is of constant geodesic curvature kg in H2. It remains

to determine the value of kg as a function of rH . We note that the connection

between rH and the Euclidean radius r is cosh rH = (1 + r2)/(1− r2), which implies

that tanh(rH/2) = r.

Clearly, a hyperbolic arc-length parametrized form of the circle γ is γ(s) =

(r cos(ks), r sin(ks)) for some constant k > 0. The value of k is computed from

gH(γ̇(s), γ̇(s)) = 1, and it is k = (1 − r2)/(2r). We substitute γ(s) into (3.3), (3.4)

and (3.5) and simplify to obtain that

kg =
1 + r2

2r
= coth rH .

Finally, we show that, in S2 ⊂ E3, a circle C of spherical radius θ has constant

geodesic curvature cot θ. It is easy to see that the arc length parametrization of C

may be chosen as γ : [0, 2π] → S2 ⊂ E3, γ(t) = (sin θ cos(kt), sin θ sin(kt), cos θ),

where k = 1/ sin θ. The geodesic curvature of γ in S2 at γ(t) is the Euclidean norm

of the orthogonal projection of γ̈(t) onto the tangent plane Tγ(t)S
2. We note that
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γ(t) is a unit normal vector of S2 at γ(t). Thus,

kg = ‖γ̈tangent(t)‖ = ‖γ̈(t)− < γ̈(t), γ(t) > γ(t)‖ = cot θ.

3.6 Some hyperbolic and spherical formulae

The theorems of sines and cosines are well known from high school. Here we present

their hyperbolic and spherical counterparts.

Theorem 3.6.1. Let M ∈ {H2, S2}. Consider a triangle T ⊂ M with side lengths

a, b and c. Denote by α, β and γ the angle of T at the vertex opposite of the side of

length a, b and c, respectively.

If M = H2, then

sinh a

sin α
=

sinh b

sin β
=

sinh c

sin γ
, (3.13)

cosh c = cosh a cosh b − sinh a sinh b cos γ, and (3.14)

cos γ = − cos α cos β + sin α sin β cosh c. (3.15)

If M = S2, then

sin a

sin α
=

sin b

sin β
=

sin c

sin γ
, (3.16)

cos c = cos a cos b + sin a sin b cos γ, and (3.17)

cos γ = − cos α cos β + sin α sin β cos c. (3.18)

The following hyperbolic variant of Heron’s formula is a consequence of the for-

mulae (3.8), (3.13), (3.14) and (3.15).
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Proposition 3.6.2. Let T ⊂ H2 be a hyperbolic triangle with side lengths a, b and

c. Then

tan
areaH(T )

2
=

∆

1 + x + y + z
, (3.19)

where x = cosh a, y = cosh b, z = cosh c and ∆ =
√

1 − x2 − y2 − z2 + 2xyz.

Remark 3.6.3. Formulae 3.13 to 3.18 are simplified in the following equations:

sin(
√

Ka)

sin α
=

sin(
√

Kb)

sin β
=

sin(
√

Kc)

sin γ
, (3.20)

cos(
√

Kc) = cos(
√

Ka) cos(
√

Kb) + sin(
√

Ka) sin(
√

Kb) cos γ, (3.21)

cos γ = − cos α cos β + sin α sin β cos(
√

Kc), (3.22)

where K is the sectional curvature of the space M of constant sectional curvature.

The hyperbolic formulae are also derived using the identities cos ix = cosh x and

sin ix = i sinh x. To obtain the Euclidean formulae, we may use algebraic transfor-

mations and the limits limx→0 sin x/x = 1 and limx→0(1 − cos x)/x2 = 1/2.

We state our next proposition using the unified notation appearing in (3.20),

(3.21) and (3.22).

Proposition 3.6.4. Let γ be a curve of constant geodesic curvature kg and of arc

length s, with endpoints p and q in the space M of constant sectional curvature

K ∈ {1, 0,−1}. Assume that if γ is a circle arc then it is shorter than a semicircle.

In other words, assume that s < π√
k2

g+K
if k2

g + K > 0. Let σ(s) denote the angle

between γ and the segment with endpoints p and q, and let d(s) denote the distance

of p and q (cf. Figure 3.8).
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Then

tan σ(s) =
kg√

k2
g + K

tan
s
√

k2
g + K

2
, (3.23)

sin

√
Kd(s)

2
=

√
K

k2
g + K

sin
s
√

k2
g + K

2
, and (3.24)

tan
√

Kd(s)
2√

K cos σ(s)
=

tan
s
√

k2
g+K

2√
k2

g + K
. (3.25)

Figure 3.8: d(s) and σ(s)

Proof. Note that (3.25) is a straightforward consequence of (3.23) and (3.24). First,

we prove (3.23) and (3.24) for M = H2.

Assume that γ is a hypercycle arc. We may assume that this arc is in the form

γ : [−a, a] → H2 γ(t) = (t, cos α), where α is the angle between the hypercycle

containing γ and the circle at infinity. Recall from the proof of Theorem 3.5.1 that

kg = cos α.

The arc length of γ is

s = 2

∫ a

0

2

1 − x2 − cos2 α
dx =

2

sin α
arctanh

a

sin α
,

which yields

a = sin α tanh
s sin α

4
(3.26)
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From (3.26) and

cosh d(s) = cosh distH(p, q) = 1 +
8a2

(1 − a2 − cos2 α)2
, cosh 2x = 1 + 2 sinh2 x,

we obtain

sinh
d(s)

2
=

2a

sin2 α − a2
=

1

sin α
sinh

s sin α

2
=

1√
1 − k2

g

sinh
s
√

1 − k2
g

2
. (3.27)

Figure 3.9: σ(s) for a hypercycle

Let S1(c, r) denote the Euclidean circle which is orthogonal to S1 and contains p

and q (cf. Figure 3.9). The equation of S1(c, r) is x2 + (y −
√

r2 + 1)2 = r2 for some

r > 0. To obtain r, we substitute the coordinates of q. Hence,

√
r2 + 1 =

2 cosh2 s sinα
4

− sin2 α

2 cos α cosh2 s sin α
4

Note that σ(s) is the angle between S1(c, r) and the Euclidean segment [p, q], which

is equal to ^(q − c,−c). Thus,

tan σ(s) =
a√

r2 + 1 − cos α
= cot α tanh

s sin α

2
=

kg√
1 − k2

g

tanh
s
√

1 − k2
g

2
.
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Assume that γ is a hyperbolic circle of radius rH . We may assume that the

hyperbolic centre of γ is o. Then γ coincides with a Euclidean circle S1(o, r). The

connection between rH and r is cosh rH = 1 + 2r2/(1 − r2), which implies that

tanh(rh/2) = r. We have seen that the hyperbolic arc length parametrization of γ is

γ : [0, 2π/k] → H2, γ(s) = (r cos(ks), r sin(ks)),

where k = (1 − r2)/(2r) = 1/ sinh rH . This yields also that arclengthH(γ) =

2π sinh rH . Consider the hyperbolic triangle T with vertices o , q and the mid-

point r of the hyperbolic segment with endpoints p and q (cf. Figure 3.10). Note

that the angle of T at r is π/2, the angle of T at q is π/2 − σ(s), the angle at o

is s/(2 sinh rH), distH(q, r) = d(s)/2 and distH(o, q) = rH . Let m = distH(o, r).

Applying (3.13) and kg = coth rH , we obtain

sinh
d(s)

2
= sinh rH sin

s

2 sinh rH

=
1√

k2
g − 1

sin
s
√

k2
g − 1

2
.

Formula (3.24) now follows from (3.13) and (3.14).

Figure 3.10: d(s) for a hyperbolic circle

If M = E2, the assertion is easy to prove. The proof for M = S2 is similar to the

proof for hyperbolic circles.



Chapter 4

The Erdős-Szekeres Hexagon Problem

4.1 Introduction and preliminaries

In the 1930s Esther Klein asked the following question.

For every k ≥ 3, is there an integer M such that any planar set S of at least M

points in general position contains k points in convex position?

Erdős and Szekeres [22] showed that the answer is yes. They proved not only the

existence of such an integer, but also that there is a solution satisfying the inequality

M ≤
(
2k−4
k−2

)
+ 1. Since their joint work led to the marriage of Esther Klein and

George Szekeres, Erdős referred to it later as the “happy ending problem”.

The problem that arose naturally was to find the smallest value of card S with

the mentioned property for each k.

Definition 4.1.1. Let k ≥ 3 and M(k) denote the smallest integer such that if

S ⊂ E2 is a set of points in general position and card S ≥ M(k), then S contains k

points in convex position.

From [22], we know that M(k) ≤
(
2k−4
k−2

)
+ 1. Considering the known values

M(3) = 3 and M(4) = 5, Erdős and Szekeres conjectured that M(k) = 2k−2 + 1.

Conjecture 4.1.2. (Erdős-Szekeres) In any planar set S of 2k−2+1 points in general

position, there are k points in convex position.

In [23], Erdős and Szekeres constructed a planar set of 2k−2 points in general

47
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position that does not contain k points in convex position. Presently, the best

known bounds for card S are

2k−2 + 1 ≤ M(k) ≤
(

2k − 5

k − 2

)
+ 1. (4.1)

The upper bound was proven by G. Tóth and Valtr in [47] in 2005.

Let us see what is known about M(k) for small values of k. Since three points

are in general position if, and only if, they are in convex position, we have M(3) = 3.

We show that M(4) = 5. Indeed, if, among five points in general position, there are

no four points in convex position then the convex hull of the points is a triangle.

This triangle contains two points, say a and b, in its interior. Then one of the two

half-planes bounded by the line passing through a and b contains two additional

points, say c and d. So, a, b, c and d are in convex position (cf. Figure 4.1). This

consideration is due to Klein and Szekeres.

Figure 4.1: Configurations in Klein’s proof

According to [46], Makai was the first to prove the equality M(5) = 9 but he has

never published his result. The first published proof appeared in [36] and is due to

J. D. Kalbfleisch, J. G. Kalbfleisch and Stanton. In 1974, Bonnice [10] gave a simple

and elegant proof of the same result. Bisztriczky and G. Fejes Tóth [9] also mention
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an unpublished proof by Böröczky and Stahl.

To prove that M(6) = 17 seems considerably more complicated. Bonnice [10]

makes the following comparison. In a set of nine points, we have
(
9
5

)
= 126 possi-

bilities for five points to be in convex position, whereas in a set of seventeen points,

we have
(
17
6

)
= 12376 possibilities for six points to be in convex position. For this

case, a computer-based proof has been given by Szekeres and Peters [46] recently,

which allows us to make another comparison. They state that their program proved

the case of convex pentagons in less than one second on a 1.5GHz computer, but

to check the case of convex hexagons required approximately 1500 hours. For other

results related to the Erdős-Szekeres Conjecture, the reader is referred to the survey

[44] of Morris and V. Soltan, or the book [12] of Brass, Moser and Pach.

Our aim is to examine the k = 6 case of the Erdős-Szekeres Conjecture. For

simplicity, by an m-gon, m ≥ 3, we mean a convex m-gon. We collect our results in

Theorems 4.1.3 and 4.1.4.

Theorem 4.1.3. Let S ⊂ E2 be a set of seventeen points in general position and

P = [S] be a pentagon. Then S contains six points in convex position.

We note that a different proof of the same statement appeared in the diploma

thesis [18] of Knut Dehnhardt.

Theorem 4.1.4. Let S ⊂ E2 be a set of twenty five points in general position. Then

S contains six points in convex position.

There are two well-known sets of sixteen points in general position that do not

contain (the vertices of) a hexagon: cf. [23] and pp. 331-332 of [12] (Figure 4.2).

We note that in both examples the convex hull of the points is a pentagon.
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With reference to Figure 4.3, there is a set S ⊂ R2 of points with card S = 32

such that the convex hull of any seventeen or more points of S is a 3-gon or a 4-gon.

Figure 4.2: Sixteen points with no hexagon

Figure 4.3: Thirty two points with no large subset whose convex hull is a pentagon

In the proof of Theorem 4.1.4, our method of argument is to assume that S does

not contain (the vertices of) a hexagon. We show that there exist seventeen points

in S whose convex hull is a pentagon, and then apply Theorem 4.1.3.

Definition 4.1.5. Let {a, b} ⊂ E2. Then [a, b], L(a, b), L+(a, b) and L−(a, b) denote,

respectively, the closed segment with endpoints a and b, the line containing a and

b, the closed ray emanating from a and containing b, and the closed ray emanating

from a in L(a, b) that does not contain b.

Definition 4.1.6. Let s ≥ 3 and P be an s-gon. We say that b is beyond (re-

spectively, beneath) the edge [p, q] of P , if b is in the open half plane, bounded by
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aff[p, q], that contains (respectively, does not contain) P . We say that b ∈ E2 is

beyond exactly one edge of P if b is beyond one edge and beneath s − 1 edges of P .

4.2 Proof of Theorem 4.1.3

We begin the proof with a series of lemmas.

Figure 4.4: V (Q) ∪ X is a convex hexagon

Lemma 4.2.1. Let P and Q be polygons with Q ⊂ int P ⊂ E2. Let X ⊂ V (P ) be a

set of points beyond exactly the same edge of Q. Then V (Q) ∪ X is a set of points

in convex position (cf. Figure 4.4).

Lemma 4.2.2. Let {Pi : i = 1, 2, . . . , m} be a family of t triangles, q quadrangles

and p pentagons such that p + q + t = m and M = [P1, P2, P3, . . . , Pm] is an m-gon

[x1, x2, x3, . . . , xm]. Suppose that [xi, xi+1] is an edge of Pi, and Pi and Pi+1 do not

overlap for i = 1, 2, 3, . . . , m. Let P0 be a u-gon that contains M in its interior and

assume that the points of W =
⋃m

i=0 V (Pi) are in general position. If q + 2t < u,

then W contains a hexagon.
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Proof. Let us denote by Xi the set of points that are beyond exactly the edge [xi, xi+1]

of Pi and observe that every vertex of P0 is contained in Xi for some value of i. If

card(Xi ∩ V (P0)) + card(V (Pi)) ≥ 6 for some Pi, then the assertion follows (cf.

Figure 4.5). Since card(Xi ∩ V (P0)) + card(V (Pi)) ≤ 5 for each Pi yields that

u = card(V (P0)) ≤ 0 · p + 1 · q + 2 · t, we are done.

Figure 4.5: An illustration for Lemma 4.2.2

We use Lemma 4.2.2 often during the proof with u = 5. For simplicity in such

cases, we use the notation P1 ∗ P2 ∗ . . . ∗ Pm.

Lemma 4.2.3. Let S ⊂ E2 be a set of eleven points in general position such that

P = [S] is a pentagon, Q = [S \ V (P )] is a triangle and [S \ (V (P ) ∪ {q})] is a

quadrilateral for every q ∈ V (Q). Then S contains a hexagon.

Proof. Let Q = [q1, q2, q3] and R =
[
S \
(
V (P )∪ V (Q)

)]
= [r1, r2, r3]. Observe that,

for any i 6= j, the straight line L(ri, rj) strictly separates the third vertex of R from

a unique vertex of Q. We may label our points in a way that q1, q2 and q3 are in



53

counterclockwise cyclic order, and L(ri, rj) separates rk and qk for any i 6= j 6= k 6= i.

Let us denote by Qk the open convex domain bounded by L−(qk, ri) and L−(qk, rj)

for every i 6= j 6= k 6= i. For every i 6= j, let us denote by Qij the open convex

domain that is bounded by the rays L−(qi, rj), L−(qj , ri) and the segment [qi, qj] (cf.

Figure 4.6).

Figure 4.6: An illustration for the domains in the proof of Lemma 4.2.3

Observe that if Q12 contains at least two vertices of P , then these vertices together

with q1, q2, r1, r2 are vertices of a hexagon. Similarly, if Q1 ∪ Q13 ∪ Q3 contains at

least three vertices of P , or Q2 ∪Q23 ∪Q3 contains at least three vertices of P , then

S contains a hexagon. Since P is a pentagon, we may assume that Q12 contains

one, Q1 ∪ Q13 and Q2 ∪ Q23 both contain two, and Q3 contains no vertex of P . By

symmetry, we obtain that S contains a hexagon unless card(Qi ∩ V (P )) = 0 and

card(Qij ∩V (P )) = 1 for every i 6= j. Since the latter case contradicts the condition

that P is a pentagon, S contains a hexagon.

Lemma 4.2.4. Let S ⊂ E2 be a set of thirteen points in general position such that
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P = [S] is a pentagon and Q = [S \V (P )] is a triangle. Then S contains a hexagon.

Proof. Let q1, q2 and q3 = q0 be the vertices of Q in counterclockwise cyclic order and

let R = S \ (V (P ) ∪ V (Q)). Observe that card R = 5. Using an idea similar to that

used by Klein and Szekeres, we obtain that R contains an empty quadrilateral. In

other words, there is a quadrilateral U that satisfies V (U) ⊂ R and U ∩ R = V (U).

We show that if U has no sideline that separates U from an edge of Q, then

S contains a hexagon. Indeed, if every sideline of U separates U from exactly one

vertex of Q then, by the Pigeon-Hole Principle, Q has a vertex, say q3, such that at

least two sidelines of U separate U from it. This yields that there are two sidelines

passing through consecutive edges of U that separate U from only q3. Let these edges

be [ri−1, ri] and [ri, ri+1]. Then we have [q1, ri+1, ri, ri−1, q2]∗ [q2, ri−1, q3]∗ [q3, ri+1, q1].

Hence, we may assume that U has a sideline that separates U from an edge of Q.

Without loss of generality, let this sideline pass through the edge [r1, r2] and let it

separate U from [q1, q2].

Figure 4.7: An illustration for the proof of Lemma 4.2.4

For every 3 6= i 6= j 6= 3, let xi, yi and zi denote the intersection point of the

segment [qi, q3] with the line L(qj , rj), L(qj , ri) and L(r1, r2), respectively, and let wi
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denote the intersection point of [ri, q3] and L(qj , rj) (cf. Figure 4.7). If some point

u ∈ R is beyond exactly the edge [r1, r2] of [q1, q2, r2, r1], then we have [q1, r1, u, r2, q2]∗

[q2, r2, q3] ∗ [q3, r1, q1]. If u ∈ R is beyond exactly the edge [r1, q3] of [q1, r1, q3], then

[q1, r1, u, q3] ∗ [q3, s, q2] ∗ [q2, r2, r1, q1] for s = u or s = r2. Hence, by symmetry, we

may assume that r3, r4 and r are in one of the quadrangles [ri, wi, xi, zi] for i = 1 or

2, or in [q1, q2, z2, z1].

Assume that r3 ∈ [r1, w1, x1, z1]. If L+(r4, r3)∩ [q1, q3] 6= ∅ then [q3, r3, r4, r1, r2] ∗

[r2, r1, q1] ∗ [q1, r3, q3]. If L−(r4, r3) ∩ [q1, q3] 6= ∅ then [q1, r4, r3, r2, q2] ∗ [q2, r2, q3] ∗

[q3, r4, q1]. If L(r4, r3)∩ [q1, q3] = ∅ then [q1, r1, r2, q2]∗ [q2, r2, q3]∗ [q3, r3, r4, q1]. Thus

we may assume that r3 ∈ [r2, z2, x2, w2]. Since r3 ∈ [r2, y2, z2] yields [q3, r4, r1, r2, r3]∗

[r3, r2, q1]∗[q1, r4, q3], we may assume also that r3 ∈ [r2, w2, x2, y2], and (by symmetry)

that r4 ∈ [r1, w1, x1, y1].

Assume that r ∈ [r1, w1, x1, y1]. If [r1, r2, r4, r] is a quadrilateral, then we may

apply an argument similar to that in the previous paragraph. Thus we may assume

that r4 ∈ [r1, r2, r]. This yields [r, r4, r1, q1]∗ [q1, r1, r2, q2]∗ [q2, r3, q3]∗ [q3, r3, r2, r4, r].

Hence, r ∈ [q1, q2, z2, z1].

If r ∈ [q1, r1, z1] then [q1, r, r1, r2, q2] ∗ [q2, r2, q3] ∗ [q3, r, q1]. Let r ∈ [q1, q2, r2, r1].

If L(q3, r4) does not separate q1 and r then [q1, r, q2] ∗ [q2, r1, r4, q3] ∗ [q3, r4, r, q1]. We

suppose otherwise, which yields that L+(r, r4)∩ [q1, q3] 6= ∅. By symmetry, we obtain

also that L+(r, r3) ∩ [q2, q3] 6= ∅.

Assume that r ∈ [q1, r1, r2]. Then we observe that U ′ = [r, r2, r3, r1] is an empty

quadrilateral, and L(r, r2) separates U ′ from [q1, q2]. Since R ∩ [q1, r, r2, q2] = ∅, an

argument applied for U ′, similar to that applied for U , yields a hexagon. Hence

r ∈ [q1, r1, q2] ∩ [q1, r2, q2]. Then L+(r3, r) ∩ [q1, q2] 6= ∅ 6= L+(r4, r) ∩ [q1, q2]. Now,
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we apply Lemma 4.2.3 with V (P ) ∪ V (Q) ∪ {r3, r4, r} as S.

We summarize our consideration in the following way. We show that if S̃ is a set

of at least eight points in general position such that [S̃] is a triangle, then S̃ contains

a subset X that satisfies one of the following (cf. Figure 4.8):

Figure 4.8: Forbidden configurations

(1) T = [X] is a triangle and X contains a pentagon which has an edge in

common with T .

(2) T = [X] is a triangle and X contains two nonoverlapping quadrilaterals,

each of which has an edge in common with T .

(3) Q = [X] is a quadrilateral and X contains two quadrilaterals and a

pentagon that are pairwise nonoverlapping and each has an edge in

common with Q.

(4) T = [X] is a triangle and, for any t ∈ V (T ), [X \ {t}] is a quadrilateral.

Lemma 4.2.4 follows from Lemma 4.2.2 in the first three cases and from Lemma 4.2.3

in the last case.

Definition 4.2.5. Let A, B ⊂ E2 be sets of points in general position. Suppose that

there is a bijective function f : A → B such that, for any a1, a2, a3 ∈ A, the ordered
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triples (a1, a2, a3) and (f(a1), f(a2), f(a3)) have the same orientation. Then we say

that A and B are identical.

We note that if A and B are identical, then A′ ⊂ A is a k-gon if, and only if,

f(A′) is a k-gon.

Using Lemma 4.2.4 and a little more effort, we characterize all the sets S̃ that have

no subset identical to one of the four sets in Figure 4.8. Lemma 4.2.6 summarizes

our work. We omit its straightforward proof.

Figure 4.9: Configurations that do not imply the existence of a hexagon
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Lemma 4.2.6. Let S̃ ⊂ E2 be a set of points in general position such that [S̃] is a

triangle and S̃ has no subset identical to one of the four sets in Figure 4.8. Then S̃

is identical to one of the sets in Figure 4.9.

This list will help us to exclude some other cases from our investigation. If a set

is identical to one of the sets in Figure 4.9, we say that its type is the type of the

corresponding set in the figure.

Lemma 4.2.7. Let S ⊂ E2 be a set of seventeen points in general position such that

P = [S] is a pentagon and Q = [S \ V (P )] is a quadrilateral. Then S contains a

hexagon.

Figure 4.10: Two lines that do not intersect a diagonal

Proof. By Lemma 4.2.4, we may assume that any diagonal of Q divides Q into two

triangles that contain exactly four points of S in their interiors. Furthermore, both

these triangles have to be either type 4a, or 4b, or 4c. Let us observe that if both

triangles contain a pair of points such that the line passing through them does not

intersect the diagonal, then these two pairs of points and the two endpoints of the
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diagonal are in convex position (cf. Figure 4.10). Hence we may assume that, in

at least one of the triangles, each line passing through two points intersects the

diagonal.

Since there is, in a type 4c set, no edge of the convex hull that meets all the lines

that pass through two of its points, we may assume that the set of the points in

one of the triangles is type 4a or 4b, and that the diagonal is the left edge of one of

the triangles in Figure 4.9. We observe also that configurations of type 4a or 4b are

almost identical, the only difference is that the line passing through the two points

closest to the left edge of the triangle intersect the bottom or the right edge of the

triangle. Thus, we may handle these two cases together if we leave it open whether

this line intersects the bottom or the right edge of the triangle.

Figure 4.11: An illustration for the main case in the proof of Lemma 4.2.7

We denote our points as in Figure 4.11, and let L = L(r1, r2). Observe that

L divides the set of points, beyond exactly the edge [q1, q2] of [q1, q2, q3], into two

connected components. If a point p is in the component that contains q1, respectively

q2, in its boundary, then we say that p is on the left-hand side, respectively right-hand
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side, of L. Let B = (Q \ [q1, q2, q3]) ∩ S. Observe that card B = 5 and that every

point of B is either on the left-hand side, or on the right-hand side of L. By the

Pigeon-Hole Principle, there are three points of B that are on the same side of L.

Let us denote these points by s1, s2 and s3.

Assume that s1, s2 and s3 are on the left-hand side of L. Observe that if L(si, sj)

and [q1, r1] are disjoint for some i 6= j, then [q1, si, sj , r1, r2, r3] is a hexagon. Thus we

may relabel s1, s2 and s3 such that s3 ∈ [q1, r1, s2] ⊂ [q1, r1, s1]. This yields that either

[s1, s2, s3, q1] or [s1, s2, s3, r1] is a quadrilateral. If [s1, s2, s3, q1] is a quadrilateral

then [s1, s2, s3, q1] ∗ [q1, s3, r1, r2, r3] ∗ [r3, r4, q2] ∗ [q2, r1, s2, s1]. If [s1, s2, s3, r1] is a

quadrilateral then [s1, s2, s3, r1, q2] ∗ [q2, r4, r3] ∗ [r3, r2, r1, s3, q1] ∗ [q1, s2, s1].

Let s1, s2 and s3 be on the right-hand side of L. Observe that if L(si, sj) and

[q2, r1] are disjoint for some i 6= j, then [q2, si, sj, r1, r2, r4] is a hexagon. Hence we

may assume that s3 ∈ [q2, r1, s2] ⊂ [q2, r1, s1]. Then [s1, s2, s3, q2] or [s1, s2, s3, r1] is

a quadrangle. If [s1, s2, s3, q2] is a quadrilateral then [s1, s2, s3, q2] ∗ [q2, s3, r1, r2, r4] ∗

[r4, r2, q1] ∗ [q1, r1, s2, s1]. If [s1, s2, s3, r1] is a quadrilateral then [s1, s2, s3, r1, q1] ∗

[q1, r2, r4] ∗ [r4, r2, r1, s3, q2] ∗ [q2, s2, s1].

Lemma 4.2.8. Let S ⊂ E2 be a set of points in general position such that P = [S]

and Q = [S \V (P )] are pentagons, and S \ (V (P )∪V (Q)) has a subset of type 3a, or

a subset identical to the point set in Figure 4.13, or 4.14 or 4.15. Then S contains

a hexagon.

Proof. Let R denote the subset of S \ (V (P ) ∪ V (Q)) that is either of type 3a, or

is identical to the point set in Figure 4.13, or 4.14 or 4.15. Let q1, q2, q3, q4 and q5

denote the vertices of Q in counterclockwise cyclic order.
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Assume that R is of type 3a. Let us denote the points of R as in Figure 4.12. Let

R12, R23 and R13 denote, respectively, the set of points that are beyond exactly the

edge [r1, r2] of [r1, t3, t2, r2], the edge [r2, r3] of [r2, t1, t3, r3], and the edge [r1, r3] of

[r1, t3, r3]. If card(R12∩V (Q)) ≥ 2, or card(R23∩V (Q)) ≥ 2 or card(R13∩V (Q)) ≥ 3,

then S contains a convex hexagon. Otherwise, there is a vertex qi of Q in the convex

domain bounded by the half-lines L−(r2, t1) and L−(r2, t2), from which we obtain

[r1, t1, r2, qi] ∗ [qi, r2, t2, r3] ∗ [r3, t3, r1].

Figure 4.12: A type 3a point set with the notation of the proof of Lemma 4.2.8

Let us assume that R is the set in Figure 4.13 and denote the points of R as

indicated. Let R12, R23 and R13 denote, respectively, the set of points that are

beyond exactly the edge [r1, r2] of [r2, t2, t1, r1], the edge [r2, r3] of [r2, t2, r3], and

the edge [r1, r3] of [r1, t1, r3]. If card(R12 ∩ V (Q)) ≥ 2, or card(R23 ∩ V (Q)) ≥ 3

or card(R13 ∩ V (Q)) ≥ 3 then S contains a hexagon. Hence, we may assume that

q1 ∈ R12, {q2, q3} ⊂ R23, {q4, q5} ⊂ R13 and there is no vertex of Q in R23 ∩ R13. If

L(q1, r4) does not intersect the interior of [R], then [t1, t2, r2, r4, q1, r1] is a hexagon.
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Let r4 ∈ [q1, r1, r2]. If L(r4, r1) does not separate q5 and q1, and L(r4, r2) does

not separate q2 and q1, then [q1, r4, r2, q2] ∗ [q2, r2, t2, r3] ∗ [r3, t1, r1, q5] ∗ [q5, r1, r4, q1].

Thus we may assume that, say, L(r4, r1) separates q5 and q1. If L(r2, r3) separates

q4 and R then [q4, r3, r2] ∗ [r2, t2, t1, r1] ∗ [r1, t1, r3, q4]. If L(r2, r3) does not separate

q4 and R then [r4, r2, r3, q4, q5, r1] is a hexagon.

Figure 4.13: Another case in Lemma 4.2.8

Figure 4.14: One more case in Lemma 4.2.8

Assume that R is the set in Figure 4.14 and denote the points of R as indi-

cated. We may clearly assume that there is no vertex of Q beyond exactly the
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edge [r1, r2] of [r1, r2, t2, t3, t1]. Hence there is an edge, say [q1, q2], that intersects

both rays L−(r1, t1) and L−(r2, t2). If L(r1, r2) separates R from both q1 and q2

then [q1, r1, r2, q2] ∗ [q2, r2, t2, r3] ∗ [r3, t2, t1, r4] ∗ [r4, t1, r1, q1]. Hence we may assume

that L(r1, r2) does not separate R, say, from q2. If L(t2, t3) does not separate r2

and q2, then [r1, r2, q2, t2, t3, t1] is a hexagon. If L(t2, t3) separates r2 and q2, then

[q1, r2, q2] ∗ [q2, t2, t3, r4] ∗ [r4, t1, r1, q1].

Figure 4.15: The last case in Lemma 4.2.8

We are left with the case when R is the set in Figure 4.15 with points as indicated.

Let R12, R23, R34 and R14 denote, respectively, the set of points that are beyond

exactly the edge [r1, r2] of [r1, r2, t2, t1], the edge [r2, r3] of [r2, t2, t3, r3], the edge

[r3, r4] of [r3, t3, t1, r4], and the edge [r1, r4] of [r4, t1, r1]. If card(Ri(i+1) ∩ V (Q)) ≥ 2

for some i ∈ {1, 2, 3}, then S contains a hexagon. Otherwise, R14 contains at least

two vertices of Q, which we denote by q1 and q2. If both q1 and q2 are beyond exactly

the edge [r1, r4] of [r1, t2, t3, r4] then [t2, t3, r4, q1, q2, r1] is a hexagon. Thus we may

assume that, say, q1 is beyond exactly the edge [r3, r4] of [r3, t3, r4]. From this, it

follows that [r3, t3, r4, q1] ∗ [q1, r4, t1, r1] ∗ [r1, t1, t2, r2] ∗ [r2, t2, t3, r3].
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Now we are ready to prove Theorem 4.1.3.

Let Q = [S \V (P )], R = [S \ (V (P )∪V (Q))] and T = S \ (V (P )∪V (Q)∪V (R)).

If Q is a triangle, then we apply Lemma 4.2.4. If Q is a quadrilateral, we apply

Lemma 4.2.7. Let Q be a pentagon. If R is a triangle or a quadrilateral then it

contains a subset identical to the subset R of S \ (V (P ) ∪ V (Q)) in Lemma 4.2.8.

Let R be a pentagon. We note that T contains two points, say, t1 and t2.

Figure 4.16: The regions around R in the proof of Theorem 4.1.3

Let q1, q2, q3, q4, q5, and r1, r2, r3, r4, r5 denote, respectively, the vertices of Q and

R, in counterclockwise cyclic order. If some qi is beyond exactly one edge of R, then

[R, qi] is a hexagon. Thus we may assume that every vertex of Q is beyond at least

two edges of R. Observe that there is no point on the plane that is beyond all five

edges of R. If some qi is beyond all edges of R but one, say [r1, r5], then we obtain

[r1, r2, r3, r4, r5] ∗ [r5, r4, qi] ∗ [qi, r2, r1]. Hence we may assume that every vertex of Q
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is beneath at least two edges of R.

For 1 ≤ i ≤ 5, let Ri denote the set of points that are beyond the two edges of

R that contain ri and beneath the other three edges of R, and let Ri(i+1) denote the

set of points that are beyond the edges of R that contain ri or ri+1, and beneath

the other two edges of R (cf. Figure 4.16). We call R(i−1)i and Ri(i+1) consecutive

regions.

Assume that two distinct and nonconsecutive regions contain vertices of Q, say,

qk ∈ R51 and ql ∈ R23. Since every vertex of Q is beneath at least two edges of R,

qk and ql are distinct points. If there is a vertex qh of Q in R34 ∪ R4 ∪ R45, then

[ql, r3, r4, qh] ∗ [qh, r4, r5, qk] ∗ [qk, r1, r2, ql]. Let V (Q) ∩ (R34 ∪ R4 ∪ R45) = ∅. Then

exactly one edge of Q intersects R34∪R4∪R45. Let us denote this edge by [qm, qm+1].

If qm ∈ R23 then [qm+1, r4, qm] ∗ [qm, r2, r1] ∗ [r1, r2, r3, r4, qm+1]. Let qm ∈ R3 and, by

symmetry, qm+1 ∈ R5. If there are at least three vertices of Q in R2 ∪R23 ∪R3 or in

R1 ∪R15 ∪R5 then V (Q) ∪ V (R) contains a hexagon. Hence we may assume that a

vertex qg of Q is in R12. Since every vertex of Q is beneath at least two edges of Q,

the sum of the angles of R at r1 and r2 is greater than π, which implies that L(r1, r2)

separates R and qg. Thus we have [qg, r2, r3, qm] ∗ [qm, r4, qm+1] ∗ [qm+1, r5, r1, qg].

Assume that two consecutive regions contain vertices of Q, say qk ∈ R51 and

ql ∈ R12. If V (Q) ∩ (R23 ∪ R34 ∪ R45) 6= ∅, then we may apply the argument in the

previous paragraph. Let V (Q) ∩ (R23 ∪ R34 ∪ R45) = ∅. If at least four vertices of

Q are beneath the edge [r3, r4] of R then these vertices, together with r3 and r4, are

six points in convex position. Hence we may assume that R3 ∪ R4 contains at least

two vertices of Q. Let us denote these vertices by qe and qf . If qe, qf ∈ R3 then

[r1, r2, qe, qf , r4, r5] is a hexagon. Thus, we may clearly assume that, say, qe ∈ R3 and
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qf ∈ R4. Then we have [ql, r2, r3, qe] ∗ [qe, r3, r4, qf ] ∗ [qf , r4, r5, qk] ∗ [qk, r5, r1, ql].

Assume that Ri(i+1) contains a vertex of Q for some i, say q1 ∈ R51. By the

preceeding, no vertex of Q is in R12 ∪R23 ∪R34 ∪R45. An argument similar to that

used in the previous paragraph yields the existence of a hexagon if R2 or R3 or R4

contains no vertex of Q. Let qk ∈ R2, ql ∈ R3 and qm ∈ R4. Then [q1, r1, r2, qk] ∗

[qk, r2, r3, ql] ∗ [ql, r3, r4, qm] ∗ [qm, r4, r5, q1].

Figure 4.17: The last case in the proof of Theorem 4.1.3

We have now arrived at the case that each vertex of Q is beyond exactly two

edges of R. Clearly, we may assume that qi ∈ Ri for each i. If L(t1, t2) intersects two

consecutive edges of R, then S contains a hexagon. Hence we may assume that, say,

L+(t1, t2) ∩ [r2, r3] 6= ∅ 6= L−(t1, t2) ∩ [r5, r1] (cf. Figure 4.17). If both q1 and q2 are

beyond exactly the edge [r1, r2] of [r1, t1, t2, r2], then we have a hexagon. If neither

point is beyond exactly that edge, then [q1, r1, r2, q2] ∗ [q2, r2, t2, r3] ∗ [r3, t2, t1, r5] ∗
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[r5, t1, r1, q1]. Thus, we may assume that q1 is beyond exactly the edge [r1, r2] and q2 is

not. If q5 is beyond exactly the edge [r4, r5] of [r4, r5, t1, t2, r3] then [q5, r5, t1, t2, r3, r4]

is a hexagon. Hence, we may assume that q5 is beyond exactly the edge [r1, r5]

of [r1, t1, r5] and, similarly, that q3 is beyond exactly the edge [r2, r3] of [r2, t2, r3].

From this, we obtain that [q3, r3, r4, q4] ∗ [q4, r4, r5, q5] ∗ [q5, r5, r1, q1] ∗ [q1, r1, r2, q2] ∗

[q2, r2, t2, r3, q3].



Chapter 5

Spindle convexity

5.1 Spindle convex sets and their separation properties

In 1935, Mayer [42] introduced a new notion of convexity, called “Überkonvexität”.

Unfortunately, his definition was too general to raise the interest of other mathe-

maticians, so the concept of Überkonvexität has been forgotten.

The primary aim of this chapter is to introduce a special case of Mayer’s convexity,

which we call spindle convexity. We investigate properties of spindle convex sets, and

establish a theory similar to that of (linearly) convex sets. We begin with a definition.

Figure 5.1: The closed spindle of a and b

Definition 5.1.1. Let a, b ∈ En. If ||a − b|| < 2, then the closed spindle of a and

b, denoted by [a, b]s, is the union of [a, b] and the arcs of circles of radii at least one

that have endpoints a and b and that are shorter than a semicircle. If ||a − b|| = 2,

then [a, b]s = Bn[a+b
2

]. If ||a − b|| > 2, then we define [a, b]s to be En. The open

spindle of a and b, denoted by (a, b)s, is the interior of [a, b]s.

68
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In the next remark, we rephrase the definition of spindle. For the definition of

B[X], see Section 2.3.

Remark 5.1.2. For any a, b ∈ En with ‖a − b‖ ≤ 2, we have

[a, b]s = B [B[{a, b}]] and (a, b)s = B (B[{a, b}]) .

The main definition of this chapter is the following.

Definition 5.1.3. A set C ⊂ En is spindle convex if [a, b]s ⊂ C for any distinct

points a and b in C.

We collect elementary properties of spindle convex sets.

Remark 5.1.4. We note that

(1) a spindle convex set is convex;

(2) a spindle convex set is (−1)-dimensional if it is the empty set, 0-dimensional if

it is one point, and full-dimensional otherwise;

(3) the intersection of spindle convex sets is spindle convex.

Motivated by Remark 5.1.4, we make the following definition.

Definition 5.1.5. Let X be a set in En. Then the spindle convex hull of X in En is

convs X =
⋂{C ⊂ En : X ⊂ C and C is spindle convex in En} (cf. Figure 5.2). If

x /∈ convs(X \ {x}) for any x ∈ X, we say that the points of X are in spindle convex

position.

Note that the (linear) convex hull of a point set is independent of the dimension

of the ambient space. Although it is not true for spindle convex hull, the following
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proposition holds. Recall that cr(X) denotes the circumradius of the bounded set

X ⊂ En (cf. Section 2.3).

Proposition 5.1.6. Let H be an affine subspace of En and X be a bounded set in

H with cr(X) ≤ 1. Then the spindle convex hull of X in H is the intersection of H

and the spindle convex hull of X in En.

Figure 5.2: The spindle convex hull of a triangle

Definition 5.1.7. Let a, b ∈ En be two points with ||a − b|| ≤ 2. The arc distance

ρ(a, b) of a and b is the arc length of a shorter unit circular arc connecting a and b;

that is,

ρ(a, b) = 2 arcsin
‖a − b‖

2
.

Remark 5.1.8. ρ(a, b) is a strictly increasing function of ‖a − b‖.

In general, arc distance is not a metric. Lemma 5.1.9 describes when the triangle

inequality holds or fails for arc distance.

Lemma 5.1.9 (K. Bezdek, Connelly, Csikós). Let a, b and c be points in E2

such that each of ||a − b||, ||a − c|| and ||b − c|| is at most 2. Then
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(i) ρ(a, b) + ρ(b, c) > ρ(a, c) ⇐⇒ b /∈ [a, c]s;

(ii) ρ(a, b) + ρ(b, c) = ρ(a, c) ⇐⇒ b ∈ bd[a, c]s;

(iii) ρ(a, b) + ρ(b, c) < ρ(a, c) ⇐⇒ b ∈ (a, c)s.

As a sample of this new geometry, we present Lemma 5.1.10. Unlike in the

Euclidean case, the proof of this statement is not trivial. Lemmas 5.1.9 and 5.1.10

are both proven in [6].

Lemma 5.1.10 (K. Bezdek, Connelly, Csikós). Let a, b, c and d be the vertices,

in cyclic order, of a quadrilateral in E2. If a, b, c and d are in spindle convex

position, then

ρ(a, c) + ρ(b, d) > ρ(a, b) + ρ(c, d);

that is, the sum of the arc lengths of the diagonals is greater than the sum of the arc

lengths of an opposite pair of sides.

Our next aim is to investigate the separability of spindle convex sets by unit

spheres, motivated by the separation properties of convex sets.

Lemma 5.1.11. Let a spindle convex set C ⊂ En be supported by the hyperplane H

at x ∈ bd C. Then the closed unit ball, supported by H at x and lying in the same

side as C, contains C.

Proof. Let Bn[q] denote the unit ball, supported by H at x, such that C and Bn(q)

are contained in the same closed half space determined by H . Let H+ be this closed

half space, and let y /∈ Bn[q] be a point with ‖x − y‖ ≤ 2.

Note that, in the plane determined by the points x, y and q, there is a shorter unit

circle arc that connects x and y and that does not intersect Bn(q) (cf. Figure 5.3).
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This arc is not contained in H+, which implies that [x, y]s 6⊂ H+. Since C is spindle

convex and H supports C, we have that y /∈ C. As y is arbitrary, C ⊂ Bn[q]

follows.

Figure 5.3: An illustration for the proof Lemma 5.1.11

Definition 5.1.12. Let C ⊂ Bn[q] ⊂ En and x ∈ bd C. If x ∈ Sn−1(q), we say that

Sn−1(q) or Bn[q] supports C at x.

Corollary 5.1.13. Let C be a closed convex set in En. Then the following are

equivalent.

(i) C is spindle convex.

(ii) C is the intersection of unit balls containing it; that is, C = B[B[C]].

(iii) For every x ∈ bd C, there is a unit ball that supports C at x.

Corollary 5.1.13 is a straightforward consequence of Lemma 5.1.11.

Corollary 5.1.14. Let C be a closed spindle convex set in En. If cr(C) = 1, then

C = Bn[q] for some q ∈ En. If cr(C) > 1 then C = En.
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Proof. The second assertion is simple. To show the first assertion, we note that

if C has two distinct supporting unit balls, then cr(C) < 1, and refer to (ii) in

Corollary 5.1.13.

The main theorem in this section is the following.

Theorem 5.1.15. Let C and D be spindle convex sets in En with disjoint relative

interiors. Then there is a unit ball Bn[q] such that C ⊂ Bn[q] and D ⊂ En \ Bn(q)

(cf. Figure 5.4).

Furthermore; if C and D have disjoint closures and C is contained in an open

unit ball, then there is a unit ball Bn[q] such that C ⊂ Bn(q) and D ⊂ En \ Bn[q].

Figure 5.4: Separating by a unit sphere

Proof. Since C and D are spindle convex, they are convex, bounded sets. From

this and the hypothesis, we obtain that their closures are convex, compact sets with

disjoint relative interiors. Thus, there is a hyperplane H that separates them and
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that supports C at a point, say x ∈ bd C. The closed unit ball Bn[q] that supports

C at x satisfies the conditions of the first statement.

Next, we assume that C and D have disjoint closures. Thus, Bn[q] from above is

disjoint from the closure of D and remains so even after a sufficiently small transla-

tion. If C ⊂ Bn(q), we are done. Let C 6⊂ Bn(q). We note that C is contained in

an open unit ball and cr(C) < 1. Hence, there is a sufficiently small translation of

Bn[q], in the direction of x − q, that satisfies the second statement.

Definition 5.1.16. Let C, D ⊂ En, q ∈ En and r > 0. We say that Sn−1(q, r)

separates C and D, if one of the sets is contained in Bn[q, r] and the other is contained

in En \ Bn(q, r). We say that C and D are strictly separated by Sn−1(q, r), if one of

the sets is contained in Bn(q, r) and the other is contained in En \ Bn[q, r].

5.2 A Kirchberger-type theorem for separation by spheres

Kirchberger’s Theorem states the following. Let A and B be compact sets in En.

Then there is a hyperplane strictly separating A and B if, and only if, for any set

T ⊂ A ∪ B of cardinality at most n + 2, there is a hyperplane strictly separating

A ∩ T and B ∩ T (cf. Section 2.2). We show that this statement does not remain

true if we replace hyperplanes by unit spheres, even if we also replace n + 2 by an

arbitrarily large positive integer. To show this, we construct two sets A and B as

follows.

Let A = {a} ⊂ En be a singleton, and let b0 ∈ En be a point with 0 < ||a− b0|| =

δ < 1. Then Bn[a] \ Bn(b0) is a non-convex, closed set bounded by two closed

spherical caps: an inner one K that is contained in Sn−1(b0) and an outer one that
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is contained in Sn−1(a) (cf. Figure 5.5). We choose points b1, b2, . . . , bk−1 such that

Bn[bi] ∩ K is a spherical cap of radius ε for every value of i, and

K ⊂
k−1⋃

j=1

Bn[bj ] and K 6⊂
k−1⋃

j=1,j 6=i

Bn[bj ] for i = 1, 2, . . . , k − 1. (5.1)

Let B = {b0, b1, . . . , bk−1}. From (5.1), it easily follows that

Bn(a) ⊂
k−1⋃

j=0

Bn[bj ] and Bn(a) 6⊂
k−1⋃

j=0,j 6=i

Bn[bj ] for i = 0, 1, . . . , k − 1. (5.2)

Figure 5.5: A counterexample to a Kirchberger-type theorem with separation by unit
spheres

By the first part of (5.2), it is clear that there is no point q ∈ En such that

a ∈ Bn(q) and B ⊂ En \ Bn[q]. On the other hand, if ε is sufficiently small, then

a ∈ [B]. Hence, there is no q ∈ En such that B ⊂ Bn(q) and a /∈ Bn[q]. In summary,

there is no unit sphere that strictly separates A and B.

However, by the second part of (5.2), for any T ⊂ A ∪ B of cardinality at most

k, there is a point qT ∈ En such that T ∩ A ⊂ Bn(qT ) and T ∩ B ⊂ En \ Bn[qT ].

In Theorem 5.2.4, we provide a weaker analogue of Kirchberger’s theorem using

a special case of Theorem 3.4 of Houle [33], and Lemma 5.2.2.
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Theorem 5.2.1 (Houle). Let A and B be finite sets in En. There is a sphere

Sn−1(q, r) strictly separating A and B such that A ⊂ Bn(q, r) if, and only if, for

every T ⊂ A∪B with card T ≤ n+2, there is a sphere Sn−1(qT , rT ) strictly separating

T ∩ A and T ∩ B such that T ∩ A ⊂ Bn(qT , rT ).

Lemma 5.2.2. Let A and B be finite sets in En, and suppose that Sn−1(o) is the

smallest sphere that separates A and B such that A ⊂ Bn[o]. Then there is a set

T ⊂ A ∪ B with card T ≤ n + 1 such that Sn−1(o) is the smallest sphere Sn−1(q, r)

that separates T ∩ A and T ∩ B and satisfies T ∩ A ⊂ Bn[q, r].

Proof. First, observe that A 6= ∅. Assume that Sn−1(o) separates A and B such that

A ⊂ Bn[o]. Note that Sn−1(o) is the smallest sphere separating A and B such that

A ⊂ Bn[o] if, and only if, there is no closed spherical cap of radius less than π/2

that contains A∩Sn−1(o) and whose interior with respect to Sn−1(o) is disjoint from

B ∩ Sn−1(o). Indeed, if there is a sphere Sn−1(q, r), of radius r < 1, that separates

A and B such that A ⊂ Bn[q, r], then we may choose Sn−1(o) ∩ Bn[q, r] as such a

spherical cap; a contradiction. On the other hand, if K is such a closed spherical

cap then, by the finiteness of A and B, we may transform Sn−1(o) into a sphere

Sn−1(q, r), of radius r < 1, that separates A and B such that Bn[q, r]∩Sn−1(o) = K;

a contradiction. In particular, we may assume that A ∪ B ⊂ Sn−1(o).

Consider a point y ∈ Bn[o] \ {o}. Observe that the closed half space {w ∈ En :

〈w, y〉 ≥ ‖y‖2} intersects Sn−1(o) in a closed spherical cap of radius less than π/2.

Let us denote this spherical cap and its interior with respect to Sn−1(o) by Ky and

Ly, respectively. Note that we have defined a one-to-one correspondence between

Bn[o] \ {o} and the family of closed spherical caps of Sn−1(o) with radius less than
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π/2.

Let us consider a point x ∈ Sn−1(o). Observe that x ∈ Ky if, and only if, the

straight line passing through x and y intersects Bn[o] in a segment of length at least

2‖x − y‖ (cf. Figure 5.6).

Figure 5.6: An illustration for the proof of Lemma 5.2.2

Let

Fx = {y ∈ Bn[o] \ {o} : x ∈ Ky} and

Gx = {y ∈ Bn[o] \ {o} : x /∈ Ly}. (5.3)

It is easy to see that

Fx = Bn[x/2, 1/2] \ {o} and Gx = Bn[o] \
(
Bn(x/2, 1/2) ∪ {o}

)
. (5.4)

By the first paragraph of this proof, Sn−1(o) is the smallest sphere separating A

and B such that A ⊂ Bn[o] if, and only if,
(⋂

a∈A Fa

)
∩
(⋂

b∈B Gb

)
= ∅.
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Let f denote the inversion with respect to Sn−1(o) and, for any z ∈ Sn−1(o), let

H+(z) (respectively, H−(z)) denote the closed half space {w ∈ En : 〈w, z〉 ≤ 1}

(respectively, {w ∈ En : 〈w, z〉 ≥ 1}). Clearly, f(Fz) = H−(z) and f(Gz) = H+(z) \

Bn(o). Hence, Sn−1(o) is the smallest sphere separating A and B such that A ⊂ Bn[o]

if, and only if,

I =
( ⋂

a∈A

H−(a)
)
∩
( ⋂

b∈B

(
H+(b) \ Bn(o)

))
(5.5)

is empty. Note that Bn(o) ∩ H−(a) = ∅ for any a ∈ A. Since A 6= ∅, we have

I =
( ⋂

a∈A

H−(a)
)
∩
( ⋂

b∈B

H+(b)
)
. (5.6)

As H−(z) and H+(z) are convex for any z ∈ Sn−1(o), Helly’s theorem yields our

statement.

Remark 5.2.3. There are compact sets A and B in En with the following property:

The smallest sphere separating A and B such that A ⊂ Bn[o] is Sn−1(o) and, for any

finite T ⊂ A ∪ B, there is a sphere Sn−1(qT , rT ), with rT < 1, that separates T ∩ A

and T ∩ B such that T ∩ A ⊂ Bn[qT , rT ].

We show the following 3-dimensional example. Let us consider a circle S1(x, r) ⊂

S2(o) with r < 1 and a set A0 ⊂ S1(x, r) that is the vertex set of a regular triangle.

Let B be the image of A0 under the reflection about x. Clearly, S1(x, r) is the only

circle in aff S1(x, r) that separates A0 and B. Hence, every 2-sphere, that separates

A0 and B, contains S1(x, r). Consider a point a ∈ A0, another point y ∈ (o, a), and

let A = A0 ∪ B3(y, ‖a − y‖) (cf. Figure 5.7). Note that the smallest sphere that

separates A and B, and contains A in its convex hull, is S2(o). It is easy to show
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that for any finite set T ⊂ A, there is a sphere S2(qT , rT ), with radius rT < 1, that

separates T and B such that T ⊂ B3[qT , rT ].

Figure 5.7: An illustration for Remark 5.2.3

Theorem 5.2.4. Let A and B be finite sets in En. Then there is a sphere Sn−1(q, r),

with radius r ≤ 1, that strictly separates A and B such that A ⊂ Bn(q, r) if, and

only if, the following holds: For every T ⊂ A ∪ B with card T ≤ n + 2, there is a

sphere Sn−1(qT , rT ), with rT ≤ 1, that strictly separates T ∩ A and T ∩ B such that

T ∩ A ⊂ Bn(qT , rT ).

Proof. We prove the “if” part of the theorem, and note that the “only if” direction is

trivial. Theorem 5.2.1 guarantees the existence of a sphere Sn−1(q∗, r∗) that strictly

separates A and B such that A ⊂ Bn[q∗, r∗]. Hence, there is a (unique) smallest

sphere Sn−1(q′, r′) separating A and B such that A ⊂ Bn[q′, r′].

By Lemma 5.2.2, there is a set T ⊂ A∪B with card T ≤ n+1 such that Sn−1(q′, r′)

is the smallest sphere that separates T ∩A and T ∩B and whose convex hull contains
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T ∩ A. By the assumption, we have r′ < rT ≤ 1. Since r′ < 1, there is a sphere

Sn−1(q, r) with r ≤ 1 such that Bn[q′, r′] ∩Bn(q∗, r∗) ⊂ Bn(q, r) ⊂ En \
(
Bn(q′, r′) ∪

Bn[q∗, r∗]
)
. This sphere clearly satisfies the conditions of Theorem 5.2.4.

5.3 Spindle convex variants of the Theorems of Carathéo-

dory and Steinitz

Carathéodory’s Theorem states that the convex hull of a set X ⊂ En is the union

of simplices with vertices in X. Steinitz’s Theorem states that if a point is in the

interior of the convex hull of a set X ⊂ En, then it is also in the interior of the

convex hull of at most 2n points of X. This number 2n is minimum, as shown by

the vertices of the cross-polytope and its centroid (cf. Section 2.2 and Figure 5.8).

Our goal is to find spindle convex analogues of these theorems. Our main result is

stated in Theorem 5.3.4.

Figure 5.8: A cross-polytope with its centroid
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Remark 5.3.1. Carathéodory’s Theorem for the sphere states that if X ⊂ Sm(q, r)

is a set in an open hemisphere of Sm(q, r), then every point p ∈ X is in the spherical

convex hull of at most m+ 1 points of X. The proof of this spherical equivalent uses

the central projection of the open hemisphere to a hyperplane tangent to Sm(q, r).

Remark 5.3.2. It follows from Definition 5.1.1 that if C is a spindle convex set in

En such that C ⊂ Bn[q] and cr(C) < 1, then C ∩ Sn−1(q) is spherically convex on

Sn−1(q).

Lemma 5.3.3. Let X ⊂ En be a closed set such that cr(X) < 1, and let Bn[q] be a

closed unit ball containing X. Then

(i) X ∩ Sn−1(q) is contained in an open hemisphere of Sn−1(q), and

(ii) convs X ∩ Sn−1(q) = Sconv (X ∩ Sn−1(q), Sn−1(q)) (cf. Figure 5.9).

Figure 5.9: An illustration for Lemma 5.3.3

Proof. Since cr(X) < 1, X is contained in the intersection of two distinct, closed

unit balls. From this, we obtain (i) and also that Z = Sconv (X ∩ Sn−1(q), Sn−1(q))

exists. Note that Remark 5.3.2 yields Z ⊂ Y = convs X ∩ Sn−1(q).
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We suppose that there is a point y ∈ Y \ Z and seek a contradiction. First,

we show that there is an (n − 2)-dimensional great-circle G of Sn−1(q) that strictly

separates Z from y.

Consider an open hemisphere S of Sn−1(q) that contains Z. Since Z is compact,

we may choose S in a way that y is not contained in its boundary. If y is an exterior

point of S then the boundary of S strictly separates y and Z. Thus, we may assume

that y is contained in S. Let f denote the central projection of S onto the hyperplane

H tangent to Sn−1(q) at the spherical centre of S. Since f(y) and f(Z) are compact

convex sets, there is an (n − 2)-dimensional affine subspace A of H that strictly

separates them in H . Thus, G = aff(A ∪ {q}) ∩ Sn−1(q) strictly separates Z and y.

Let Sy (respectively, SZ), denote the open hemisphere bounded by G that contains

y (respectively, Z). Since X is compact, its distance from Sy is positive. Thus, we

may move q a little towards the spherical centre of SZ to obtain a point q′ such that

X ⊂ Bn(q′) and y /∈ Bn[q′]. Hence, y /∈ convs X; a contradiction.

Theorem 5.3.4. Let X ⊂ En be a closed set.

(i) If p ∈ bd convs X then there is a set Y ⊂ X, with card Y ≤ n, such that

p ∈ convs Y .

(ii) If p ∈ int convs X then there is a set Y ⊂ X, with card Y ≤ n + 1, such that

p ∈ int convs Y .

Proof. Assume that cr(X) > 1. We note that B[X] = ∅, and thus, there is a set

Y ⊂ X of cardinality at most n + 1 such that B[Y ] = ∅ by Helly’s Theorem. From

Corollary 5.1.14, it follows that convs Y = En. This yields our assertion.
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Now we prove (i) for cr(X) < 1. By Lemma 5.1.11, there is a closed unit ball

Bn[q] that supports convs X at p. Applying Lemma 5.3.3 and the spherical version

of Carathéodory’s Theorem for Sn−1(q) (see Remark 5.3.1), we obtain that there is

a set Y ⊂ X of cardinality at most n such that p ∈ convs Y .

We prove (i) for cr(X) = 1 by a limit argument. Without loss of generality, we

may assume that X ⊂ Bn[o]. For any positive integer k, let Xk = (1 − 1
k
)X. Let pk

be the point of bd convs(Xk) closest to p. Thus, lim
k→∞

pk = p and cr(Xk) < 1. Hence,

there is a set Yk ⊂ Xk with card Yk ≤ n such that pk ∈ convs Yk. By compactness,

there is a sequence 0 < i1 < i2 < . . . of indices such that {Yik} converges to a set Y

with card Y ≤ n. Since X is closed, Y ⊂ X and p ∈ convs Y .

In order to prove (ii) for cr(P ) ≤ 1; we suppose that p ∈ int convs X, let x ∈

X ∩ bd convs X be arbitrary and let y be the intersection of bd convs X with the ray

emanating from p and passing through x. By (i), y ∈ convs Y for some Y ⊂ X with

card Y ≤ n. Clearly, p ∈ int convs(Y ∪ {x}).

Another version of Carathéodory’s Theorem is the “Colorful Carathéodory The-

orem” (cf. [41] p. 199). The following is the spindle convex variant.

Theorem 5.3.5. Consider n + 1 finite point sets X1, X2, . . . , Xn+1 in En such that

the spindle convex hull of each contains the origin o. Then there is a set Y ⊂

X1 ∪ · · · ∪ Xn+1 with card Y = n + 1 and card(Y ∩ Xi) = 1 for i = 1, 2, . . . , n + 1

such that o ∈ convs Y .



84

5.4 Erdős–Szekeres type theorems for points in spindle con-

vex position

In this section, we determine analogues of Erdős-Szekeres type theorems for points

in spindle convex position.

Definition 5.4.1. For any n ≥ 2 and k ≥ n + 1, let Mn(k) denote the smallest

positive integer such that any set of Mn(k) points, in general position in En, contains

k points in convex position.

As we noted in Chapter 4, M(k) = M2(k) exists for any k ≥ 3, and the best

estimates are

2k−2 + 1 ≤ M(k) ≤
(

2k − 5

k − 2

)
+ 1. (cf. (4.1))

The existence of Mn(k) and the inequality Mn+1(k) ≤ Mn(k) follow from the

following observation.

Remark 5.4.2. Let 2 ≤ t ≤ n. For every finite set X of points in general position

in En, that does not contain k points in convex position, there is a projection h onto

an affine subspace of dimension t such that h(X) is a set of points in general position

and no k of them are in convex position.

To find a spindle convex analogue of Definition 5.4.1, we observe first that some

points of En are in general position if, and only if, any n + 1 of them are in convex

position.

Definition 5.4.3. For 3 ≤ n + 1 ≤ k, let M̂n(k) denote the least positive integer

such that if X is a set of M̂n(k) points of En with the property that
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(i) X is contained in a closed unit ball, and

(ii) any n + 1 points of X are in spindle convex position,

then k points of X are in spindle convex position.

To show why we need (ii) in Definition 5.4.3 instead of the weaker condition

that the points are in general position, we provide the following example: Let X =

{p1, p2, . . . , pk} ⊂ E2, and p1, p2, . . . , pk be points on an arc of radius r > 1 such that

cr(X) < 1. We note that any three points of X are affinely independent and X does

not contain three points in spindle convex position. There are similar examples for

higher dimensions.

In the remaining part of this section, we show that Mn(k) = M̂n(k) for every

value of n and k. Let us assume that X ⊂ En is a set of points in general position

that does not contain k points in convex position. Observe that for a suitably small

ε > 0, any n + 1 points of εX are in spindle convex position. This implies that

Mn(k) ≤ M̂n(k). We obtain Mn(k) ≥ M̂n(k) from the following stronger version of

Theorem 5.3.4.

Theorem 5.4.4. Let X ⊂ En such that cr(X) ≤ 1, and let p ∈ X. Then p ∈ [X] or

p ∈ convs Y , for some Y ⊂ X with card Y ≤ n.

Proof. Note that [X] is the intersection of balls, of radii at least one, that contain

X. We assume that there is a ball Bn[q, r], with r ≥ 1, that contains X but does

not contain p, and show the existence of a set Y ⊂ X such that p ∈ convs Y and

card Y ≤ n.

If p ∈ bd convs X, then the theorem follows from Theorem 5.3.4. Hence, we may

assume that p ∈ int convs X. By Lemma 5.1.11, we have p ∈ int Bn[q] = Bn(q) for
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every unit ball Bn[q] that contains X. If there is a ball Bn[qr, r] that contains X

but does not contain p for every r > 1, then Blaschke’s Selection Theorem yields the

existence of a unit ball Bn[q] such that P ⊂ Bn[q] and p /∈ Bn(q). Thus, there is

an r > 1 such that if X ⊂ Bn[q, r] for some q ∈ En, then p ∈ Bn[q, r]. Clearly, if

1 < r1 < r2 and r2 satisfies this property then r1 also satisfies it. Hence, there is a

maximal value R satisfying this property. Let

X(r) =
⋂

{Bn(q, r) : P ⊂ Bn(q, r)}. (5.7)

Observe that X(r2) ⊂ X(r1) for every 1 < r1 < r2, and that p ∈ bd X(R).

Hence, by Corollary 5.1.13 and Theorem 5.3.4 for 1
R
X, we obtain a set Y ⊂ X, of

cardinality at most n, such that any ball of radius R that contains Y contains also

p. We define Y (r) similarly to X(r), and note that Y (R) ⊂ Y (1) = convs Y . The

theorem now follows.

If X ⊂ En is a set with cr(X) ≤ 1 and card X > Mn(k), and any n + 1 points of

X are in spindle convex position, then X contains k points in convex position. By

Theorem 5.4.4, these k points are in spindle convex position.

We note that Theorem 5.4.4 yields the spindle convex analogues of numerous

other Erdős–Szekeres type results.



Chapter 6

Ball-polyhedra

In this chapter, we investigate the properties of a spindle convex analogue of poly-

topes.

Definition 6.0.5. Let X ⊂ En be a finite, nonempty set such that cr(X) ≤ 1.

The set P = B[X] is called a ball-polyhedron. For any x ∈ X, we call Bn[x] a

generating ball of P and Sn−1(x) a generating sphere of P . If n = 2, we also call a

ball-polyhedron a disk-polygon.

Definition 6.0.6. Let X ⊂ En be a finite, nonempty set with cr(X) ≤ 1. The set

convs X is called a ball-polytope.

Note that, in the theory of convex sets, ball-polyhedra correspond to bounded

polyhedral domains and ball-polytopes correspond to polytopes. Though bounded

polyhedral domains and polytopes are equivalent, the same does not hold for ball-

polyhedra and ball-polytopes of dimensions greater than 2. Indeed, the boundary of

the spindle convex hull of a finite point set X is smooth everywhere except at the

points of X. Hence, no n-dimensional ball-polyhedron, n > 2, is the spindle convex

hull of finitely many points (cf. Corollary 6.1.14).

A thorough investigation of ball-polytopes seems to require a more analytic ap-

proach. Our main goal is to describe ball-polyhedra.

87
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6.1 The Euler-Poincaré Formula for standard ball-polyhedra

Definition 6.1.1. A partially ordered set or poset is a set S with a binary relation

≤ such that

1. a ≤ a for every a ∈ S,

2. if a ≤ b and b ≤ a then a = b, and

3. if a ≤ b and b ≤ c then a ≤ c.

In a poset S, the supremum of the elements a and b is c, if a ≤ c and b ≤ c, and

a ≤ c′ and b ≤ c′ imply c ≤ c′. The infimum of a and b is defined similarly. A poset

in which every pair has a supremum and an infimum is called a lattice. An element

of a lattice S which is less than or equal to every element of S is called the bottom

of S. An element of S which is greater than or equal to every element of S is called

the top of S. A lattice containing a bottom and a top is a bounded lattice. If there

is a bottom 0 in S, then an element a ∈ S is an atom, if a 6= 0, and b ≤ a implies

b = 0 or b = a. If, for every b ∈ S, there is an atom a ∈ S such that a ≤ b, then S is

called atomic.

It is a well-known fact that the faces of a polytope (together with the empty

set and the polytope itself), ordered by containment, form a bounded atomic lattice

with the vertices as atoms. This lattice is the face-lattice of the polytope.

Definition 6.1.2. Let X be a Hausdorff topological space, and let F = {Fi : i ∈ I}

be a family of finitely many subsets of X. Assume for Fi ∈ F that there is a

continuous surjective function σi : Bm[o] → Fi, for some m ≥ 0, whose restriction

to Bm(o) is a homeomorphism, and call σi(B
m(o)) and m the relative interior and
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the dimension of Fi, respectively. Let Fm denote the union of the elements of F of

dimension at most m. If the relative interiors of any two distinct elements of F are

disjoint, and σi(S
m−1(o)) ⊂ Fm−1 for every element Fi of F of positive dimension

m, we say that F is a finite CW-complex. The set Fm is the m-skeleton of F. An

element of F is a closed cell, and the relative interior of a closed cell is an open cell.

The dimension of F is the maximum of the dimensions of the cells of F. The Euler

characteristic of a finite CW-complex is defined as the number of even dimensional

cells minus the number of odd dimensional cells.

It is known that the Euler characteristics of two finite CW-decompositions of the

same topological space are equal. Hence, we may talk about the Euler characteristic

of the space. It is also known that the Euler characteristic of a closed ball of any

dimension is one. Since a convex polytope is homeomorphic to a closed ball and

its faces (together with the polytope itself) form a CW-complex, we obtain the

Euler-Poincaré formula for polytopes (cf. Section 2.4). For a general description of

CW-complexes, the reader is referred to [31].

The main goal of this section is to prove a variant of the Euler-Poincaré formula

for a certain class of ball-polyhedra. We present first an example to show that the

description of the face-lattice of an arbitrary ball-polyhedron is a difficult task.

Example 6.1.3. Consider two unit spheres S3(p) and S3(−p) in E4 with ||p|| < 1.

Note that S2(o, r) = S3(p) ∩ S3(−p) for some r < 1. Let B4[q] ⊂ E4 be a closed

unit ball that intersects S2(o, r) in a spherical cap, greater than a hemisphere of

S2(o, r) and distinct from S2(o, r). Observe that F = S2(o, r) ∩ B4[q] ∩ B4[−q] is

homeomorphic to a 2-dimensional band (cf. Figure 6.1).
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Figure 6.1: F = S2(o, r) ∩B4[−q] ∩ B4[q]

Our common sense says that F “deserves” the name of a 2-face of the ball-

polyhedron P = B4[p]∩B4[−p]∩B4[q]∩B4[−q]. Hence, Example 6.1.3 demonstrates

that even a satisfactory definition for the face-lattice of a ball-polyhedron, one that

models the face-lattice of a convex polytope, does not lead to a CW-decomposition

of the boundary of ball-polyhedra.

Now we generalize the definition of great-sphere (cf. Section 3.4) for arbitrary

spheres.

Definition 6.1.4. Let Sm(q, r) be a sphere of En. The intersection of Sm(q, r) with

an affine subspace of En that passes through q is called a great-sphere of Sm(q, r). In

particular, Sm(q, r) is a great-sphere of itself.

Definition 6.1.5. Let P = B[X] ⊂ En be a ball-polyhedron. The family {Bn[x] :

x ∈ X} is called reduced, if B[X] 6= B[X \ {x}] for any x ∈ X (cf. Figure 6.2).

If P contains more than one point, then it has a unique reduced family. If P is
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a singleton, say P = {p}, then there are infinitely many reduced families generating

P ; for instance, P = Bn[p − u] ∩Bn[p + u] for any u ∈ En with ‖u‖ = 1.

Figure 6.2: Not reduced and reduced families of generating balls

Definition 6.1.6. Let P ⊂ En be a ball-polyhedron containing more than one point,

and let Sm(q, r), where 0 ≤ m ≤ n − 1, be a sphere such that P ∩ Sm(q, r) 6= ∅. If

Sm(q, r) is the intersection of some of the generating spheres of P from the reduced

family, then we say that Sm(q, r) is a supporting sphere of P .

Figure 6.3: Supporting spheres of a disk-polygon
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Note that the intersection of finitely many spheres in En is either empty, or a

sphere, or a point. In particular, if n = 2, then the supporting spheres of P are the

generating spheres, (which are unit circles) and the intersections of two generating

spheres (which are pairs of distinct points). If n = 2, no point belongs to more than

two generating spheres in the reduced family (cf. Figure 6.3).

In the same way as the faces of a convex polytope are described in terms of

supporting hyperplanes, we describe the faces of a certain class of ball-polyhedra in

terms of supporting spheres.

Definition 6.1.7. An n-dimensional ball-polyhedron P ⊂ En, containing more than

one point, is standard if, for any supporting sphere Sl(p, r) of P , the intersection

F = P ∩ Sl(p, r) is homeomorphic to a closed Euclidean ball of some dimension. We

call F a face of P . The dimension of F , denoted by dim F , is the dimension of the

ball that is homeomorphic to F . If dim F = 0, dim F = 1 or dim F = n − 1, then

we say that F is a vertex, an edge or a facet, respectively. We regard P as a face of

itself.

Figure 6.4: A non-standard ball-polyhedron
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Note that the dimension of F is independent of the choice of the supporting

sphere containing F .

A disk-polygon is standard if, and only if, its reduced family of generating circles

has at least three elements. Furthermore, if n > 2, and X ⊂ En is the vertex set of

an n-dimensional regular polyhedron with cr(X) < 1, then B[X] is a standard ball-

polyhedron. For non-standard ball-polyhedra, we give the example of the intersection

of two unit balls (cf. Figure 6.4), and Example 6.1.3.

In Section 6.3, we present reasons why standard ball-polyhedra are natural, rel-

evant objects of study in E3.

Definition 6.1.8. Let C be a convex body in En and p ∈ bd C. Then the Gauss

image of p with respect to C is the set of outward unit normal vectors of hyperplanes

that support C at p.

Note that the Gauss image of a point is a spherically convex subset of Sn−1(o).

Theorem 6.1.9. The faces of a standard ball-polyhedron P are the closed cells of a

finite CW-decomposition of bd P .

Proof. Let {Sn−1(p1), . . . , S
n−1(pk)} be the reduced family of generating spheres of

P . We define the relative interior (resp., the relative boundary) of an m-dimensional

face F of P as the set consisting of the points of F that are mapped to Bm(o) (resp.,

Sm−1(o)) under any homeomorphism between F and Bm[o].

Let p ∈ bd P , and consider the sphere

St(q, r) =
⋂

{Sn−1(pi) : pi ∈ Sn−1(p), i ∈ {1, . . . , k}}. (6.1)
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Clearly, St(q, r) is a supporting sphere of P . Moreover, as p has a t-dimensional

neighbourhood in St(q, r), contained in the face F = St(q, r)∩P , F is t-dimensional.

This shows that p belongs to the relative interior of F . Hence, the relative interiors

of the faces of P cover bd P .

Assume that p is in the relative interior of a face F ′ of P . Clearly, F ⊂ F ′

by the definitions of F and St(q, r). Note that Gauss image of p with respect to

⋂{Bn[pi] : pi ∈ Sn−1(b), i ∈ {1, . . . , k}} ⊇ P is (n−m−1)-dimensional, which implies

that the Gauss-image of p with respect to P is at least (n − m − 1)-dimensional.

From this, it follows that the dimension of F ′ is at most m, which yields F ′ = F .

A similar consideration shows that if p is in the relative boundary of a face F ′

of P , then it is in the relative interior of a smaller dimensional face. This concludes

the proof.

Figure 6.5: An illustration for the proof of Corollary 6.1.10
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Corollary 6.1.10. The reduced family of the generating balls of a standard ball-

polyhedron P in En consists of at least n + 1 unit balls.

Proof. Since the faces of P form a CW-decomposition of bd P , P has a vertex v.

Note that at least n generating spheres of the reduced family contain v. We denote

the centres of n such spheres by q1, q2, . . . , qn. Let H = aff{q1, q2, . . . , qn}. Then

B[{q1, q2, . . . , qn}] is symmetric about H and, since v is a vertex of P , v /∈ H . Let

σH be the reflection of En about H (cf. Figure 6.5). Then S =
⋂n

i=1 Sn−1(xi) contains

v and σH(v), which implies that S contains more than one point of P . Since P is

a standard ball-polyhedron, there is a unit ball Bn[qn+1] in the reduced family of

generating balls of P that does not contain S.

Corollary 6.1.11. Let Λ be the family consisting of the empty set and all faces of a

standard ball-polyhedron P ⊂ En. Then Λ is a finite bounded lattice with respect to

ordering by inclusion. The atoms of Λ are the vertices of P and Λ is atomic.

Proof. First, we show that the intersection of two faces F1 and F2 is a face (or the

empty set). The intersection of the two supporting spheres that intersect P in F1

and F2 is another supporting sphere Sm(q, r) of P . Then Sm(q, r) ∩ P = F1 ∩ F2 is

a face of P . From this, the existence of the infimum of F1 and F2 follows.

Next, by the finiteness of Λ, the existence of infimum yields the existence of

supremum for any two elements F1 and F2 of Λ. The supremum of F1 and F2 is the

infimum of all the (finitely many) elements of Λ that are above F1 and F2.

Vertices of P are clearly atoms of Λ. Using Theorem 6.1.9 and induction on

the dimension of the face, it is easy to show that every face is the supremum of its

vertices.
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Corollary 6.1.12. A standard ball-polyhedron P in En has m-dimensional faces for

every 0 ≤ m ≤ n − 1.

Proof. We use an inductive argument on m, where we go from m = n− 1 to m = 0.

Clearly, P has facets. An m-face F of P is homeomorphic to Bm[o]. Hence, if m > 0,

the relative boundary of F is homeomorphic to Sm−1(o). As the (m− 1)-skeleton of

P covers the relative boundary of F , P has (m − 1)-faces.

Corollary 6.1.13 (Euler-Poincaré Formula). For any standard n-dimensional

ball-polyhedron P ,

1 + (−1)n+1 =
n−1∑

i=0

(−1)ifi(P ),

with fi(P ) denoting the number of i-dimensional faces of P .

Proof. Note that a ball-polyhedron in En is a convex body, and hence, it is homeo-

morphic to Bn[o]. Thus, our statement immediately follows from Theorem 6.1.9.

Corollary 6.1.14. Let P be an n-dimensional standard ball-polyhedron, n ≥ 3.

Then P is the spindle convex hull of its (n − 2)-dimensional faces. Furthermore, P

is not the spindle convex hull of its (n − 3)-dimensional faces.

Proof. Let p be a point on the facet F = P ∩ Sn−1(q) of P , and let C be a 2-

dimensional great-circle of Sn−1(q) that contains p. Since F is spherically convex on

Sn−1(q), C ∩ F is a unit circle arc of length less than π. Let a, b ∈ Sn−1(q) be the

two endpoints of C ∩F . Then a and b belong to the relative boundary of F . Hence,

by Theorem 6.1.9, a and b belong to an (n− 2)-face. Clearly, p ∈ convs{a, b}. Thus,

the facets of P are contained in the spindle convex hull of the (n − 2)-dimensional

faces of P , which yields our first statement.
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Next, note that by Corollary 6.1.12, P has an (n − 2)-dimensional face F . Then

F = P ∩ Sn−1(q1) ∩ Sn−1(q1), where Sn−1(q1) and Sn−1(q2) are generating spheres of

P from the reduced family. Let p be a point in the relative interior of F . Clearly, p /∈

convs((B
n[q1]∩Bn[q2]) \ {p}). On the other hand, convs(P \ {p}) ⊂ convs((B

n[q1]∩

Bn[q2]) \ {p}).

6.2 Monotonicity of the inradius, the minimal width and the

diameter of a ball-polyhedron under a contraction of the

centres

We begin with a definition.

Definition 6.2.1. Let X and Y be finite subsets of En. If there is a surjection

f : X → Y such that dist(f(p), f(q)) ≤ dist(p, q) for any p, q ∈ X, then we say that

Y is a contraction of X. Let x, x′ be points of X. If for each x and x′, there are

continuous curves γx : [0, 1] → En such that γx(0) = x, Y = {γx(1) : x ∈ X} and

dist(γx(t), γx′(t)) is a nonincreasing function of t ∈ [0, 1], then we say that Y is a

continuous contraction of X.

The Kneser-Poulsen conjecture, one of the famous open problems of discrete

geometry, states that under a contraction of the centres, the volume of the union

(resp., intersection) of finitely many balls in En does not increase (resp., decrease).

Recently, the conjecture has been proven in the plane by K. Bezdek and Connelly in

[4], and it has been proven for continuous contractions for n ≥ 3 by Csikós in [15].

The interested reader is referred to [5], [14] and [16] for further information.
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In this section, we apply a contraction to the centres of the generating balls of

a ball-polyhedron, and ask whether the inradius, the circumradius, the diameter or

the minimum width of the ball-polyhedron may decrease. We denote the inradius of

a convex set C ⊂ En by ir(C).

Proposition 6.2.2. Let X ⊂ En be a finite point set contained in a closed unit ball

and let Y be a contraction of X. Then ir(B[Y ]) ≥ ir(B[X]).

Proof. Let c and C denote, respectively, the incentre of B(X) and the circumcentre

of X. Note that X ⊂ Bn[c, 1 − ir(B[X])] and Bn[C, 1 − cr(X)] ⊂ B[X]. Thus,

ir(B[X]) + cr(X) = 1. We obtain ir(B[Y ]) + cr(Y ) = 1 similarly. Hence, our

proposition is an immediate consequence of the inequality cr(X) ≥ cr(Y ). This

inequality has been proven, for example, in [1].

Figure 6.6: The diameter and the circumradius of a ball-polyhedron may decrease
under contraction

The following construction (cf. Figure 6.6) shows that both the diameter and

the circumradius of an intersection of unit disks in the plane may decrease under a
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contraction of the centres. We define the points with their coordinates in a Descartes

coordinate system.

Let X = {o, c1, c2} and Y = {o, c′1, c′2}, where o is the origin and

c1 =
(

1
2

cos π
3
, 1

2
sin π

3

)
, c2 =

(
1
2

cos π
3
,−1

2
sin π

3

)
,

c′1 =
(

1
2

cos π
4
, 1

2
sin π

4

)
, c′2 =

(
1
2

cos π
4
,−1

2
sin π

4

)
.

The existence of the curves

γ1(t) =
(

1
2

cos
(

π
3
− π

12
t
)
, 1

2
sin
(

π
3
− π

12
t
))

,

γ2(t) =
(

1
2

cos
(

π
3
− π

12
t
)
,−1

2
sin
(

π
3
− π

12
t
))

,

where t ∈ [0, 1], shows that Y is a continuous contraction of X. We show that

diam(B[Y ]) < diam(B[X]) and cr(B[Y ]) < cr(B[Y ]).

It is a well-known fact that the two lines, passing through the endpoints of a

diameter D of a plane convex body and perpendicular to D, are supporting lines of

the body. The only two chords of B[X] (respectively, B[Y ]) satisfying this property

are the intersections of B[X] with the x-axis and the line passing through the points

c1 and c2 (respectively, c′1 and c′2). Thus, it is easy to see that the diameter of B[X]

(respectively, B[Y ]) is the length of the intersection of B[X] (respectively, B[Y ])

with the x-axis. This yields that

diam(B[Y ]) = 1 +

√
7 − 1

2
√

2
< 1 +

√
15 −

√
3

4
= diam(B[X]).

We note that the circumcircle of B[X] coincides with the circumcircle of the con-

vex hull of the vertices of B[X]. Hence, it follows from a straightforward calculation

that

cr(B[Y ]) = 0.74645 . . . < 0.82963 . . . = cr(B[X]).
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A similar example shows that the minimal width of an intersection of unit disks

on the plane may decrease under a continuous contraction of the centres. We set

X = {o, c1, c2}, and Y = {o, c′1, c′2}, where

c1 =
(

4
5

cos π
10

, 4
5

sin π
10

)
, c2 =

(
4
5

cos π
10

,−4
5

sin π
10

)
,

c′1 = c′2 =
(

4
5
, 0
)
.

Now

γ1(t) =
(

4
5

cos
(

π
10

− π
10

t
)
, 4

5
sin
(

π
10

− π
10

t
))

,

γ2(t) =
(

4
5

cos
(

π
10

− π
10

t
)
,−4

5
sin
(

π
10

− π
10

t
))

,

where t ∈ [0, 1].

By an argument similar to the one for diameter, we obtain that w(B[X]) (respec-

tively, w(B[y]) is the length of the intersection of B[X] (respectively, B[Y ]) with the

x-axis. Thus,

w(B[X]) =

√
1 − 4

5
sin2 π

10
− 4

5
cos

π

10
+ 1 = 1.200199 . . . > 1.2 = w(B[Y ]).

6.3 Finding an analogue of a theorem of Steinitz for ball-

polyhedra in E3

K. Bezdek and Naszódi [8] defined the vertices, edges and faces of a non-standard

3-dimensional ball-polyhedron in the following way. Let P be a ball-polyhedron in E3

with at least three generating balls in the reduced family, let Sk(x, r) be a supporting

sphere of P , and let F = Sk(x, r) ∩ P . If the dimension of F is 2 (respectively, 0),

then F is called a face (respectively, vertex ) of P . If dim F = 1, then the connected
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components of F are edges of P . Note that a face of P is spherically convex on

Sk(x, r), the endpoints of an edge are vertices of P , and every vertex is adjacent to

at least three edges and three faces of P .

Consider the intersection of two distinct unit balls B3(q1) and B3(q2) such that

dist(q1, q2) < 2. If we “cut off” little disjoint pieces of S2(q1) ∩ S2(q2) by unit balls,

we may construct a 3-dimensional ball-polyhedron P with two faces that meet along

a series of edges (cf. [8]). It is easy to show that the family of vertices, edges and

faces of P (together with the empty set and P itself) do not form a lattice with

respect to containment. The following remark shows how face structure plays a role

in the standardness of 3-dimensional ball-polyhedra.

Remark 6.3.1. A ball-polyhedron P in E3 is standard if, and only if, the ver-

tices, edges and faces of P (together with ∅ and P ) form a lattice with respect to

containment. Furthermore, the intersection of any two distinct faces of a standard

ball-polyhedron P ⊂ E3 is either empty, or one vertex or one edge of P .

Before introducing the main topic of this section, we recall a few elementary

notions from graph theory. A graph G is a pair (V (G), E(G)), where V (G) is a

finite set, called the set of vertices of G, and E(G) is a finite multiset consisting of

some undirected pairs of (not necessarily distinct) vertices of G. An element {p, q}

of E(G) is an edge of G with endpoints p and q. Two vertices are adjacent if they

belong to the same edge. Two edges are adjacent if they share a vertex.

A graph is simple if it contains no loop (an edge with identical endpoints) and

no parallel edges (two edges with the same two endpoints). A graph G is con-

nected if, for any two vertices p, q ∈ V (G), there is a finite sequence of vertices
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p = x0, x1, x2, . . . , xk = q such that xi−1 and xi are adjacent for i = 1, 2, . . . , k. Such

a sequence is called a path from p to q. A path from p to p, with pairwise distinct

edges and with k > 1, is called a cycle. A graph G is k-connected, if card V (G) ≥ k,

and G remains connected after deleting any at most k − 1 of its vertices.

Figure 6.7: A realization of the graph G

A realization of a graph G is a pair of mappings ξv : V (G) → En and ξe : E(G) →

Cn[0, 1], where the image of an edge E with endpoints p and q is a simple closed

continuous curve in En with endpoints ξv(p) and ξv(q) (cf. Figure 6.7). A graph G

is planar if it has a realization in E2 where the images of two distinct edges E1 and

E2 intersect only at the images of vertices that belong to both E1 and E2.

The edge-graph G of a 3-dimensional ball-polyhedron or polytope P is defined as

follows. V (G) is the set of vertices of P , and E(G) contains the edge {p, q}, where

p, q ∈ V (G), exactly k times if there are exactly k edges of P that connect p and q.

The edge-graph of a ball-polyhedron P contains no loops, but may contain parallel

edges. Moreover, it is 2-connected and planar.

A famous theorem of Steinitz (cf., for example [50], pp. 103-126) states that a

graph is the edge-graph of a convex polyhedron if, and only if, it is simple, planar and
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3-connected. In what follows, we investigate whether an analogue of this theorem

holds for standard ball-polyhedra in E3.

Proposition 6.3.2. Let P̄ be a convex polyhedron in E3 such that every face of P̄

is inscribed in a circle. Let Λ denote the face-lattice of P̄ . Then there is a sequence

{P1, P2, P3, . . . } of standard ball-polyhedra in E3 with face-lattices isomorphic to Λ

such that lim
k→∞

kPk = P̄ in the Hausdorff metric.

Proof. Let F be the family of the (two-dimensional) faces of P̄ . For a face F ∈ F ,

let cF denote the circumcenter, rF denote the circumradius, and nF denote the inner

unit normal vector of F . We define P ′
k as the following intersection of closed balls of

radius k:

P ′
k =

⋂

F∈F
B

[
cF +

(√
k2 − r2

F

)
nF , k

]
. (6.2)

Clearly, Pk = 1
k
P ′

k is a ball-polyhedron in E3. Note that 1
k
p is a vertex of Pk

for every p ∈ V (P̄ ). Moreover, a simple approximation argument shows that if K is

sufficiently large, then, for every k ≥ K, P ′
k is a standard ball-polyhedron in E3 with a

face-lattice isomorphic to Λ. Observe that lim
k→∞

P ′
k = P̄ . Now, for k = 1, 2, . . . , K−1,

replace Pk by PK . The sequence of ball-polyhedra obtained in this way satisfies the

requirements of the proposition.

Corollary 6.3.3. If G is an edge-graph of a convex polyhedron P̄ in E3, such that

every face of P̄ is inscribed in a circle, then G is the edge-graph of a standard ball-

polyhedron in E3.

We note that not every 3-connected, simple, planar graph is the edge-graph of a

convex polyhedron in E3 with all faces inscribed in a circle. (cf. [30], pp. 286-287).
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Proposition 6.3.4. The edge-graph of a standard ball-polyhedron P in E3 is simple,

planar and 3-connected.

Proof. Let G be the edge-graph of P . It is clearly planar, and it is easy to show that

G has at least four vertices. First, we show that G contains no parallel edges, from

which it follows that G is simple.

Assume that two vertices v and w are connected by at least two edges, say E1 and

E2. From the reduced family of generating spheres of P , let Q be the intersection of

those that contain E1 or E2. Clearly, Q = {v, w}, and this contradicts Remark 6.3.1.

We show that G is 3-connected. Let v and w be two distinct vertices of G.

Consider two vertices s and t of G, both different from v and w. We need to show

that there is a path from s to t that avoids v and w.

We define a graph Gv as follows. Let V (Gv) be the set of vertices of P that lie on

the same face as v and are distinct from v. Two vertices of Gv are connected with

an edge if, and only if, there is an edge of G connecting them that lies on a face of

G containing v. We define Gw similarly. By Remark 6.3.1, Gv and Gw are cycles (cf.

Figure 6.8). Moreover, v and w are incident with at most two faces in common.

Figure 6.8: Gv
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Case 1. v and w are not incident to any common face; that is, v /∈ Gw and

w /∈ Gv.

Since G is connected, there is a path connecting s and t. We may assume that this

path does not pass through any vertex twice. Assume that this path includes v by

passing through two edges, say E1 = {v1, v} and E2 = {v, v2}. Clearly, v1 6= w 6= v2,

and v1 and v2 are contained in Gv, which is a cycle. Thus, the edges E1 and E2 in

the path may be replaced by a sequence of edges of Gv that connects v1 and v2. If

the path passes through w then it may be modified in the same manner to avoid w.

Thus, we obtain the desired path.

Case 2. v and w are incident to one or two common faces.

Let Ḡ be the subgraph of Gv ∪ Gw spanned by V (Gv) ∪ V (Gw) \ {v, w}. Since P is

standard, Ḡ is a cycle. Similarly to the preceding argument, any path from s to t

may be modified, using edges of Ḡ, such that it does not pass through v and w.

6.4 Ball-polyhedra in E3 with symmetric sections

The following conjecture is due to K. Bezdek (cf. [29]).

Conjecture 6.4.1. Let C be a convex body in E3 such that any planar section of C

is axially symmetric. Then C is either a body of revolution or an ellipsoid.

A remarkable result related to this conjecture is due to Montejano [43], who

proved that if C ⊂ E3 is a convex body and p ∈ int C such that every planar section

of C through p is axially symmetric, then there is a planar section of C through p

which is a disk. Our main goal in this section is to show that Conjecture 6.4.1 holds

for the class of ball-polyhedra with the weaker condition in Montejano’s theorem.



106

Theorem 6.4.2. Let P be a ball-polyhedron in E3, and let p ∈ int P such that any

planar section of P passing through p is axially symmetric. Then P is either a point,

or a unit ball or the intersection of two unit balls.

Proof. Let Sn−1(q1), S
n−1(q2), . . . , Sn−1(qk) denote the generating spheres of P in the

reduced family. Suppose that k ≥ 3, and let p be any point of int P . We show that

there is a plane H passing through p such that P ∩ H is not axially symmetric.

Since k ≥ 3, P has an edge E. Let u1 be a point in the relative interior of E,

and let u2 be a point in the relative interior of a face F of P that does not contain

E. By slightly moving u1 on E and u2 on F , we may assume that the plane H ,

spanned by p, u1 and u2, does not contain any vertex of P and is neither parallel nor

perpendicular to the line passing through qi and qj , for any 1 ≤ i < j ≤ k.

Since F does not contain E, H intersects at least three edges of P . Thus, H ∩P

is a plane convex body in H bounded by the union of at least three circular arcs

(cf. Figure 6.9). Moreover, since H is neither parallel nor perpendicular to the line

passing through qi and qj , for any 1 ≤ i < j ≤ k, it follows that the radii of these

arcs are pairwise distinct. Hence, H ∩ P is not axially symmetric.

Figure 6.9: H ∩ P
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6.5 Isoperimetric inequalities for spindle convex sets

The Isoperimetric Inequality states that, among n-dimensional convex bodies of a

given surface area, the Euclidean ball has maximal n-dimensional volume (cf. for

example [26]).

Remark 6.5.1. Let 0 < r ≤ 1. Among the spindle convex sets of surface area

equal to that of Bn[o, r]; the spindle convex set Bn[o, r] has maximal n-dimensional

volume.

The discrete version of the Isoperimetric Inequality states the following (cf. [24]).

If P ⊂ E2 is a convex polygon with at most k vertices and with a given perimeter

`, then area(P ) is equal to or less than the area area(Pk) of a regular k-gon Pk.

Furthermore, area(P ) = area(Pk) if, and only if, P is a regular k-gon. In this

section, we prove an analogue of this statement for disk-polygons.

Note that a disk-polygon is standard if, and only if, its reduced family of gener-

ating circles has at least two members.

Figure 6.10: A disk-polygon and its underlying polygon
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Definition 6.5.2. Let P ⊂ E2 be a standard disk-polygon with k edges, k ≥ 3.

Then P is called a k-sided disk-polygon. Two distinct vertices of P are consecutive,

if they are contained in the same edge of P . Two distinct edges of P are consecutive,

if they share a common vertex. The convex hull of the set of vertices of P is the

underlying polygon of P (cf. Figure 6.10). The disk-polygon P is regular if its

underlying polygon is a regular polygon.

Theorem 6.5.3. Let k ≥ 3 and P ⊂ E2 be a disk-polygon with at most k edges

and with perimeter `. Then area(P ) ≤ area(Pk), the area of a regular k-sided disk-

polygon Pk of perimeter `. Furthermore, area(P ) = area(Pk) if, and only if, P is a

regular k-sided disk-polygon of perimeter `.

Proof. Note that area(P ) ≤ area B2[o] and that the limit of a sequence of disk-

polygons, with perimeter ` and with at most k edges, is a disk-polygon with perimeter

` and with at most k edges. From this, it easily follows that there is a disk-polygon,

with perimeter ` and with at most k edges, that has maximal area among such

disk-polygons. Hence, it is sufficient to show that if P is not a regular k-sided disk-

polygon, then its area is not maximal. Note that if we allow more than two vertices of

P to be contained in the same unit circle arc, then P may be regarded as a (possibly

degenerate) k-sided disk-polygon.

We show that if P is not equilateral, then its area is not maximal. Then the

equality of the angles of a disk-polygon, with maximal area, follows immediately

from the classical discrete isoperimetric inequality.

Let P be not equilateral. Then we may assume that P has two consecutive edges

Ea and Eb of different lengths which are not contained in the same unit circle arc. Let
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us denote the arc lengths of Ea and Eb by α and β, respectively. We may assume

that 0 < α < β. Let a and p (respectively, b and p) denote the endpoints of Ea

(respectively, Eb). Set d = ‖a − b‖. Let F denote the convex domain bounded by

Ea, Eb and [a, b] (cf. Figure 6.11).

Figure 6.11: Illustration for the proof of Theorem 6.5.3

We consider A = area(F ) as a function of α with parameters d and ρ = α + β.

Using Heron’s formula for the area T of the triangle [a, b, p], we obtain

A(α) =
α − sin α

2
+

β − sin β

2
+ T =

α + β

2
− sin α + sin β

2
+

√
2d2 − d4 − (cos α − cos β)2

4
− (cos α + cos β)d2.

The derivative of A is

A′(α) =

−cos α − cos β

2
+

1

2T

[
(cos α − cos β)(sin α + sin β)

2
+ (sin α − sin β)d2

]
.

By trigonometric identities, we obtain that

A′(α) = −cos α − cos β

2T

[
T − sin α + sin β

2
+ d2 cot

ρ

2

]
.
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Let

B =
sin α + sin β

2
− d2 cot

ρ

2
.

As cos α > cos β and T > 0, it follows from T − B < 0 that A′(α) > 0. We show

that T − B < 0. Observe that

T 2 − B2 =
−2
(
d2 − sin2 ρ

2

)2

1 − cos ρ
.

This expression is clearly nonpositive, and it is zero only if d = sin ρ

2
; that is, if the

points a, p and b are on the same unit circle arc. Thus, T 2 − B2 < 0.

As T is clearly positive, the assertion follows from B > 0. We regard B as a

function of d with parameters α and β. Obviously, B(d) is continuous on R, and

B(0) > 0. As B2 ≥ T 2 > 0, B does not change sign on the interval (0, sin α
2

+ sin β

2
),

the domain of T . Thus, B(d) > 0 for d ∈ (0, sin α
2

+ sin β

2
).

In Chapter 7, we prove a more general version of Theorem 6.5.3.



Chapter 7

Isoperimetric inqualities for kg-polygons

7.1 Introduction and preliminaries

The discrete isoperimetric problem is to determine the maximal area polygon with

at most k vertices and with a given perimeter. It is a classical result that the unique

optimal polygon in E2 is the regular one. The same result for H2 was proven by K.

Bezdek [3], and for S2 by L. Fejes Tóth [24]. We refer to these results as the classi-

cal (discrete) isoperimetric inequalities. For an overview of results on isoperimetric

problems, the reader is referred to [13].

In Theorem 6.5.3, we proved that, among disk-polygons of a given perimeter and

with at most k edges, a regular k-sided disk-polygon has the largest area. Now we

extend our investigation to larger families of geometric figures.

In this chapter, M denotes any of the following three geometries of constant

sectional curvature K ∈ {0,−1, 1}: the Euclidean plane (K = 0), the hyperbolic

plane (K = −1), or the sphere (K = 1). If a and b are two points of M (if M = S2, we

assume that they are not antipodal), then ab denotes the shortest geodesic segment

connecting them.

If γ : [0, 1] → E2 is a simple closed continuous curve then, by the Jordan Curve

Theorem (cf. [48]), E2 \ γ([0, 1]) consists of two connected components, exactly one

of which is bounded. The bounded component is the interior, and the other one

is the exterior of γ. This theorem and the notions of interior and exterior may

111
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easily be modified for the hyperbolic plane. In the sphere, we have two bounded

components, and we define the interior (respectively, exterior) of γ as the one with

smaller (respectively, larger) area if it exists.

Definition 7.1.1. Let Γ be a simple closed polygonal curve in M and let kg be

a non-negative constant. If M = S2, we assume that Γ is contained in an open

hemisphere. Consider the closed curve P obtained by joining consecutive vertices of

Γ by curves of constant geodesic curvature kg facing outward (resp. inward); that

is, each curve lies in the closed half plane, bounded by the geodesic containing the

corresponding side of Γ, on the side of the outer (resp. inner) normal vector of the

side. If kg is the geodesic curvature of a circle of radius r, we assume also that Γ has

sides of length at most 2r and that the smooth arcs of P , connecting two consecutive

vertices, are shorter than or equal to a semicircle. We call P an outer (resp. inner)

kg-polygon, and say that its underlying polygon is Γ (cf. Figure 7.1).

Figure 7.1: An outer and an inner kg-polygon

We note that the boundary of a disk-polygon is an outer kg-polygon in E2. As a
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kg-polygon may even be self-intersecting, its converse is false.

Definition 7.1.2. Let P be an (outer or inner) kg-polygon. The vertices of P are

the vertices of Γ. Two vertices of P are consecutive if they are consecutive vertices

of Γ. Let a and b be consecutive vertices of P . The arc of P , that connects a and

b and does not contain other vertices of P , is a side of P , and we denote it by âb.

The convex region bounded by ab and âb is an ear of P (cf. Figure 7.2). If Γ is a

regular polygon, we say that P is regular. The area of an outer kg-polygon P is the

sum of the area of the interior of the underlying polygon Γ and the areas of the ears.

Similarly, the area of an inner kg-polygon P is the area of the interior of Γ minus

the sum of the areas of the ears. The perimeter perim(P ) of P is the arc length of

P . A (kg, `)-polygon is a kg-polygon with perimeter `.

Figure 7.2: An ear of an outer kg-polygon

Note that if a region is covered by more than one ear, its area is counted with
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multiplicity.

Remark 7.1.3. By Theorem 3.5.1, curves of constant geodesic curvature kg in M =

E2 are straight line segments if kg = 0, and Euclidean circle arcs of radius r = 1
kg

if

kg > 0. In M = S2, these curves are circle arcs of spherical radius r with kg = cot r.

In M = H2, they are hyperbolic straight line segments if kg = 0, hypercycle arcs

with distance r from a line such that kg = tanh r if 0 < kg < 1, horocycle arcs if

kg = 1 and circle arcs of hyperbolic radius r with kg = coth r if 1 < kg.

The discrete isoperimetric inequality for the family of (kg, `)-polygons with at

most k vertices makes sense only if the parameters kg, ` and k satisfy the following

restrictions, which we assume throughout Chapter 7.

Figure 7.3: A (kg, `)-polygon whose class does not contain a regular (kg, `)-polygon

Remark 7.1.4. We assume that if kg is the geodesic curvature of a circle of radius

r, then

(7.1.4.1) ` is not greater than k times the length of a semicircle of radius r;

(7.1.4.2) if M = S2 and rk ≥ π, then ` is less than the perimeter of the kg-polygon with

the regular k-gon inscribed in a great-circle of S2 as its underlying polygon.
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The assumption in (7.1.4.1) implies that the family of (kg, `)-polygons with at

most k vertices is not empty. Furthermore, if M 6= S2 or rk < π, then it yields the

existence of a regular (kg, `)-polygon with k vertices. If M = S2 and rk ≥ π, then

the existence of this (kg, `)-polygon follows from (7.1.4.2) (cf. Figure 7.3).

Definition 7.1.5. An outer (resp. inner) (kg, `)-polygon with at most k vertices is

optimal, if its area is at least the areas of outer (resp. inner) (kg, `)-polygons with

at most k vertices.

Theorem 7.1.6. Let ` > 0, kg ≥ 0 and k ∈ Z+ satisfy the conditions in Re-

mark 7.1.4. Then the optimal inner (kg, `)-polygons in M are the regular ones.

Figure 7.4: Optimal outer (kg, `)-pentagons

The main result of Chapter 7 is the following theorem.

Theorem 7.1.7. Let kg ≥ 0, ` > 0 and k satisfy the conditions in Remark 7.1.4.

If ` is not the perimeter of a circle of geodesic curvature kg, then the optimal outer

(kg, `)-polygons in M are the regular ones. If ` is the perimeter of a circle of geodesic

curvature kg, then a (kg, `)-polygon is optimal if, and only if, its underlying polygon

Γ is inscribed in a circle of geodesic curvature kg (cf. Figure 7.4).
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We note that the proof of Theorem 6.5.3 proves without any change also Theo-

rem 7.1.7 for M = E2. In Section 7.3, we show that, by a similar method, the proof

of Theorem 7.1.7 may be squeezed out for hyperbolic circles. In Section 7.4, we give

a different, differential geometric proof of Theorem 7.1.7 that holds for any curve of

constant geodesic curvature in H2. In Section 7.5, we show how to modify the proof

in Section 7.4 for the sphere.

Figure 7.5: A “big eared” outer kg-pentagon

Remark 7.1.8. If kg is the geodesic curvature of a circle, then we may consider

the discrete isoperimetric problem for outer kg-polygons with no side shorter than a

semicircle (cf. Figure 7.5). Since a big eared kg-polygon is optimal if, and only if, the

small eared inner kg-polygon built around the same underlying polygon is optimal,

it follows that the isoperimetric problem for “big eared” outer kg-polygons may be

reduced to Theorem 7.1.6.



117

7.2 Proof of Theorem 7.1.6

Recall that the area of P is the area of the interior of Γ minus the sum of the areas

of the ears of P . By the classical isoperimetric inequalities, it is sufficient to show

that if, in a family of (kg, `)-polygons different only in a single vertex, the sum of the

areas of the two consecutive ears meeting at that vertex attains its minimum only if

the ears are congruent.

Consider an arc-length parametrized curve φ : [0, ˆ̀] → M, of constant geodesic

curvature kg, with endpoints a = φ(0) and b = φ(ˆ̀), and select a third point p on

φ([0, ˆ̀]). For x ∈ {a, b}, let Ex denote the ear bounded by xp and the corresponding

arc âb of φ. We show that area(Ea)+area(Eb), as a function of p, attains its minimum

only if p is the midpoint of φ([0, ˆ̀]). The area of the domain bounded by ab and

φ([0, ˆ̀]) is fixed and hence, we want to maximize the area A of the triangle [a, b, p].

In E2, A is clearly maximal only if p is the midpoint.

Figure 7.6: A Lexell figure in H2

In the case M 6= E2, we let δ > 0 and consider the set of points L(δ) = {x ∈ M :

area([a, x, b]) = δ}. We call L(δ) a Lexell figure. In [24] p. 91, it is shown that L(δ)
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is a pair of circular arcs in S2, and a pair of hypercycles in H2. The Lexell figure is

symmetric about both the geodesic segment ab and its perpendicular bisector.

If A is maximal with the constraint p ∈ φ([0, ˆ̀]), then the corresponding Lexell

figure is tangent to φ at p. Note that a curve of constant geodesic curvature kg > 0

corresponds to a Euclidean circle arc or a straight line segment in our models of H2

and S2. Hence, if A is maximal, the p is the only common point of the Lexell figure

and φ([0, ˆ̀]). By the symmetry of the Lexell figure, p is the midpoint of φ([0, ˆ̀]).

Remark 7.2.1. This proof shows that the discrete isoperimetric inequality for outer

kg-polygons is not a straightforward corollary of the classical discrete isoperimetric

inequalities: as equal sides of Γ maximize the area of the region bounded by Γ, they

also minimize the sum of the areas of the ears.

7.3 Proof of Theorem 7.1.7 for kg-polygons consisting of hy-

perbolic circle arcs

Consider a k-sided outer kg-polygon P , bounded by hyperbolic circle arcs of radius

r, and note that coth r = kg.

If kg is the geodesic curvature of a circle of perimeter `, then by the classical

isoperimetric inequalities, a (kg, `)-polygon is optimal if, and only if, its vertices are

on a circle of geodesic curvature kg. Thus, we may assume that ` is not the perimeter

of a circle of geodesic curvature kg.

A standard compactness argument for outer (kg, `)-polygons shows the existence

of an optimal polygon. Hence, we assume that P is not a regular (kg, `)-polygon,

and show that P is not optimal.
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The areas of the ears are constant if the shape of the underlying polygon Γ is

altered without changing the lengths of the sides. In E2 and H2, a polygon with

given side lengths has maximal area if, and only if, its vertices lie on a curve of

constant geodesic curvature. In particular, such a polygon with maximal area is

strictly convex; that is, it is convex and its angle at each vertex is strictly less than

π. Thus, we may assume that Γ is strictly convex and that P is not equilateral.

Let us choose two consecutive sides âp and b̂p of P such that arclength(âp) <

arclength(b̂p), and a, p and b are not on the same curve of constant geodesic curvature

kg. Let d = cosh(distH(a, b)) − 1 and u = sinh r = 1/
√

k2
g − 1. Let α and β denote

the angles of the sections belonging to the circle arcs âp and b̂p, respectively. First,

we compute the area A of the convex figure bounded by âp, p̂b and ab. Then, fixing

d and λ = α + β, we show that the derivate of A with respect to α is positive under

the condition 0 < α < β.

It is easy to see (cf. Section 3.2) that the area of a hyperbolic disk of radius r is

areaH(disk) = 4π sinh2
(r

2

)
.

By this formula and Proposition 3.6.2, we have

A = λ(
√

u2 + 1 − 1) − 2 arctan
sin α

√
u2+1+1√
u2+1−1

− cos α
− 2 arctan

sin β
√

u2+1+1√
u2+1−1

− cos β
+

+2 arctan
∆

1 + x + y + z
,

where ∆ =
√

1 − x2 − y2 − z2 + 2xyz, and x = 1+u2−u2 cos α, y = 1+u2−u2 cos β

and z = d+1 are the cosine hyperbolics of the side lengths of the hyperbolic triangle

[a, b, p].
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After differentiation and simplification, we have

A′ =
−u2(2

√
u2 + 1(cos α − cos β)∆ − E)

∆(2 + u2 − cos α)(2 + u2 − cos β)
,

where

E = du2(sin(β − α) + sin α − sin β) + 2d(sin β − sin α)+ (7.1)

+u2(cos α − cos β)
[
(sin α + sin β − sin(α + β))u2 + 2(sin α + sin β)

]
.

We omit a tedious calculation that shows that

A′ · (2
√

u2 + 1(cos α − cos β)∆ + E) =
2u2(cos α − cos β)2(sin2 α+β

2
u2 − d)2

∆(1 − cos(α + β))
. (7.2)

Note that the right-hand side of (7.2) is nonnegative. Furthermore, this expression

is zero if, and only if, sin2 α+β

2
u2 = d; that is, a, p and b are on the same arc of

constant geodesic curvature kg.

Thus, A′ > 0 follows from E > 0. As in the proof of Theorem 6.5.3, we regard E

as a function of d. Note that since sin α + sin β > sin(α + β) for any 0 < α < β ≤ π,

E(0) = u2(cos α − cos β)
[
(sin α + sin β − sin(α + β))u2 + 2(sin α + sin β)

]
> 0.

To show that E(d) > 0 for every value of d in its domain, we may use an argument

similar to that in the proof of Theorem 6.5.3.

7.4 Proof of Theorem 7.1.7 for the hyperbolic plane

As in the previous section, it is sufficient to show that if ` is different from the

perimeter of a circle of geodesic curvature kg, Γ is strictly convex and P is not

equilateral, then P is not optimal. We may also assume that kg > 0, and that there
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are three consecutive vertices a, p and b of P such that âp is shorter than b̂p, and a,

p and b are not on the same curve of constant geodesic curvature kg.

We show that, under our conditions, p does not maximize the area A(p) of the

figure F (p), bounded by the geodesic segment ab and the two sides âp and b̂p, under

the constraint that the arc length L(p) of âp∪ b̂p is fixed. The constraint lets p move

along a continuous curve τ , which may or may not degenerate to a single point.

The first case happens only if both âp and b̂p are semicircles, which contradicts the

unequality of these sides. Thus, τ does not degenerate to a single point, and âp is

not a semicircle. Note that p is an endpoint of τ if, and only if, the larger side b̂p is

a semicircle, and in that case, p moves only in one direction.

We show that if b̂p is not a semicircle and p moves towards the symmetric position,

then the derivative of A(p) in the direction of τ is positive. Since τ is continuous,

the assertion follows also in the case that b̂p is a semicircle.

Definition 7.4.1. Let p, q ∈ H2 and kg ≥ 0. If there is a curve of constant geodesic

curvature kg connecting p and q, then let fq(p) denote the arc length of a shortest

such curve. The function fq is the kg-arc-length function belonging to q.

Note that the domain of fq is either H2 or a closed disk.

To prove the assertion, we show the existence of a vector v ∈ TpH
2 such that

v(L) = 0, v(A) > 0 and v(fa) > 0. In other words, we show that the area A(p)

increases as p approaches the symmetric position on τ .

Definition 7.4.2. Let ta, tb ∈ TpH
2 be the unit tangent vectors of the oriented sides

p̂a and p̂b (directed from p to a and from p to b), respectively. Let te = tb−ta
‖tb−ta‖ ; that

is, te is the unit vector in TpH
2 in the direction of the angular bisector of −ta and tb.
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If the angle of P at p is less than π, let ti = ta+tb
‖ta+tb‖ . If the angle of P at p is greater

than π, let ti = − ta+tb
‖ta+tb‖ . Thus, ti is the unit vector in TpH

2 in the direction of the

internal angular bisector of ta and tb.

Let 0 < γ < π be the angle between ta and ti, and let 0 < σa < π
2

(resp.

0 < σb < π
2
) be the angle between the geodesic segment pa (resp. pb) and the curve

p̂a (resp. p̂b) (cf. Figure 7.7.)

We note that since âp and b̂p are not contained in the same curve of geodesic

curvature kg, we have γ 6= π
2
.

Figure 7.7: An illustration for Definition 7.4.2

Lemma 7.4.3. Let t ∈ TpH
2 be a unit vector such that the oriented angle between

ta and t is φ and the orientation is given by the ordered basis (ta, ti). Then the

derivative of fa in the direction of t is

t(fa) = − cos φ − sin φ tan σa. (7.3)

Proof. Let u ∈ TpH
2 be orthogonal to the geodesic segment pa. Set da : H2 → R,

da(x) = dist(a, x). Clearly, u(da) = 0, and hence

u(fa) = 0. (7.4)
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Next, let c : (−ε, ε) → H2 be the arc length parametrization of a curve of

constant geodesic curvature kg such that c(0) = p and c([0, ε]) ⊂ p̂a. The vector ta

is represented as the derivative along the curve c at 0, and thus,

ta(fa) =
d

dt
fa(c(t))|t=0 = −1. (7.5)

Since p̂a is not a semicircle, it follows that u and ta are not parallel and that we

may decompose t as a linear combination t = µta + λu. From (7.4), (7.5) and this

decomposition, we have

t(fa) = µta(fa) = −µ = − 〈t, v〉
〈ta, v〉

= −cos(φ − σa)

cos σa

.

Now, the addition formula for the cosine function yields the assertion.

Lemma 7.4.4. With reference to Definition 7.4.2 and Lemma 7.4.3,

Le = te(L) = cos γ
(

tan σb − tan σa

)
, and (7.6)

Li = ti(L) = −2 cos γ − sin γ
(

tan σa + tan σb

)
. (7.7)

Moreover, if x = −Lite + Leti, then

x(L) = 0 and x(fa) > 0. (7.8)

Proof. Note that our conditions imply that σa, σb < π
2
, the oriented angles between

ta and ti as well as between tb and ti are γ, the oriented angle between ta and te

is γ + π
2

and the one between tb and ti is γ − π
2
. Now (7.6) and (7.7) follow from

Lemma 7.4.3.

The first formula in (7.8) is obvious. By substituting (7.6) and (7.7) into the

definition of x, applying Lemma 7.4.3 and simplifying, we obtain

x(fa) =
sin
(
2γ − σa − σb

)

cos σa cos σb

> 0.
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The inequality follows from that facts that 2γ−σa−σb is the angle of the underlying

polygon Γ at p, 0 < 2γ − σa − σb < π, and 0 < σa, σb < π
2
.

According to Lemma 7.4.4, we need only show that x(A) > 0. For this purpose,

we compute the differential of A explicitly.

Lemma 7.4.5. The derivatives of the area A(p) in the directions te and ti are

Ae = te(A) =
cos γ√
k2

g − 1

(
tan

fb(p)
√

k2
g − 1

2
− tan

fa(p)
√

k2
g − 1

2

)
and (7.9)

Ai = ti(A) = − sin γ√
k2

g − 1

(
tan

fb(p)
√

k2
g − 1

2
+ tan

fa(p)
√

k2
g − 1

2

)
. (7.10)

Proof. For w ∈ TpH
2, we compute the derivative w(A).

Figure 7.8: An illustration for the proof of Lemma 7.4.5

Choose a curve η : (−ε, ε) → H2 describing a motion of η(0) = p with initial

speed vector η′(0) = w. Let u ∈ {a, b}. Consider the arc length parametrization

ζu : R → H2 of the curve, of constant geodesic curvature kg, containing the arc ûp
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such that ζu(0) = u and ζu(fu(p)) = p. Let Ru(q, θ) denote the rotation of q ∈ H2

about u with angle θ with respect to a fixed orientation of H2. Rotations about u

form a one parameter group of isometries generated by the Killing field ru, where

ru(q) = ∂θRu(q, 0) (see Figure 7.8). There is a smooth function θu : (−ε, ε) → R such

that the map [0, 1] → H2, λ 7→ Ru(ζu(λfu(η(t))), θu(t)) is a parametrization of the

arc ûη(t). The initial speed vector field of this variation of the side ûp is the vector

field vu along the curve ûp, the value of which at the point q = ζu(λfu(p)) is

vu(q) =
∂

∂t
Ru(ζu(λfu(η(t))), θu(t))

∣∣∣∣
t=0

= λw(fu)ζ ′
u(λfu(p)) + θ′u(0)ru(q).

The speed vector vu(p) coincides with the speed vector w of p:

w = −w(fu)tu + θ′u(0)ru(p). (7.11)

Let nu be the outer unit vector field along, and orthogonal to, the arc ûp. The

derivative of A with respect to w is

w(A) =
∑

u∈{a,b}

∫

cup

< nu, vu > ds =
∑

u∈{a,b}
θ′u(0)

∫

cup

< nu, ru > ds. (7.12)

Note that since ru is a Killing field, it is divergence free. Hence,

∫

cup

< nu, ru > ds =

∫

up

< mu, ru > ds, (7.13)

with mu denoting the outer unit normal of the polygon Γ along the side up.

From (3.7), it is easy to compute that the perimeter of a circle C of radius r in

the hyperbolic plane is

perimH(C) = 2π sinh r. (7.14)

From (7.14), we obtain that

ru = ± sinh(du(q))mu,
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with du(q) = distH(u, q) for q ∈ H2. Since the coefficient of mu does not change sign

on ûp,

∫

up

< mu, ru > ds = ± (cosh du(p) − 1) =< ru(p), mu(p) >
cosh du(p) − 1

sinh du(p)

=< ru(p), mu(p) > tanh
du(p)

2
.

(7.15)

From (7.11), (7.12) and (7.15), we obtain that

w(A) =
∑

u∈{a,b}
< θ′u(0)ru(p), mu(p) > tanh

du(p)

2

=
∑

u∈{a,b}
(< w, mu(p) > +w(fu) < tu, mu(p) >) tanh

du(p)

2
.

(7.16)

If w = ti or w = te, then the angles between the unit vectors w, mu(p) and tu are

known explicitly, and an explicit expression for w(fu) is also given in Lemma 7.4.3.

Substituting these values into (7.16), we obtain

ti(A) =
∑

u∈{a,b}

(
cos
(π

2
+ γ − σu

)
− cos(γ − σu)

cos σu

cos
(π

2
− σu

))
tanh

du(p)

2

= −
∑

u∈{a,b}

sin γ

cos σu

tanh
du(p)

2

(7.17)

and,

te(A) = − cos γ

cos σa

tanh
da(p)

2
+

cos γ

cos σb

tanh
db(p)

2
. (7.18)

Using the identity tan(it)/i = tanh t, (3.25) in Proposition 3.6.4 for H2 may be

written as

tanh d(s)
2

cos d(s)
=

tan
s
√

k2
g−1

2√
k2

g − 1
.

Substituting this into (7.17) and (7.18) yields the assertion.
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Finally, we show that x(A) > 0 by direct calculation. Using the definition of x

in Lemma 7.4.4 and Formulae (3.23), (7.6), (7.7), (7.9) and (7.10), we have that

x(A) = −LiAe + LeAi =
2 cos2 γ√

k2
g − 1

(
tan

fb(p)
√

k2
g − 1

2
− tan

fa(p)
√

k2
g − 1

2

)
.

Note that, by an algebraic identity and continuity, we have

x(A) =






2 cos2 γ√
1−k2

g

(
tanh

fb(p)
√

1−k2
g

2
− tanh

fa(p)
√

1−k2
g

2

)
if 0 < kg < 1,

cos2 γ
(
fb(p) − fa(p)

)
if kg = 1,

2 cos2 γ√
k2

g−1

(
tan

fb(p)
√

k2
g−1

2
− tan

fa(p)
√

k2
g−1

2

)
if 1 < kg.

Thus, x(A) > 0 follows from the monotonicity of the functions t 7→ tan t and

t 7→ tanh t.

7.5 Proof of Theorem 7.1.7 for the sphere

We follow the proof in Section 7.4.

By Remark 7.1.4, Jensen’s inequality and the observation that the length of a

chord of a circle is a concave function of the length of the corresponding arc, we

obtain that the perimeter of P is less than that of a great circle. Note that a

spherical polygon, with given side lengths and with perimeter less than that of a

great-circle, has maximal area if, and only if, its vertices lie on a curve of constant

geodesic curvature. Thus, we may assume that Γ is strictly convex. Furthermore,

we may assume that kg > 0, and there are three consecutive vertices a, p and b of P

such that âp is shorter than b̂p, and a, p and b are not on the same curve of constant

geodesic curvature kg. We show that in that case A(p) is not maximal.
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We may assume also that b̂p is not a semicircle, and show that when p moves

towards the symmetric position, under the constraint that the arc length L(p) of the

curve âp ∪ b̂p does not change, then the derivative of A(p) is positive.

We use the notations of Definitions 7.4.1 and 7.4.2. We note that the proofs of

Lemmas 7.4.3 and 7.4.4 hold for S2 without any change, and verify the following

variant of Lemma 7.4.5.

Lemma 7.5.1. The derivatives of the area A(p) in the directions te and ti are

Ae = te(A) =
cos γ√
k2

g + 1

(
tan

fb(p)
√

k2
g + 1

2
− tan

fa(p)
√

k2
g + 1

2

)
and (7.19)

Ai = ti(A) = − sin γ√
k2

g + 1

(
tan

fb(p)
√

k2
g + 1

2
+ tan

fa(p)
√

k2
g + 1

2

)
. (7.20)

Proof. We use the notations and the argument of the proof of Lemma 7.4.5. Since

the perimeter of a spherical circle C of radius r is

perimS(C) = 2π sin r,

it follows that the inital speed vector field ru of the rotation about the point u ∈ {a, b}

is

ru = ± sin(du(q))mu,

with du(q) = distS(u, p) for q ∈ S2, and mu denoting the outer unit normal of the

polygonal curve Γ along the geodesic segment up. The assertion now follows from

an argument similar to that in the proof of Lemma 7.4.5.

Finally, the definition of x in Lemma 7.4.4 and Formulae (3.23), (7.6), (7.7),

(7.19) and (7.20)yield that

x(A) = −LiAe + LeAi =
2 cos2 γ√

k2
g + 1

(
tan

fb(p)
√

k2
g + 1

2
− tan

fa(p)
√

k2
g + 1

2

)
,
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and hence, x(A) > 0.



Chapter 8

On a conjecture of Maehara

8.1 A counterexample to a conjecture of Maehara

Maehara [40] proved the following Helly-type theorem for spheres.

Theorem 8.1.1 (Maehara). Let F be a family of at least n + 3 distinct (n − 1)-

spheres in En. If any n + 1 spheres in F have a point in common, then all of them

have a point in common.

Maehara points out that the assertion does not hold if we replace either n + 3 or

n + 1 by a smaller number. First, we prove a variant of Theorem 8.1.1.

Theorem 8.1.2. Let F be a family of (n − 1)-spheres in En, 0 ≤ k ≤ n − 1.

Suppose that card F ≥ n − k and that any n − k spheres in F intersect in a sphere

of dimension at least k + 1. Then they all intersect in a sphere of dimension at least

k + 1. Furthermore, k + 1 may not be reduced to k.

Proof. Consider

S =
n−k⋂

i=1

Sn−1(ci, ri), where Sn−1(ci, ri) ∈ F for i = 1, 2, . . . , n − k

such that dim S is minimal amongst all intersections of n − k spheres from F. By

assumption, S is a sphere with dim S ≥ k + 1 (cf. Figure 8.1).

By induction on n − k, it is easy to show that there is some 1 ≤ t ≤ n − k such

130



131

that

S =
⋂

1≤i≤n−k,i6=t

Sn−1(ci, ri).

Let us denote the preceding subfamily of F by F′. By the minimality of dim S, we

Figure 8.1: An illustration for the proof of Theorem 8.1.2 with n = 3 and k = 0

have

S = Sn−1(c, r) ∩




⋂

Sn−1(c′,r′)∈F′

Sn−1(c′, r′)





for any Sn−1(c, r) ∈ F. Hence, S is the intersection of all the spheres from F.

Figure 8.2: An illustration for the second part of the proof of Theorem 8.1.2 with
n = 2 and k = 0
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To show that k + 1 may not be replaced by k, consider a regular n-simplex P in

En with cr(P ) = 1 + ε, where ε > 0 is sufficiently small. Let F consist of the n + 1

unit spheres with the vertices of P as centres (cf. Figure 8.2). Then the intersection

of any n − k spheres from F is a sphere of dimension k, but the intersection of all

the spheres is empty.

Maehara [40] conjectured the following stronger version of Theorem 8.1.1.

Conjecture 8.1.3 (Maehara). Let n ≥ 3 and F be a family of at least n+2 distinct

(n− 1)-dimensional unit spheres in En. Suppose that any n + 1 spheres in F have a

point in common. Then all the spheres in F have a point in common.

After Proposition 3 in [40], Maehara points out the importance of the condi-

tion n ≥ 3 by showing the following statement, also known as Ţiţeica’s theorem

(sometimes called Johnson’s theorem). This theorem was proved by the Romanian

mathematician, G. Ţiţeica in 1908 (for historical details, see [2] or [34], p. 75).

Figure 8.3: Ţiţeica’s theorem for four circles
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Theorem 8.1.4 (Ţiţeica). Let S1(c1), S1(c2) and S1(c3) be unit circles in E2 that

intersect in a point p (see Figure 8.3). Let {x, p} = S1(c1)∩S1(c2), {y, p} = S1(c1)∩

S1(c3) and {z, p} = S1(c2) ∩ S1(c3). Then x, y and z lie on a unit circle.

In the remaining part of Section 8.1, we show that Conjecture 8.1.3 is false for

n ≥ 4. To construct a suitable family F of unit spheres, we need the following

lemma. Note that the sphere circumscribed about a simplex P is the unique sphere

that contains each vertex of P . The circumscribed sphere of P does not necessarily

coincide with the circumsphere of P .

Lemma 8.1.5. The following are equivalent.

8.1.5.1 There is an n-simplex P ⊂ En with Sn−1(o, R) circumscribed about P and

a sphere Sn−1(x1, r), tangent to all facet-hyperplanes of P , such that either

R2 − 2rR = d2 or R2 + 2rR = d2 holds, with d = ‖x1 − o‖.

8.1.5.2 There is a family of n + 2 distinct (n− 1)-dimensional unit spheres in En such

that any n + 1, but not all, of the spheres have a non-empty intersection.

Proof. First, we show that 8.1.5.2 follows from 8.1.5.1. Observe that R2 − 2rR = d2

yields R > d, from which we obtain that x1 ∈ Bn(o, R). Similarly, if R2 + 2rR = d2,

then x1 /∈ Bn[o, R]. Thus, x1 /∈ Sn−1(o, R). Since Sn−1(x1, r) is tangent to every

facet-hyperplane of P , x1 is not contained in any of these hyperplanes.

Consider the inversion f in the sphere Sn−1(x1, r). Let V (P ) = {ai : i =

2, 3, . . . , n+2}, and let Hi denote the facet-hyperplane of P that does not contain ai.

Let Sn−1(c1, r1) = f(Sn−1(o, R)), and, for i = 2, 3, . . . , n + 2, let Sn−1(ci, ri) = f(Hi)

and xi = f(ai).
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Since Hi is tangent to Sn−1(x1, r), Sn−1(ci, ri) is a sphere that is tangent to

Sn−1(x1, r) and contains x1. Hence ri = r
2

for i = 2, 3, . . . , n + 2. We show that

r1 = r
2
. If x1 ∈ Bn(o, R) then, using the definition of inversion and the equations in

8.1.5.1, we have (cf. Figure 8.4)

2r1 = diam Sn−1(c1, r1) =
r2

R + d
+

r2

R − d
=

2r2R

R2 − d2
= r. (8.1)

If x1 /∈ Bn[o, R], then

2r1 = diam Sn−1(c1, r1) =
r2

d − R
− r2

d + R
=

2r2R

d2 − R2
= r. (8.2)

Figure 8.4: An illustration for (8.1)

Let F = {Sn−1(ci,
r
2
) : i = 1, . . . , n + 2}. Observe that for every i 6= 1, we have

that x1 ∈ Sn−1(ci,
r
2
), and for every j 6= i, we have xi ∈ Sn−1(c1,

r
2
) ∩ Sn−1(cj ,

r
2
).

Thus, F is a family of n + 2 spheres of radius r
2
, any n + 1 of which have a nonempty

intersection.

Assume that there is a point y ∈ ⋂F. Since x1 /∈ Sn−1(o, R), it follows that

y 6= x1, and thus, x1 /∈ Sn−1(c1,
r
2
) = f(Sn−1(o, R)). Hence, z = f(y) = f−1(y)
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exists. Observe that z is contained in every facet-hyperplane of P , and also, in its

circumscribed sphere; a contradiction. Thus, F′ = {Sn−1(2
r
· ci) : i = 1, . . . , n + 2} is

a family of unit spheres that satisfies 8.1.5.2.

A similar argument shows that 8.1.5.1 follows from 8.1.5.2.

Theorem 8.1.6. For any n ≥ 4, there is a family of n+2 distinct (n−1)-dimensional

unit spheres in En such that any n + 1, but not all, of them have a common point.

Proof. We apply Lemma 8.1.5 and construct a simplex P and a sphere Sn−1(x1, r)

such that they satisfy 8.1.5.1. We set m = n − 1.

Figure 8.5: An illustration for the proof of Theorem 8.1.6

Consider a line L passing through o, and a hyperplane H which is orthogonal to

L and is at a given distance t ∈ (0, 1) from o. Let u denote the intersection point of

L and H . We observe that t = ‖u‖ and let b = 1
t
u. Then b ∈ Sn−1(o, 1). Let F be a

regular m-simplex in H whose circumsphere in H is Sn−1(o, 1) ∩ H . Thus, u is the

centroid of F and the sphere circumscribed about P = [F, b] is Sn−1(o, 1). Clearly,
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there is a unique sphere Sn−1(c, r), tangent to every facet-hyperplane of P , such that

c ∈ L and c /∈ P . We set d = ‖c‖ (cf. Figure 8.5).

Our aim is to prove that, with a suitable choice of t, P and Sn−1(c, r) satisfy

the conditions in 8.1.5.1. To prove this, we calculate hm(t) = d(t)2 + 2r(t) − 1, and

show that this function has a root on the interval (0, 1) for m ≥ 3. We note that

if hm(t) = 0 for some value of t, then P and Sn−1(c, r) satisfy the first equality in

8.1.5.1 for R = 1 and x1 = c.

Consider a vertex a of F and the centroid f of the facet of F that does not contain

a. Then ‖b − u‖ = 1 − t and ‖a − u‖ =
√

1 − t2. Note that, in an m-dimensional

regular simplex, the distance of the centroid from a vertex of the simplex is m times

as large as its distance from a facet-hyperplane. Thus, we have ‖u − f‖ =
√

1−t2

m
.

We observe that Sn−1(c, r) is tangent to the facet-hyperplane Ha of P that does not

contain a. Let u′ denote the intersection point of Sn−1(c, r) and Ha. Clearly, u′,

f and b are collinear and ‖u − c‖ = ‖u′ − c‖ = r. Furthermore, the two triangles

[c, u′, b] and [f, u, b] are co-planar and similar. Hence,

‖b − f‖
‖b − c‖ =

‖u − f‖
‖u′ − c‖ . (8.3)

We have that ‖b − f‖ =
√

(1 − t)2 + 1−t2

m2 , ‖b − c‖ = 1 + r − t, ‖u′ − c‖ = r and

‖u − f‖ =
√

1−t2

m
. Solving (8.3) for r, we obtain

r =

√
1 + t

m2

(√
m2 + 1 − (m2 − 1)t +

√
1 + t

)
. (8.4)

Note that d = |r − t|. From this and (8.4), we have

hm(t) =

(√
1 + t

m2

(√
m2 + 1 − (m2 − 1)t +

√
1 + t

)
− t

)2

+ (8.5)
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+
2
√

1 + t

m2

(√
m2 + 1 − (m2 − 1)t +

√
1 + t

)
− 1.

We observe that h3

(
1
2

)
= 0. Let m > 3. Then hm(0) < 0, hm(1) > 0 and hm

is continuous on [0, 1]. Thus, hm has a root on the interval (0, 1), and we obtain a

simplex P and a sphere Sn−1(c, r) that satisfy the conditions in 8.1.5.1.

8.2 Maehara-type problems in the hyperbolic space and on

the sphere

In this section we investigate whether we can extend the results and problems from

Section 8.1 to the hyperbolic and spherical spaces. Note that in our models of hyper-

bolic and spherical spaces, hyperbolic and spherical balls correspond to Euclidean

balls. Let Bn
H [y, r], Bn

H(y, r) and Sn−1
H (y, r) denote the hyperbolic closed ball, open

ball and sphere, with radius r and centre y, and denote the corresponding spherical

objects by Bn
S[y, r], Bn

S(y, r) and Sn−1
S (y, r).

Proposition 8.2.1. Let F be a family of at least n+3 distinct (n−1)-spheres in M,

and M = Hn or M = Sn. If any n + 1 spheres in F have a non-empty intersection

then there is a point common to every sphere in F.

Proof. If M = Hn, we may immediately apply Theorem 8.1.1. If M = Sn, we

consider F′ = {Sn(o)} ∪ {Sn(ci) : i = 1, 2, . . . , card F}, where F = {Sn(o) ∩ Sn(ci) :

i = 1, 2, . . . , card F}. Now, Theorem 8.1.1 yields the required statement.

In the next part, we examine variants of Conjecture 8.1.3 for H2 and S2.

Theorem 8.2.2. Let F be a family of at least four congruent hyperbolic circles (resp.
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horocycles, resp. congruent hypercycles) in H2 such that any three members of F have

a non-empty intersection. Then there is a point common to every member of F.

Proof. By Proposition 8.2.1, we need only consider the case card F = 4. Suppose

that any three members of F intersect, but not all four do. The four elements of F

correspond to the intersections of B2(o) with four Euclidean circles, which we denote

by S1(ci, Ri), for each i = 1, 2, 3, 4. Note that the congruence of the elements of F

does not imply the congruence of these Euclidean circles.

Figure 8.6: Four congruent hyperbolic circles in H2

It is easy to see that
⋂3

i=1 S1(ci, Ri) contains only one point, which we may assume

to be o. By an appropriate choice of indices, we may assume also that o ∈ B2(c4, R4).

Now, S1(c1, R1), S
1(c2, R2) and S1(c3, R3) are congruent, and thus, Theorem 8.1.4

yields that S1(c4, R4) is congruent to the other three Euclidean circles.

In the case of horocycles, S1(c4, R4) ⊂ B2(o, 1) and hence it does not correspond
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to a horocycle; a contradiction. In the case of hypercycles, S1(c4, R4) does not

intersect the circle at infinity in the same angle as S1(c1, R1), S
1(c2, R2) and S1(c3, R3),

and hence, F is not a family of congruent hypercycles; a contradiction.

We may assume that F consists of four congruent hyperbolic circles. Note that if

d is the diameter of the hyperbolic circle corresponding to a Euclidean circle S1(c, R),

then

cosh d = 1 +
2‖z − x‖2

(1 − ‖x‖2)(1 − ‖z‖2)
,

with x and z as the points of S2(x1, r1) closest to and farthest from o, respectively.

Thus, it is easy to show that the radius of the hyperbolic circle corresponding to

S1(c4, R4) is strictly smaller than the radii of the other three hyperbolic circles; a

contradiction.

Theorem 8.2.3. Let F be a family of at least four circles of radius r < π
2

in S2. If

any three circles in F have a non-empty intersection, then there is a point common

to every circle in F.

Proof. We may assume that card F = 4. Suppose that F = {S1
S(yi, r) : i = 1, . . . , 4}

is a family of spherical circles of radius r, 0 < r < π
2
, such that any three circles have

a non-empty intersection, but there is no point common to each circle in F.

We choose points xi ∈ ∩(F\{S1
S(yi, r)}), for i = 1, 2, 3, 4, and let X = {x1, . . . , x4}.

We set d = dS(y1, x1). Clearly, we may choose the indices of the circles in a way that

x1 ∈ B1
S(y1, r). In other words, we may assume that d < r.

Let H be the tangent plane of S2 at x1. Consider the stereographic projection

p, from S2 onto H (cf. Figure 8.7). For i = 1, 2, 3, 4, let S1(ci, Ri) = p(S1
S(ci, r)).

An easy computation yields that 2R1 = tan r+d
2

+ tan r−d
2

, and 2Ri = tan r for
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i = 2, 3, 4. Observe that the function f : [0, r] → R, f(d) = tan r+d
2

+ tan r−d
2

is

strictly increasing and bijective. From Theorem 8.1.4, it follows that f(d) = tan r

and d = r, a contradiction.

Figure 8.7: Stereographic projection from S2 onto H

In the remaining part, we show that the statement in Conjecture 8.1.3 does not

hold for n ≥ 4 if we replace En by Hn, or for n ≥ 3 if we replace En by Sn.

To construct an example in Hn, we recall the Euclidean construction described

in Lemma 8.1.5 and Theorem 8.1.6, and use the notations established there. Theo-

rem 8.1.6 yields a simplex P and a sphere Sn−1(x1, r) that satisfies R2 − 2rR = d2,

which implies x1 ∈ Bn(o, R). In other words, our construction yields a family

F = {Sn−1(ci,
r
2
) : i = 1, 2, . . . , n + 2} of congruent spheres such that ‖c1 − x1‖ < r

2
.

In the proof of Theorem 8.1.6, hm is a continuous function of t, and has a root

in the interval (0, 1), for m ≥ 3. It is easy to check that, for a suitably small δ > 0,

the interval [0, δ] is contained in the range of hm. Thus, for any τ ∈ [0, δ], there is a
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simplex P , with Sn−1(o, R) circumscribed about it, and a sphere Sn−1(c, r) tangent

to any facet-hyperplane of P , that satisfies (1+τ)R2−2rR = ‖c−o‖2. Applying the

inversion f of Lemma 8.1.5 to such a simplex and the sphere circumscribed about

it, we obtain a family of spheres that satisfies the conditions in 8.1.5.2 with the

exception that the radius of 2
r
f(Sn−1(o, R)) is not one, but greater than or equal to

one. These observations are summarized in the following statement.

Proposition 8.2.4. Let n ≥ 4. Then there is an ε > 0, depending only on the value

of n, such that, for every λ ∈ (1, 1 + ε), there is a family F = {Sn−1(c1, λR)} ∪

{Sn−1(ci, R) : i = 2, 3, . . . , n + 2} of spheres in En that satisfies the following:

(i) any n + 1 spheres of F have a non-empty intersection, but there is no point

common to every sphere in F,

(ii) ‖c1 − x1‖ < R, where {x1} =
⋂

(F \ {Sn−1(c1, λR)}).

We use Proposition 8.2.4 to construct families of congruent hyperbolic spheres.

Theorem 8.2.5. For every n ≥ 4, there is an r > 0 and a family F = {Sn−1
H (yi, r) :

i = 1, 2, . . . , n + 2} of congruent spheres in Hn such that any n + 1 spheres of F have

a non-empty intersection, but there is no point common to every sphere in F.

Proof. We use the notations of Proposition 8.2.4, with λ ∈ (1, 1 + ε) and F =

{Sn−1(c1, λR)} ∪ {Sn−1(ci, R) : i = 2, . . . , n + 2}.

We may assume that x1 = o. For every R ∈ (0, 1/2) and i = 2, 3, . . . , n + 2,

Sn−1(ci, R) represents a hyperbolic sphere Sn−1
H (yi, h(R)). We note that h(R) does

not depend on i, but on R. If R ∈ (0, 1/2), then Sn−1(c1, λR) represents a hyperbolic
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sphere, which we denote by Sn−1
H (y1, k(R)). Clearly, if h(R) = k(R), then F satisfies

the conditions of our theorem.

We observe that for i = 2, 3, . . . , n + 2, Sn−1(ci, 1/2) ∩ Bn(o, 1) represents a

horosphere, and Sn−1(c1, λ/2) represents a hyperbolic sphere. Thus, for a sufficiently

small δ > 0, h(1/2−δ) > k(1/2−δ). Clearly, k(R) and h(R) are continuous functions

of R. Thus, the assertion follows from

lim
R→0+

k(R)

h(R)
= λ, (8.6)

and λ > 1.

Observe that the diameter of Sn−1(c2, R), passing through o, is a diameter of

also Sn−1
H (y2, h(R)). Thus, h(R) = arctanh(2R). We note that if a hyperbolic

sphere Sn−1
H (y, r) corresponds to the Euclidean sphere Sn−1(c, R) then, for any fixed

R, r is a strictly increasing function of dH(c, o). Hence 2 arctanh(λR) ≤ k(R) <

arctanh(2λR). From this, we obtain

2 arctanh(λR)

arctanh(2R)
≤ k(R)

h(R)
<

arctanh(2λR)

arctanh(2R)
. (8.7)

The required limit is the consequence of L’Hospital’s Rule.

Proposition 8.2.6. For every n ≥ 3, there is an r > 0 and a family F of n + 2

distinct (n − 1)-spheres in Sn, of radius r, such that any n + 1 spheres of F have a

non-empty intersection, but there is no point common to every sphere in F.

Proof. Let {yi : i = 2, 3, . . . , n + 2} be the vertex set of a regular spherical simplex

P . Let the radius and the centre of the sphere circumscribed about P be r and y1,

respectively. We may choose P in a way that r = 2 arctan
√

1 − 2
n
. An elementary
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calculation shows that F = {Sn−1
S (yi, r) : i = 1, 2, . . . , n+2} has the desired property.



Chapter 9

Packing by seven homothetic copies

9.1 Preliminaries

The focus of this chapter is systems of ”far” points in normed spaces in general, and

normed planes in particular. Given k ≥ 3, we look for sets of k points in an oval

C with the minimum pairwise C-distance as large as possible. This is equivalent to

packing k congruent homothetic copies of C into C.

More specifically, let C be an oval and k ≥ 2. A compactness argument yields

that there is a maximal value fk(C) such that C contains k points at pairwise C-

distances at least fk(C). Let

fk = min{fk(C) : C ∈ C} and Fk = max{fk(C) : C ∈ C}.

Recall that C and M denote the family of ovals, and the family of o-symmetric ovals,

respectively (cf. Section 2.3). By Blaschke’s Selection Theorem, fk and Fk exist.

Similarly, we may define gk(C) as the greatest value such that k congruent ho-

mothetic copies of C pack into C. We may set

gk = min{gk(C) : C ∈ C} and Gk = max{gk(C) : C ∈ C}.

Clearly, these values also exist. The following theorem establishes a straightforward

connection between fk(C) and gk(C). This connection was stated directly in [38] in

2003. Before 2003, the idea had already appeared in the literature a few times (see,

for example, [21] and [39]).

144
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Theorem 9.1.1 (Lassak, Lángi). Let C be a convex body in En and k ≥ 2. Then

the following are equivalent.

(i) C contains k points at pairwise C-distances at least d,

(ii) C is packed by k homothetic copies of ratio d
2+d

.

We list a few results about the values of fk(C) and Fk(C) (cf. [20] and [11]). If

a and b are consecutive vertices of a convex k-gon P , and distP (a, b) is at least as

large (respectively, as small) as the relative length of the edges of a regular k-gon,

we say that [a, b] is a relatively long (respectively, relatively small) edge of P .

Theorem 9.1.2 (Doliwka, Lassak). Every convex pentagon has a relatively short

side and a relatively long side.

Since the relative length of the edges of a regular pentagon is equal to
√

5 − 1 ≈

1.236, this result yields that, among any five boundary points of an oval, there are

two at a relative distance at most
√

5 − 1. Clearly, the value
√

5 − 1 is the least

possible.

Theorem 9.1.3 (Böröczky, Lángi). Among five arbitrary points of an oval, there

is a pair at a relative distance at most
√

5 − 1.

Theorem 9.1.4 (Böröczky, Lángi). Among six arbitrary points of an oval, there

is a pair at a relative distance at most 2 − 2
√

5
5

≈ 1.106.

In other words, F5 =
√

5 − 1 and F6 = 2 − 2
√

5
5

. Böröczky and Lángi in [11]

conjectured that F7 = 1. We verify their conjecture.

Theorem 9.1.5. Let C ∈ C and let a1, a2, . . ., a7 be points in C. Then distC(ai, aj) ≤

1 for some i 6= j.
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Let us call an oval C optimal if it contains seven points at the minimum pairwise

relative distance one. In this case, we say that the points fit C. The problem is

to determine the optimal ovals and the set of points fitting them. We present the

following three examples.

A result of Go la̧b [27] states that there is an affine regular hexagon H inscribed

in C for every C ∈ M. The vertices and the centre of H fit C, and hence, C is

optimal. Next, any parallelogram P contains many sets of seven points at pairwise

P -distances at least one. Any oval C ⊂ P containing such a set is optimal.

Finally, let H = [a1, a2, . . . , a6] be a regular hexagon and S = [b1, b2, b3, b4] be a

rectangle circumscribed about H such that [a1, a2] ⊂ [b1, b2] and a1 ∈ [b1, a2]. Let

c be the centre of H and m = (b3 + b4)/2. Let a′
4 ∈ (b3, a4) and a′

5 ∈ (a5, b4)

such that |a4a
′
4| = |a5a

′
5| and let p ∈ (c, m) (cf. Figure 9.1). Finally, let C =

[a1, a2, a3, a
′
4, a

′
5, a6]. If p is close enough to c, all the pairwise C-distances of the

vertices of C and p are at least one.

Figure 9.1: An optimal oval

We collect our results about optimal ovals and fitting sets of points.
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Theorem 9.1.6. Let C ∈ C such that Q = [a1, a2, . . . , a7] ⊂ C and distC(ai, aj) ≥ 1

for all i 6= j.

9.1.6.1 If C is strictly convex, then Q is an affine regular hexagon with some ai as

centre.

9.1.6.2 If card (bd Q ∩ {a1, a2, . . . , a7}) 6= 6, then there is a parallelogram P such

that C ⊂ P and distP (ai, aj) ≥ 1 for all i 6= j.

Using Theorem 9.1.1, we may immediately reformulate Theorems 9.1.5 and 9.1.6.

Corollary 9.1.7. No oval is packed by seven homothetic copies of ratio greater than

1/3.

Corollary 9.1.8. Let C ∈ C be packed by seven homothetic copies of ratio 1/3 with

points a1, a2, . . . , a7 as centres. Let Q = [a1, a2, . . . , a7].

9.1.8.1 If C is strictly convex, then Q is an affine regular hexagon with some ai as

centre.

9.1.8.2 If card (bd Q ∩ {a1, a2, . . . , a7}) 6= 6 then there is a parallelogram P contain-

ing C such that P is packed by seven homothetic copies of ratio 1/3 with a1, a2, . . . , a7

as centres.

The following lemma is applied in the proofs of Theorems 9.1.5 and 9.1.6 in

Sections 9.2 and 9.3. We note that analogous form of 9.1.9.1 has been verified in

[37]. Theorem 9.1.5 when Q = [a1, a2 . . . , a7] is not a hexagon is a consequence of

[37] and Lemma 3 of [11]. In that case we prove Theorem 9.1.5 for the sake of

Theorem 9.1.6.

Lemma 9.1.9. Let C ∈ C, k ≥ 6, Q = [a1, a2, . . . , ak] ⊂ C be a (possibly degenerate)

convex k-gon and T ⊂ Q be an inscribed triangle of largest area with a side coinciding



148

with a side of Q.

9.1.9.1 Q has a side of C-length at most one.

9.1.9.2 If the C-lengths of the sides of Q are at least one then C is not strictly

convex, and there is a parallelogram P such that C ⊂ P and the sides of Q are of

P -length at least one.

Proof. We may assume that T = [a1, a2, ai] for a suitable value of i. Observe that

(bd Q) \T has a component W with at least three edges. We assume that {a2, ai} ⊂

cl W ; that is, i ≥ 5. As relative distance and area ratio do not change under an affine

transformation, we may assume that T is an isosceles triangle with a right angle at

a1. Let b be the point such that S = [a1, a2, b, ai] is a square. Since T is a triangle

of maximal area inscribed in Q, we have aj ∈ [a2, b, ai] for j = 3, . . . , i − 1.

Let m1 = (a2 + b)/2, m2 = (b + ai)/2 and m = (ai + a2)/2. If a3 ∈ [a2, m1, m] \

[m, m1] then distC(a2, a3) ≤ distT (a2, a3) < 1. If ai−1 ∈ [ai, m, m2] \ [m, m2] then

distC(ai−1, ai) < 1. Thus, we may assume that aj ∈ S0 = [m, m2, b, m3] for 3 ≤ j ≤

i − 1. Then distC(aj, aj+1) ≤ distT (aj, aj+1) ≤ 1, and 9.1.9.1 follows.

If for some 3 ≤ j ≤ i − 2, the points aj and aj+1 are not on parallel sides of S0

then distC(aj , aj+1) ≤ distT (aj, aj+1) < 1. Let aj and aj+1 be on parallel sides of S0.

Then i ∈ {5, 6}.

If i = 6, then a3 = m1, a4 = b and a5 = m2, whence S ⊂ C. If S 6= C, then

distC(ai, aj) < 1 for some i 6= j. If S = C, then S satisfies the conditions of (9.1.9.2)

for P .

Let i = 5 and, say, a3 ∈ [m1, m] and a4 ∈ [m2, b]. Let M denote the closed

infinite strip containing S and bounded by the lines passing through [a1, a2] and
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[b, a5] (cf. Figure 9.2). From distC(a2, a3) ≥ 1, we obtain that C ⊂ M , and hence

distC(a3, a4) = 1. Thus, every parallelogram P circumscribed about C, that has

a pair of opposite edges contained in bd M , satisfies the conditions in 9.1.9.2. We

observe also that C is not strictly convex.

Figure 9.2: An illustration for the proof of Lemma 9.1.9

9.2 Proof of Theorems 9.1.5 and 9.1.6

when Q = [a1, a2, . . . , a7] is a hexagon

Assume that Q = [a1, a2, . . . , a6] and a7 ∈ int Q. Let ai = qi for i = 1, 2, . . . , 6,

q7 = q1 and q0 = q6.

We use the following terms and notations. For any i, j, k, l with 1 ≤ i, j, k, l ≤ 6

and {i, j} 6= {k, l}, αi denotes the angle of Q at qi, qij = (qi+qj)/2, and Lij,kl denotes

the straight line passing through [qij , qkl]. We note that qi = qii, and set Li,kl = Lii,kl

and Li,k = Lii,kk. In addition, Si = [qi, qi+1] for i = 1, 2, . . . , 6 and Mi denotes the
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maximal chord of Q that is parallel to Si and with minimal Euclidean distance from

Si.

If αi−1 + αi + αi+1 is greater than 2π, equal to 2π or less than 2π, we say that

ai is a large, normal or small vertex of Q, respectively. Observe that qi and qi+3 are

either both normal, or one of them is large and the other one is small.

Note that αi + αi+1 ≤ π implies that Q is contained in a parallelogram with Si

as a side. From this, it readily follows that there is a triangle Ti inscribed in Q with

the property: Si is a side of Ti and Ti has maximum area of all triangles inscribed

in Q. In this case, Theorems 9.1.5 and 9.1.6 follow from Lemma 9.1.9. Accordingly,

we assume that the sum of every two consecutive angles of Q is greater than π.

Next, it is a simple matter to check that Q has one of the following properties:

Case 1. Every second vertex of Q is large.

Case 2. Q has three consecutive vertices such that the second one is large and the

two other ones are not small.

Case 3. Q has three consecutive vertices such that the second one is normal and the

two other ones are not small.

Case 1. Let the large vertices be q1, q3 and q5, and bi = q1 + q3 + q5 − 2qi

for i = 1, 3, 5 (cf. Figure 9.3). Then Q ⊂ [b1, b3, b5] and every maximal chord of

Q passes through q1, q3 or q5. Let Qi denote the homothetic copy of int Q, with

ratio 1/2 and with qi as centre. Let Pi = [qi, q(i−1)i, q(i−1)(i+1), q(i+1)i] for i = 2, 4, 6,

T2 = [q13, q14, q36], T4 = [q35, q36, q25], T6 = [q15, q25, q14] and T = int[q14, q25, q36].

We assume that distQ(qi, qi+1) ≥ 1 for each i. Then we need only to show that

for any p ∈ int Q,

(∗)i distQ(p, qi) < 1
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for some i. Let p ∈ int Q. We consider the position of p with respect to certain

polygons. By symmetry, we assume that p ∈ Q1 ∪ P2 ∪ T2 ∪ T .

Figure 9.3: Dissecting Q: the orientation of q14, q25 and q36 is clockwise

We claim that

(1) (∗)1 for p ∈ Q1,

(2) (∗)2 for p ∈ P2,

(3) (∗)2 or (∗)4 or (∗)6 for p ∈ T2, and

(4) (∗)2 or (∗)4 or (∗)6 for p ∈ T .

The statement in (1) is trivial. Note that P2 ∩ int Q is covered by the homothetic

copy of int Q, with ratio 1/2 and with q2 as centre; whence (2). If distQ(q2, q14) < 1

and distQ(q2, q36) < 1, then (3) is immediate.

Let distQ(q2, q14) ≥ 1 and distQ(q2, q36) ≥ 1, and set {s1} = L35,25 ∩ [q13, q15]

and {s2} = L15,25 ∩ [q13, q35]. From distQ(q1, q2) ≥ 1 and distQ(q2, q3) ≥ 1, we

have that q2 is in the interior of the parallelogram [q13, (q1 + b5)/2, b5, (q3 + b5)/2].

Thus the set of points in [q13, q35, q15], at a Q-distance less than one from q2, is
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[q13, s1, q25, s2] \ ([s1, q25] ∪ [q25, s2]). Similar statements are obtained for q4 and q6.

Let {w1} = L35,36 ∩ [q13, q14], {w2} = L15,14 ∩ [q13, q36] and {w} = [q14, w2] ∩ [q36, w1].

As distQ(q2, q14) ≥ 1 and distQ(q2, q36) ≥ 1, it follows that w1, w2 and w exist. Note

that if p ∈ [q13, w2, w, w1], or p ∈ [q14, w2, q36] \ [w2, q14] or p ∈ [q14, w1, q36] \ [w1, q36],

then (∗)2, (∗)4 and (∗)6 follow, respectively.

A slight modification of this argument yields our theorems when exactly one of

distQ(q2, q14) and distQ(q2, q36) is less than one.

Finally, we verify (4). If T ∩ (T2 ∪ T4 ∪ T6) 6= ∅ then T ⊂ T2 ∪ T4 ∪ T6, and our

theorems follow from (3). Let T ∩ (T2 ∪ T4 ∪ T6) = ∅ (cf. Figures 9.3 and 9.4).

Figure 9.4: Dissecting Q: the orientation of q14, q25 and q36 is counterclockwise

We distinguish positions of lines, that contain a vertex of T and a side of some

Ti. If L15,25 ∩ T = L35,25 ∩ T = ∅, then (∗)2. If L15,25 ∩ T 6= ∅ 6= L35,25 ∩ T then

L13,14∩T = L15,14∩T = ∅ and (∗)4. Accordingly, let L15,25∩T 6= ∅ and L35,25∩T = ∅,

and similarly, L13,14 ∩ T 6= ∅, L15,14 ∩ Q = ∅, L35,36 ∩ T 6= ∅ and L13,36 ∩ T = ∅. We

show that in this case distQ(qi, qi+1) < 1 for some i; a contradiction.
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Recall that the vertex qi is called “small”, if αi−1 + αi + αi+1 < 2π. Observe

that for any vector v 6= 0, there is a “small” vertex qi of Q such that the half line

{qi + tv : t > 0} intersects Q. For v = 1
2
(q1 + q3 + q5 − q2 − q4 − q6), we may assume

that {q2 + tv : t > 0} intersects Q.

Let Hi denote the open supporting half plane of Q3 that contains [q3i, q3(i+1)]

Let u = q23 + v + (q14 − q36). Since the translates of q23, by v or q14 − q36, are in

H1 ∩ H2, we obtain u ∈ H1 ∩ H2. Observe that u = q35 + (q1 − q6), and hence,

u ∈ H4 ∩ H5 ∩ H6. Since q5 is a large vertex, u ∈ H3 and u ∈ int Q5. It now follows

that distQ(q1, q6) < 1.

Case 2. Let q2 be large, and q1 and q3 be not small. We show that distC(ai, aj) ≤

1, and if C is strictly convex then distC(ai, aj) < 1 for some i 6= j.

Recall that Si = [qi, qi+1] and Mi is the maximal chord of Q that is parallel to

Si and with the minimal Euclidean distance from Si. Note that, as the sum of any

two consecutive angles of Q is greater than π, every maximal chord of Q intersects

Sj and Sj+3 for some j ∈ {1, 2, 3}. If Mi intersects Sj and Sj+3, we say that Mi is a

j-type maximal chord. Observe that Mj is not j-type and M6 is not 3-type. If M6

and M3 are 1-type and 2-type, respectively, then we observe that q2 is not a small

vertex; a contradiction. Hence, we have twelve possibilities depending on the types

of M1, M2, M3 and M6. Let {d1} = L5,6 ∩L1,2, {d2} = L6,1 ∩L2,3, {d3} = L1,2 ∩L3,4

and {d4} = L2,3 ∩ L4,5.

i) M3 and M6 are 1-type, M1 is 2-type and M2 is 3-type.

If ‖q1−d2‖ < ‖q1 − q6‖ then it follows from the type of M1 that distQ(q1, q2) < 1.

Similarly, ‖q2 − d3‖ < ‖q1 − q2‖ implies distQ(q2, q3) < 1, and ‖q3 − d4‖ < ‖q2 − q3‖

implies distQ(q3, q4) < 1. Let ‖q1 − d2‖ ≥ ‖q1 − q6‖, ‖q2 − d3‖ ≥ ‖q1 − q2‖ and
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‖q3 − d4‖ ≥ ‖q2 − q3‖. Let f1 be the intersection of L1,2 and the line through q6

that is parallel to L3,4, f2 be the intersection of L2,3 and the line through q1 that is

parallel to L3,4, and g be the intersection of L1,2 and the line through q4 that is parallel

to L1,6 (cf. Figure 9.5). Since q3 is not small and ‖q3 − d4‖ ≥ ‖q2 − q3‖, we have

‖q3−q4‖ ≥ ‖q3−d3‖. From ‖q2−d3‖ ≥ ‖q1−q2‖, we obtain that ‖q3−d3‖ ≥ ‖q1−f2‖.

As ‖q1 −d2‖ ≥ ‖q1− q6‖ and Q is nondegenerate, we have also ‖q1−f2‖ > ‖q6 −f1‖.

Note that ‖q6−f1‖ < ‖q1−f2‖ ≤ ‖q3−d3‖ ≤ ‖q4−q3‖. Hence, 2‖q6−f1‖ < ‖q4−d3‖;

whence 2‖q6 − q1‖ < ‖q4 − g‖. Since M6 is 1-type, we obtain that distQ(q1, q6) < 1.

Figure 9.5: An illustration for i) of Case 2 in Section 9.2

If M3 and M6 are 2-type, M1 is 3-type and M2 is 1-type, then a similar argument

yields distQ(qi−1, qi) < 1 for some i ∈ {1, 2, 3, 4}.

ii) M6 and M1 are 2-type.

Let e1 denote the intersection of S5 and the line through q2 that is parallel to S6,

and e2 denote the intersection of S2 and the line through q6 that is parallel to S1 (cf.

Figure 9.6). Since M6 and M1 are 2-type, it follows that e1 and e2 exist. Observe

that ‖d1 − q1‖ ≤ ‖q1 − q2‖ or ‖d2 − q1‖ ≤ ‖q1 − q6‖.

Assume that ‖d1−q1‖ ≤ ‖q1−q2‖. From this, we obtain that 2‖q1−q6‖ ≤ ‖q2−e1‖,
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and thus, distC(q1, q6) ≤ distQ(q1, q6) ≤ 1. We may assume that distC(q1, q6) = 1,

which yields that S5 and S2 are parallel, and q1 is on the line L that divides the

infinite strip, bounded by L5,6 and L2,3, into two congruent strips.

Figure 9.6: An illustration for ii) of Case 2 in Section 9.2

Let L′ denote the line passing through q5 and parallel to S1. Since q3 is not a small

vertex, L′ is a supporting line of Q. Hence, if L does not separate S5 and q4, then

distQ(q4, q5) < 1. Accordingly, we may assume that q4 is in the closed strip bounded

by L and L2,3. Note that if q4 /∈ L, then distQ(q2, q3) < 1 or distQ(q3, q4) < 1.

Assume that q4 ∈ L. If e1 = q5, then e2 = q3, and q1, q2 and q3 are all normal; a

contradiction. If e1 6= q5, then consider the lines L1 and L2 that support C at the

endpoints of a maximal chord of C parallel to S5, and observe that the parallelogram

P with two sides containing S5 and S2, and with sidelines L1 and L2 satisfies the

conditions in Theorem 9.1.5.

If M1 and M2 are 3-type, or M2 and M3 are 1-type then a similar argument shows

our theorems. Hence, we have examined all the possibilities for the types of M1, M2,

M3 and M6.
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Case 3. Let q2 be normal and q1, q3 be not small. As α1 +α2 +α3 = 2π, it follows

that L6,1 and L3,4 are parallel. Since relative distance is an affine invariant, we may

assume that [q1, q3, q5] is a regular triangle, and also that ^(q6 − q1, q3 − q1) ≤ π
2
.

Let bi = a1 + a3 + a5 − 2ai for i = 1, 3, 5. Since Q is convex and q1 and q5 are

not small, it follows that q2, q4, q6 ∈ [b1, b3, b5]. Let f = (q3 + b1)/2 and L be the line

containing q13 and that is parallel to L1,6.

Subcase 3.1, q2 /∈ L. Let d = (q3 + b5)/2. We show that if distQ(qi, qi+1) ≥ 1 for

every i then q2 ∈ [q1, b5, d] \ [q1, d], q4 ∈ [q5, f, b1] and q6 ∈ [q15, q5, b3]. This yields

that π
6

< ^(q3 − q1, q2 − q1), and π
6
≤ ^(q4 − q5, q3 − q5); that is, q3 is not a large

vertex (a contradiction).

Figure 9.7: An illustration for Subcase 3.1 in Section 9.2

Assume that ‖q6 − q1‖ ≤ ‖q4 − q3‖. Note that, for i = 1, 3, the points of

[qi, q13, k]\[q13, k] are at Q-distances less than one from qi. Thus, we may assume that

k ∈ int Q. Let c be the centroid of [q1, q5, b3], r = q1+ 1
2
(q5−q13) and s = q1+ 1

2
(k−q5).
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Let t be the intersection point of the line, through q15 and s, and the line through q1

and r; cf. Figure 9.7. Observe that [q1, r, s, q15] is a homothetic image of [q5, q13, k, q1]

of ratio −1/2, and this implies that ‖q6 − q1‖ = 4‖s − r‖. If [q1, q6] ∩ [q15, s] = ∅

or t ∈ [q1, c], then distQ(q1, q6) < 1. Let [q1, q6] ∩ [q15, s] 6= ∅ and t /∈ [q1, c]. Then

q6 ∈ [b3, q15, q5] and k ∈ [q1, d, b5]. From this, we obtain that q2 ∈ [q1, d, b5] \ [q1, d].

Since ‖q4 − q3‖ ≥ ‖q6 − q1‖, it follows that q4 ∈ [q5, f, b1].

We argue similarly if ‖q6 − q1‖ ≥ ‖q4 − q3‖.

Subcase 3.2, q2 ∈ L. Observe that there is a maximal chord of Q, passing through

q3 and parallel to S1. We denote it by M ′
1. Similarly, we define M ′

2 as the maximal

chord of Q, passing through q1 and parallel to S2. Note that q3 ∈ M ′
1 and M ′

1 ∩

((q1, q6) ∪ S5) 6= ∅. If M ′
1 ∩ (q1, q6) 6= ∅ then distC(q1, q2) ≤ distQ(q1, q2) = 1.

Moreover, if distC(q1, q2) = 1 then M ′
1 is maximal also in C, and C is not strictly

convex. Similarly, if M ′
2 ∩ (q3, q4) 6= ∅ then distC(q2, q3) ≤ 1, and distC(q2, q3) < 1 or

C is not strictly convex. Let M1 ∩ S5 6= ∅ 6= M2 ∩ S3.

Let w be the intersection of L1,6 and the line containing M1, and let f = (q3+b1)/2

(cf. Figure 9.8). Observe that [q1, q3, w] is a homothetic copy of [q1, q2, q13] of ratio

−2, and that 2|q13q2| ≥ |q1q6|. Similarly, we obtain that 2|q13q2| ≥ |q3q4|. As in

Subcase 3.1, this and distQ(q1, q6) ≥ 1 imply that q6 ∈ [q15, q5, b3], q4 ∈ [q5, f, b1] and

π
6
≤ ^(q2−q1, q3−q1). Since q1 is not a small vertex, it follows that ^(q2−q1, q3−q1) =

π
6
, q4 ∈ [q5, f ], q6 ∈ [b3, q15] and M ′

1 = M1 = [q3, q6].

Let {x} = L1,3 ∩ L4,5. Notice that [q3, q4, x] is a homothetic copy of [q1, q2, q13]

of ratio −2, and thus, ‖q4 − q3‖ = 2‖q2 − q13‖. Similarly, ‖q6 − q1‖ = 2‖q2 − q13‖.

Observe that q1 ∈ M5, distQ(q5, q6) = 1 and M5 ∩ S4 6= ∅. Let {y} = M5 ∩ S4.

As distC(q5, q6) ≤ distQ(q5, q6), we may assume that distC(q5, q6) = 1. In this case,
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[q1, y] is a maximal chord of C. If y 6= q4 then y ∈ (q4, q5) and C is not strictly

convex. If y = q4, then Q is a regular hexagon.

Figure 9.8: An illustration for Subcase 3.2 in Section 9.2

Let c be the centre of Q. If p 6= c is a point of [qi, qi+1, c] then distQ(qi, p) < 1

or distQ(qi+1, p) < 1. Hence, the only point of Q, at a Q-distance at least one from

every vertex of Q, is the centre of Q.

The last case is a7 ∈ bd Q. We regard Q as a degenerate heptagon and prove

Theorems 9.1.5 and 9.1.6 in Section 9.3.

9.3 Proof of Theorems 9.1.5 and 9.1.6

when Q = [a1, a2, . . . , a7] is not a hexagon

Let A = [a1, a2, . . . , a7]. Note that if Q is a triangle, then Theorems 9.1.5 and 9.1.6

are valid, and if Q is a pentagon with (bd Q ∩ A) = 6, then Theorem 9.1.6 follows

immediately. Thus, we are left with the following possibilities:
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Case 1. Q is a (possibly degenerate) heptagon.

Case 2. Q is a quadrilateral.

Case 3. Q is a pentagon with card(int Q ∩ A) = 2.

Case 1. We assume that no triangle, of the largest possible area inscribed in Q,

has a side that coincides with a side of Q; otherwise, Theorems 9.1.5 and 9.1.6 follow

from Lemma 9.1.9.

Let T be a triangle of the largest possible area inscribed in Q with V (T ) ⊂ V (Q).

A suitable labelling of the points of A yields that the vertices of Q are a1, a2, . . . , a7 in

counterclockwise cyclic order, and T = [a1, a3, a6]. Since relative distance is an affine

invariant, we may assume that T is a regular triangle. Let bi = a1 + a3 + a6 − 2ai

for i = 1, 3, 6. As T is a triangle of the largest area and Q is convex, we have

a2 ∈ [a1, b6, a3], {a4, a5} ⊂ [a3, b1, a6] and a7 ∈ [a6, b3, a1].

Figure 9.9: Q is a heptagon

Let s1 = (a3 + a6)/2, s2 = (a3 + b1)/2, s3 = (b1 + a6)/2, t1 = (a6 + a1)/2,

t2 = (a6 + b3)/2 and t3 = (b3 + a1)/2. Our assertion follows if distQ(a3, a4) < 1 or
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distQ(a5, a6) < 1, hence we may assume that {a4, a5} ⊂ [s1, s2, b1, s3]. Note that the

convexity of Q implies distQ(a4, a5) ≤ 1, and thus, Theorem 9.1.5 (cf. Figure 9.9).

To prove Theorem 9.1.6, we assume that distQ(ai, ai+1) ≥ distC(ai, ai+1) ≥ 1 for

every i. Then distC(a4, a5) = 1, and a4, a5 are on parallel sides of the rhombus

[s1, s2, b1, s3]. We may assume that a4 ∈ [s1, s2] and a5 ∈ [b1, s3].

Let L1 be the line through a1 and a3, and L2 be the line through b1 and b3. Let

H1 and H2 be the open half planes, containing int Q, and bounded by the lines L1

and L2, respectively. Observe that there are points u ∈ (a5, a6) and v ∈ (a1, a3) such

that v−u = 2(a3−a4). As distC(a3, a4) ≥ 1, it follows that [u, v] is a maximal chord

of C, and so, C ⊂ H1 ∩ H2.

Since C ⊂ H1, we have a2 ∈ [a1, a3]. Thus, a2 is the midpoint of [a1, a3] and

distC(a1, a2) = distC(a2, a3) = 1. As distC(a1, a3) = 2, there are parallel supporting

lines L3 and L4 of C passing through a1 and a3, respectively. Let a1 ∈ L3 and

a3 ∈ L4. Let P be the parallelogram bounded by L1, L2, L3 and L4. Clearly, C ⊂ P .

We show that the P -length of every side of Q is at least one. We verify that

distP (a7, a1) ≥ 1 and distP (a6, a7) ≥ 1, and note that the other inequalities are

immediate.

From distQ(a6, a7) ≥ 1 and distQ(a7, a1) ≥ 1, we have a7 ∈ [t1, t2, b3, t3]. This

yields distP (a7, a1) ≥ 1. Let x be the vertex of P on [t2, a6], and t = (a1 + t2)/2. Ob-

serve that a7 ∈ [t1, t, t2]. If a7 /∈ [t1, t]∪ [t, t2] then distQ(a6, a7) < 1; a contradiction.

If a7 ∈ [t1, t] ∪ [t, t2] then distP (a6, a7) = 1.

Case 2. We may assume that the counterclockwise order of the vertices of Q

is a1, a2, a3, a4. Note that there is a parallelogram S such that Q ⊂ S and two

consecutive sides of S are sides of Q. We may assume that S = [a1, a2, b, a4] for some
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b ∈ E2.

Let m1 = (a1+a2)/2, m2 = (a2+b)/2, m3 = (b+a4)/2, m4 = (a4+a1)/2 and m =

(a1 + b)/2. Since Q is convex, we have a3 /∈ [a1, a2, a4]. If a3 ∈ [a2, m2, m] \ [m2, m]

or a3 ∈ [a4, m, m3] \ [m, m3] then distC(a2, a3) ≤ distQ(a2, a3) < 1 or distC(a3, a4) ≤

distQ(a3, a4) < 1, respectively. Let a3 ∈ [m, m2, b, m3].

Figure 9.10: An illustration for Case 2 in Section 9.3

Observe that every point of [a1, m1, m4], [m1, a2, m2, m], [m2, m, m3, b] ∩ Q and

[m3, a4, m4, m] are at Q-distances at most one from a1, a2, a3 and a4, respectively.

Moreover, [m1, m, m4] does not contain two points at a Q-distance greater than one

(cf. Figure 9.10). This proves Theorem 9.1.5. To prove Theorem 9.1.6, we assume

that distC(ai, aj) ≥ 1 for any i 6= j.

Subcase 2.1, a3 /∈ [m2, b] ∪ [b, m3]. Since distQ(ai, aj) ≥ 1 for i = 5, 6, 7, j =

1, 2, 3, 4, we have {a5, a6, a7} ⊂ [m1, m, m4] \ {m}. This yields that distQ(i, j) < 1

for some {i, j} ⊂ {5, 6, 7}.

Subcase 2.2, a3 ∈ [m2, b] ∪ [b, m3] and a3 6= b. Let a3 ∈ [m2, b]. Let L1 be the line

passing through a1 and a4, and L2 be the line through a2 and a3. Let u = (a1 +a3)/2

and v = (a3 + a4)/2. Since distQ(ai, aj) ≥ 1 for i = 5, 6, 7, j = 1, 2, 3, 4, we have
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{a5, a6, a7} ⊂ [m, m4, u] ∪ [m1, v]. Since distQ(ai, aj) ≥ 1 for {i, j} ⊂ {5, 6, 7}, we

may assume that q5 = m4, q6, q7 ∈ [m1, v], with 2‖a7 − a6‖ ≥ ‖a4 − a1‖, and that

||a6 − m1|| < ||a7 − m1||.

Note that, from distC(a4, a7) ≥ 1, we have that L1 and L2 are supporting lines of

C. Let L3 and L4 be two parallel supporting lines of C passing through a1 and a4,

respectively. Then the parallelogram P , with sidelines L1, L2, L3 and L4, satisfies

the conditions in (9.1.6.2).

Subcase 2.3, a3 = b. Since distQ(ai, aj) ≥ 1 for i = 5, 6, 7, j = 1, 2, 3, 4, we have

{a5, a6, a7} ⊂ [m1, m3] ∪ [m2, m4]. Hence, we may assume that a5 = m4, a6 = m2

and a7 ∈ [m1, m3]. Now a consideration similar to that in Subcase 2.2 yields the

theorems.

Case 3. Let V (Q) = {a1, a2, a3, a4, a5}. Then a6, a7 ∈ int Q. We omit a simple ar-

gument that yields that the set X = {x ∈ int Q : distQ(ai, x) ≥ 1 for i = 1, 2, 3, 4, 5}

does not contain two points at a Q-distance at least one.



Chapter 10

Conclusions

In the proofs presented in the thesis, I used the following methods to attack problems.

Due to the nature of the problems, my main tool was geometry. In particular,

geometric transformations and their properties helped much in my research.

For optimization problems, Balázs Csikós taught me the following important

principle: “Never compute and differentiate a quantity you want to maximize or

minimize. Instead, find a way to compute the derivate directly.” In other words, I

learned the importance of linearization. Chapter 7 shows the difference between the

efficiency of the two methods.

Besides linearization, I learned the importance of another area in mathematics:

topology. Understanding the topology of a geometric configuration might help much

in solving a geometric problem.

Most results have been published. Chapters 5, 6 and 8 appeared in [7]. Chapter 7

appeared in [17]. Chapter 9 appeared in [35]. Chapter 4 is submitted as [19].

Despite my efforts, there are still many open questions regarding the problems

I dealt with. The first, naturally, is the following. Is it possible to give a non-

computer-based proof of the Erdős-Szekeres Conjecture for hexagons?

A way to generalize the questions examined in Chapters 5 and 6 is to define

the closed K-spindle of points a and b as the intersection of all the translates of

a given convex body K containing a and b. This notion leads to the notion the

Überkonvexität defined by Mayer [42]. Thus, one may develop a theory of “con-
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vexity” using K-spindles, similar to the one discussed in Chapters 5 and 6. For

me, variants of Kirchberger’s problem are especially intriguing: How to separate fi-

nite point sets with translates or positive homothets of a given convex body? With

Márton Naszódi, we have already begun a research in this direction.

In Chapter 7, there is another way to define the area of an outer kg-polygon: the

area of the union of the interior of the underlying polygon and the ears. Similarly, we

may define the area of an inner kg-polygon as the area of the subset of the interior

of the underlying polygon that does not belong to any of the ears. For outer kg-

polygons, our theorem still holds with this definition due to the fact that there are

no overlapping ears in a regular outer kg-polygon. Nevertheless, the isoperimetric

problem with the alternative area definition is still open for inner kg-polygons.

Maehara’s problem is still open in 3-dimensions. Does there exist a family F of five

unit 2-spheres in E3 such that any four members of F have a nonempty intersection,

but
⋂

F = ∅?

The results in Chapter 9 assert that F7 = 1. With this result, the values of Fk are

determined for k = 2, 3, . . . , 9. Clearly, one can determine the values of Fk for larger

values of k. Nevertheless, the problem of finding fk is still open even for the first few

values of k, and thus, might be more interesting. For the conjectures regarding the

values of f3 and f4, the interested reader is referred to [38].
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