Covering a plane convex body by its negative homothets

Zsolt Lángi

Abstract

For every positive integer k, let λ_{k} denote the smallest positive number such that every plane convex body can be covered by k homothetic copies of itself with homothety ratio $-\lambda_{k}$. In this note, we verify a conjecture of Januszewski and Lassak that $\lambda_{7}=\frac{10}{17}$. Furthermore, we give an estimate for λ_{6}.

Mathematics Subject Classification (2000). 52C15, 52A40, 52A10.
Keywords. covering, convex body, homothety, negative ratio.

Neumann [6] proved that every convex body, in the Euclidean plane \mathbb{E}^{2}, can be covered by a homothetic copy of itself of homothety ratio -2 , and that 2 may not be replaced by any smaller positive number. In [5], Lassak and Vásárhelyi asked what happens if we cover a plane convex body by more than one homothetic copy of itself with the same negative homothety ratio. More specifically, let us define λ_{k}, where k is a positive integer, as the smallest positive number such that every plane convex body C can be covered by k translates of $-\lambda_{k} C$. The problem of finding the values of λ_{k} for small values of k is mentioned also in [2].

From [6] it follows that $\lambda_{1}=2$. By [5], we have that $\lambda_{2} \leq \sqrt{2}, \lambda_{3}=1$ and $\lambda_{4}<1$. The authors of [5] conjectured that $\lambda_{2}=\frac{4}{3}$ and $\lambda_{4}=\frac{4}{5}$. The first conjecture was verified in [4], whereas the second one is still open. Januszewski and Lassak in [4] gave a short and simple proof also for $\lambda_{7} \leq \frac{2}{3}$. They made the conjecture $\lambda_{7}=\frac{10}{17}$, and remarked that $\lambda_{7} \geq \frac{10}{17}$ follows from the example of a triangle. For other results in the plane and in higher dimensions, the interested reader is referred to the papers [3], [7] and [8].

In the first part of this paper we prove, by a fairly simple consideration, that $\lambda_{6} \leq \frac{2}{3}$. We show also that $\lambda_{5} \geq \frac{5}{7}$ and that $\lambda_{6} \geq \frac{20}{31}$. In the second part, using the

[^0]same approach as in the first part, we give a more complicated proof for $\lambda_{7} \leq \frac{10}{17}$, thus verifying the conjecture of Januszewski and Lassak mentioned above.

For simplicity, we denote points by small Latin letters, sets by capital Latin letters, and real numbers by small Greek letters. We identify a point of the plane \mathbb{E}^{2} with its position vector. We denote the convex hull, the boundary and the interior of the set $A \subset \mathbb{E}^{2}$ by conv A, by bd A and by $\operatorname{int} A$, respectively, and, for $p, q \in \mathbb{E}^{2}$, the closed segment with endpoints p and q by $[p, q]$. The Euclidean distance of $p, q \in \mathbb{E}^{2}$ is denoted by $\operatorname{dist}(p, q)$ and, for $A, B \subset \mathbb{E}^{2}$, we set $\operatorname{dist}(A, B)=$ $\inf \{\operatorname{dist}(a, b): a \in A$ and $b \in B\}$.

Theorem 1. Every plane convex body C can be covered by six translates of $-\frac{2}{3} C$.
Proof. By [1], there is an affine regular hexagon H inscribed in C. Note that if C can be covered (respectively, cannot be covered) by six translates of $-\frac{2}{3} C$, then any affine image C^{\prime} of C can be covered (respectively, cannot be covered) by six translates of $-\frac{2}{3} C^{\prime}$. Hence, we may assume that H is a regular hexagon of unit side length, with the origin o as its centre.

Figure 1
Let $a_{1}, a_{2}, \ldots, a_{6}=a_{0}$ denote the vertices of H in counterclockwise cyclic order. For $i=1,2, \ldots, 6$, let L_{i} denote the sideline of H containing $\left[a_{i}, a_{i+1}\right.$], and let \hat{T}_{i} denote the regular triangle with sidelines L_{i-1}, L_{i} and L_{i+1}. Let $\hat{C}_{i}=C \cap \hat{T}_{i}$, and let $\hat{\mu}_{i}$ be the distance between L_{i} and a point of \hat{C}_{i} farthest from L_{i}. For simplicity, we set $\mu_{i}=\frac{2}{3} \sqrt{3} \hat{\mu}_{i}$ and $\mu_{0}=\mu_{6}$. Observe that the existence of a supporting line of C at a_{i} yields $\mu_{i-1}+\mu_{i} \leq 1$ for every value of i. Let $T_{i}=$ $\operatorname{conv}\left\{a_{i}, a_{i+1}, o\right\}$ and $C_{i}=\hat{C}_{i} \cup T_{i}$, and let o_{i} be the centroid of the triangle T_{i} (cf. Figure 1). In the following, we define six translates $D_{1}, D_{2}, \ldots, D_{6}$ of $D_{0}=-\frac{2}{3} C$, and show that they cover C.

If $\mu_{i}<\frac{1}{3}$ (equivalently, if $\hat{\mu}_{i} \leq \frac{\sqrt{3}}{6}$), we let $D_{i}=o_{i}+D_{0}$. Note that $o_{i}+\frac{2}{3} H$ is circumscribed about T_{i}. Thus D_{i} contains T_{i} and every point of \hat{T}_{i} that is not farther from $\left[a_{i}, a_{i+1}\right]$ than $\frac{\sqrt{3}}{6}$, and hence, $C_{i} \subset D_{i}$.

Assume that $\frac{1}{3}<\mu_{i}<\frac{2}{3}$. Let L_{i}^{\prime} denote the supporting line of \hat{C}_{i}, different from L_{i}, that is parallel to L_{i}. Observe that L_{i}^{\prime} supports C and its distance from L_{i} is $\hat{\mu}_{i}$. The strip bounded by L_{i} and L_{i}^{\prime} intersects \hat{T}_{i} in a trapezoid Q_{i}. Let q_{i} denote the intersection point of the two diagonals of Q_{i}. Observe that $q_{i} \in C$, and thus conv $\left(H \cup\left\{q_{i}\right\}\right) \subset C$. We define $D_{i}=\frac{2}{3} q_{i}+D_{0}$ and note that $q_{i} \in C$ implies $-\frac{2}{3} q_{i} \in D_{0}$ and $o \in D_{i}$. We show that L_{i}^{\prime} separates o and the line $L_{i}^{*}=\frac{2}{3} q_{i}+\frac{2}{3} L_{i}$.

An easy computation yields that

$$
\begin{aligned}
\frac{2}{3} \sqrt{3} \operatorname{dist}\left(L_{i}, q_{i}\right) & =\frac{\mu_{i}}{2-\mu_{i}} \\
\frac{2}{3} \sqrt{3} \operatorname{dist}\left(o, L_{i}^{*}\right) & =\frac{2}{3} \sqrt{3} \operatorname{dist}\left(o, \frac{2}{3} q_{i}\right)+\frac{2}{3}=\frac{2}{3} \cdot \frac{4-\mu_{i}}{2-\mu_{i}}, \text { and } \\
\frac{2}{3} \sqrt{3} \operatorname{dist}\left(o, L_{i}^{\prime}\right) & =1+\mu_{i}
\end{aligned}
$$

From these inequalities and $\frac{1}{3}<\mu_{i}<\frac{2}{3}$ it follows that

$$
\frac{2}{3} \sqrt{3}\left(\operatorname{dist}\left(o, L_{i}^{*}\right)-\operatorname{dist}\left(o, L_{i}^{\prime}\right)\right)=\frac{\left(1-\mu_{i}\right)\left(2 / 3-\mu_{i}\right)}{2-\mu_{i}}>0 .
$$

Hence, $C_{i} \subset D_{i}$.
Finally, assume that $\mu_{i} \geq \frac{2}{3}$. Put $\mu_{7}=\mu_{1}$. From $\mu_{i-1}+\mu_{i} \leq 1$ and $\mu_{i}+\mu_{i+1} \leq$ 1 we obtain that $\mu_{i-1}, \mu_{i+1} \leq \frac{1}{3}$. Thus, by its definition, D_{i-1} contains every point of T_{i} not farther from $\left[o, a_{i}\right]$ than o_{i}, and D_{i+1} contains every point of T_{i} not farther from $\left[o, a_{i+1}\right]$ than o_{i}. Note that the remaining points of T_{i} are closer to $\left[a_{i}, a_{i+1}\right]$ than o_{i}. We set $D_{i}=2 o_{i}+D_{0}$, and observe that $C_{i} \subset D_{i-1} \cup D_{i} \cup D_{i+1}$.

Proposition. Let T be a triangle. .1. T can be covered by five homothetic copies of ratio $-\frac{5}{7}$, and cannot be covered by five negative homothetic copies of a smaller ratio.
.2. T can be covered by six homothetic copies of ratio $-\frac{20}{31}$, and cannot be covered by six negative homothetic copies of a smaller ratio.

Proof. Note that it is sufficient to prove the assertion for a regular triangle of unit side length.

We start with proving the first statement. Let λ be the smallest positive number such that T can be covered by five negative copies of itself of ratio $-\lambda$, and let $T_{i}=x_{i}-\lambda T$, where $i=1, \ldots, 5$, cover T. By the configuration in Figure 2, we may assume that $\lambda \leq \frac{5}{7}$. Then it follows that no T_{i} contains more than one vertex of T. Let the vertices of T be a_{1}, a_{2} and a_{3} in counterclockwise cyclic order,
and let the triangles be labeled in a way such that $a_{i} \in T_{i}$ for $i=1,2,3$. Without loss of generality, we may assume that $a_{i} \in \operatorname{bd} T_{i}$ for $i=1,2,3$.

Figure 2
Suppose that no side of T is covered by two of the triangles T_{i}. It is easy to see that T_{4} or T_{5} does not intersect each side of T. Hence, we may assume that $\left[a_{1}, a_{2}\right] \subset T_{1} \cup T_{2} \cup T_{4}$.

Assume that T_{4} intersects only one side of T. Then $\left[a_{1}, a_{3}\right] \subset T_{1} \cup T_{3} \cup T_{5}$ and $\left[a_{2}, a_{3}\right] \subset T_{2} \cup T_{3} \cup T_{5}$. Thus we may assume that a_{3} is the midpoint of a side of T_{3}, that $\mathrm{bd} T_{5}$ contains the other two points of $\mathrm{bd} T \cap \mathrm{bd} T_{3}$, and that no point of $\operatorname{bd} T$ lies in $\operatorname{int} T_{5} \cap \operatorname{int} T_{i}$ for $i=1,2$. Note that, under these assumptions, the length of the open segment $S=\left[a_{1}, a_{2}\right] \backslash\left(T_{1} \cup T_{2}\right)$ is $3-\frac{7}{2} \lambda$, independently of the position of T_{5}.

If $S \not \subset T_{4}$, then we may assume that a_{i} is the midpont of a side of T_{i} for some $i \in\{1,2\}$, say, a_{1} is the midpont of a side of T_{1}. Then $T_{4} \cup T_{2}$ covers a translate of $(2-2 \lambda) T$. Since, by [5], T is not covered by two translates of $-\tau T$ if $\tau<\frac{4}{3}$, we have $\frac{4}{3}(2-2 \lambda) \leq \lambda$, which yields $\lambda \geq \frac{8}{11}>\frac{5}{7}$. If $S \subset T_{4}$, then T_{4} contains the point of $\mathrm{bd} T_{5} \cap \mathrm{bd} T_{1}$ and the point of $\mathrm{bd} T_{5} \cap \mathrm{bd} T_{2}$, closest to $\left[a_{1}, a_{2}\right]$. Thus we may assume that these two points are at the same distance from $\left[a_{1}, a_{2}\right]$. From this, we obtain that $\lambda \geq\left(3-\frac{7}{2} \lambda\right)+\left(2-\frac{5}{2} \lambda\right)=5-6 \lambda$, from which it follows that $\lambda \geq \frac{5}{7}$.

If T_{4} intersects exactly two sides of T, then a simple estimate, regarding how much part of the perimeter of T is covered, yields the assertion. Hence, we may assume that T_{4} intersects each side of T. If the intersection of T_{5} with $\left[a_{1}, a_{3}\right]$ or $\left[a_{2}, a_{3}\right]$ is farther from a_{3} than the intersection of T_{4} and the corresponding side of T, then we may change the configuration such that the new configuration also covers T whereas we decrease the homothety ratio. In the opposite case, we may assume that $T_{1} \cap T$ and $T_{2} \cap T$ are rhombi, and $T \backslash\left(T_{1} \cup T_{2} \cup T_{4}\right)$ is a regular triangle of side length $2-2 \lambda$. Thus two translates of λT cover a translate of $(2-2 \lambda) T$, which, by [5], yields that $\frac{4}{3}(2-2 \lambda) \leq \lambda$, and hence, it follows that $\lambda \geq \frac{8}{11}$. If
there is a side of T covered by two of the triangles T_{i}, we may apply a similar consideration.

We only sketch the proof of the second statement. Let the vertices of T be a_{1}, a_{2} and $a_{3}=a_{0}$ in counterclockwise cyclic order, and let the six translates covering T be $T_{1}, T_{2}, \ldots, T_{6}$. We may assume that $a_{i} \in \operatorname{bd} T_{i}$ for $i=1,2,3$. Note that, for $i=1,2,3$, the triangle T_{i} intersects bd T in the union of two segments, the sum of whose lengths is λ. Let α_{i} denote the length of the segment $T_{i} \cap\left[a_{i}, a_{i+1}\right]$.

We prove the assertion in various cases depending on the positions of the triangles $T_{1}, T_{2}, \ldots, T_{6}$. The positions of these translates are given by linear inequalities with variables $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and λ. In each case, the fact that the translates cover T may be translated into linear inequalities with the same variables. The minimal value of λ such that the corresponding inequalities have a solution is provided by the simplex method. This minimal value is at least $\frac{20}{31}$ in each case, and $\lambda=\frac{20}{31}$ is attained for two configurations (cf. Figure 3).

$\alpha_{1}=10 / 31$
$\alpha_{2}=13 / 31$
$\alpha_{3}=7 / 31$

$$
\begin{aligned}
& \alpha_{1}=27 / 62 \\
& \alpha_{2}=10 / 31 \\
& \alpha_{3}=10 / 31
\end{aligned}
$$

Figure 3
We conjecture the following.
Conjecture. Every plane convex body C can be covered by five translates of $-\frac{5}{7} C$.
In the last part of the paper, we prove the following theorem.
Theorem 2. Every plane convex body C can be covered by seven translates of $-\frac{10}{17} C$.
Proof. For simplicity, we use the notations, assumptions and observations of the first two paragraphs of the proof of Theorem 1. Note that if $\mu_{i} \leq \frac{13}{17}$ for every value of i, then there are seven translates of $-\frac{10}{17} H$ covering C (cf. Figure 4).

Let us assume that $\mu_{i}>\frac{13}{17}$ for some values of i. We find seven translates of $-\frac{10}{17} C$, denoted by $D_{0}, D_{1}, \ldots, D_{6}$, that cover C. We define $D_{0}=-\frac{10}{17} C$ and $H_{0}=-\frac{10}{17} H=\frac{10}{17} H$, and denote the vertex of H_{0} closest to a_{i} by \bar{a}_{i}. We construct $D_{1}, D_{2}, \ldots, D_{6}$ in a way that $D_{i-1} \cup D_{i} \cup D_{i+1}$ contains $C_{i} \backslash H_{0}$ for every i. We choose D_{i} depending on the values of μ_{i-1}, μ_{i} and μ_{i+1}.

Figure 4
Case 1, if $\mu_{i}>\frac{13}{17}$. We set $D_{i}=\left(\frac{21}{34}+\sqrt{3} \hat{\mu}_{i}\right) o_{i}+D_{0}$, and note that $\left(\frac{21}{34}+\right.$ $\left.\sqrt{3} \hat{\mu}_{i}\right) o_{i}+H_{0}$ contains exactly those points of \hat{T}_{i} whose distance from $\left[a_{i}, a_{i+1}\right]$ is at most $\hat{\mu}_{i}$ (cf. Figure 5). For later use, we introduce some notations and investigate what part of $C_{i} \backslash H_{0}$ is not covered by D_{i}.

Let b_{i} be the vertex of \hat{T}_{i} different from a_{i} and a_{i+1}, and let t_{i} and \bar{t}_{i} be the points of $\left[a_{i}, b_{i}\right]$ and $\left[a_{i+1}, b_{i}\right]$, respectively, at a distance $\hat{\mu}_{i}$ from $\left[a_{i}, a_{i+1}\right]$. Let q_{i} be the intersection point of the segments $\left[a_{i}, \bar{t}_{i}\right]$ and $\left[a_{i+1}, t_{i}\right]$, and observe that $\operatorname{conv}\left(H \cup\left\{q_{i}\right\}\right) \subset C$.

It is not difficult to show that

$$
\frac{2}{3} \sqrt{3} \cdot \operatorname{dist}\left(q_{i}, L_{i}\right)=\frac{\mu_{i}}{2-\mu_{i}}
$$

and that the image of conv $\left(H \cup\left\{q_{i}\right\}\right)$ under the homothety that maps C into D_{i} intersects $\left[\bar{a}_{i}, \bar{a}_{i+1}\right]$ in a closed segment. Let \bar{x}_{i} denote the endpoint of this segment closer to \bar{a}_{i}. A simple calculation yields that

$$
\begin{equation*}
\kappa_{i}=\operatorname{dist}\left(\bar{x}_{i}, \bar{a}_{i}\right)=\frac{\left(\mu_{i}-13 / 17\right)\left(2-\mu_{i}\right)}{2 \mu_{i}} \tag{1}
\end{equation*}
$$

Thus κ_{i} is a strictly increasing function of μ_{i} on the interval $\left(\frac{13}{17}, 1\right]$, and we have $0<\kappa_{i} \leq \frac{2}{17}$.

Let x_{i} be the intersection point of $\left[a_{i}, b_{i}\right]$ with the line, parallel to $\left[\bar{a}_{i}, a_{i}\right]$, that passes through \bar{x}_{i} (cf. Figure 5). Observe that the trapezoid $\operatorname{conv}\left\{a_{i}, x_{i}, \bar{x}_{i}, \bar{a}_{i}\right\}$ contains the points of $C_{i} \backslash\left(H_{0} \cup D_{i}\right)$ closer to a_{i} than to a_{i+1}.

Figure 5

Case 2, each of μ_{i-1}, μ_{i} and μ_{i+1} is at most $\frac{13}{17}$. We let $D_{i}=\frac{30}{17} o_{i}-\frac{10}{17} C$. Note that $\frac{30}{17} o_{i}$ is the centre of a translate of $-\frac{10}{17} H$ in Figure 4.

Figure 6

Case 3, $\mu_{i} \leq \frac{13}{17}$, and either $\mu_{i-1}>\frac{13}{17}$ or $\mu_{i+1}>\frac{13}{17}$. We may assume that $\mu_{i+1}>\frac{13}{17}$ and that $\mu_{i-1} \leq \frac{13}{17}$. We define $D_{i}=a_{i}-\bar{a}_{i-1}+D_{0}$ (cf. Figure 6). Since $\mu_{i} \leq 1-\mu_{i+1} \leq \frac{4}{17}$, we have $D_{i} \subset C_{i} \backslash H_{0}$. Furthermore, from $\kappa_{i+1} \leq \frac{2}{17}$, we obtain conv $\left\{a_{i+1}, x_{i+1}, \bar{x}_{i+1}, \bar{a}_{i+1}\right\} \subset D_{i}$.

Case 4, $\mu_{i} \leq \frac{13}{17}, \mu_{i-1}>\frac{13}{17}$ and $\mu_{i+1}>\frac{13}{17}$. Let y_{i} denote the point of [b_{i-1}, a_{i}] with $\operatorname{dist}\left(y_{i}, a_{i}\right)=\kappa_{i-1}$. We define \bar{y}_{i} similarly, and note that the trapezoid conv $\left\{a_{i}, \bar{a}_{i}, \bar{y}_{i}, y_{i}\right\}$ contains the points of $C_{i-1} \backslash\left(H_{0} \cup D_{i-1}\right)$ that are closer to a_{i} than to a_{i-1}. To finish the proof, we need only show that there is a translate of D_{0} that contains $C_{i}, \operatorname{conv}\left\{a_{i+1}, x_{i+1}, \bar{x}_{i+1}, \bar{a}_{i+1}\right\}$ and $\operatorname{conv}\left\{a_{i}, \bar{a}_{i}, \bar{y}_{i}, y_{i}\right\}$. Then we may define D_{i} as such a translate.

Let $P=-\frac{10}{17} \operatorname{conv}\left(H \cup\left\{q_{i-1}, q_{i+1}\right\}\right)$. Since $P \subset D_{0}$, it is sufficient to find a translate of P that satisfies the conditions above. If $\kappa_{i-1}+\kappa_{i+1} \leq \frac{3}{17}$, then $\operatorname{dist}\left(y_{i}, x_{i+1}\right) \leq \frac{20}{17}$, which clearly yields the existence of a suitable translate of P (or even that of $H_{0} \subset P$). Thus we may assume that $\kappa_{i-1}+\kappa_{i+1}>\frac{3}{17}$.

Let $P_{i}=u_{i}+P$ be the translate of P such that $y_{i}, \bar{y}_{i} \in \operatorname{bd} P_{i}$ and $a_{i}, \bar{a}_{i} \in P_{i}$ (cf. Figure 7). Note that $u_{i} \in \hat{T}_{i}$ and that y_{i} is on the translated image of the side $\left[\bar{a}_{i-1},-\frac{10}{17} q_{i+1}\right]$ of P. Let $s_{i}=u_{i}+\bar{a}_{i-1}$, and let w_{i} denote the intersection point of $\left[a_{i}, a_{i+1}\right]$ with the line passing through u_{i} and parallel to [$\left.s_{i}, y_{i}\right]$. Since $\operatorname{conv}\left\{y_{i}, s_{i}, u_{i}, w_{i}\right\}$ is a parallelogram, we have $\operatorname{dist}\left(a_{i}, w_{i}\right)=\frac{10}{17}-\kappa_{i-1}$. Furthermore,

$$
\begin{equation*}
\delta_{i}=\frac{2}{3} \sqrt{3} \operatorname{dist}\left(u_{i}, L_{i}\right)=\frac{3 / 17-\kappa_{i-1}}{2-\mu_{i-1}} . \tag{2}
\end{equation*}
$$

Figure 7

Let $P_{i+1}=u_{i+1}+P$ be the translate of P such that $x_{i+1}, \bar{x}_{i+1} \in \operatorname{bd} P_{i+1}$ and $a_{i+1}, \bar{a}_{i+1} \in P_{i+1}$. We define s_{i+1} and w_{i+1} similarly like s_{i} and w_{i}. Note that $\operatorname{dist}\left(a_{i+1}, w_{i+1}\right)=\frac{10}{17}-\kappa_{i+1}$ and, as $\kappa_{i-1}+\kappa_{i+1}>\frac{3}{17}, w_{i}$ is closer to a_{i} than w_{i+1}.

For $j=i, i+1$, let R_{j} be the ray emanating from w_{j} and passing through u_{j}. From $\mu_{i-1}+\mu_{i+1} \geq \frac{26}{17}>1$, we have that R_{i} and R_{i+1} intersect. Let x denote the intersection point of R_{i} and R_{i+1}. Observe that $y_{i}, \bar{y}_{i} \in m_{i}+P$ for any $m_{i} \in\left[u_{i}, w_{i}\right]$, and $x_{i+1}, \bar{x}_{i+1} \in m_{i+1}+P$ for any $m_{i+1} \in\left[u_{i+1}, w_{i+1}\right]$. Thus to prove the assertion it is sufficient to prove that x lies on the segments $\left[u_{i}, w_{i}\right]$ and [u_{i+1}, w_{i+1}]. A straightforward calculation yields that

$$
\begin{equation*}
\delta=\frac{2}{3} \sqrt{3} \operatorname{dist}\left(x, L_{i}\right)=\frac{\kappa_{i-1}+\kappa_{i+1}-3 / 17}{\mu_{i-1}+\mu_{i+1}-1} . \tag{3}
\end{equation*}
$$

We omit a tedious computation showing that $\delta_{i}-\delta$, which we may express from (1), (2) and (3), is nonnegative. From this, we have that $x \in\left[u_{i}, w_{i}\right]$. Then $x \in$ [u_{i+1}, w_{i+1}] follows by symmetry.

References

[1] A. S. Besicovitch, Measure of asymmetry of convex curves, J. London Math. Soc. 23 (1948), 237-240.
[2] P. Brass, W. Moser and J. Pach, Research problems in discrete geometry, Springer, New York, 2005.
[3] G. D. Chakerian and S. K. Stein, On measures of symmetry of convex bodies, Canad. J. Math. 17 (1965), 497-504.
[4] J. Januszewski and M. Lassak, Covering a convex body with its negative homothetic copies, Pacific J. Math. 197(1) (2001), 43-51.
[5] M. Lassak and É. Vásárhelyi, Covering a plane convex body with negative homothetical copies, Studia Sci. Math. Hungar. 28 (1993), 375-378.
[6] B. H. Neumann, On some affine invariants of closed convex regions, J. London Math. Soc. 14 (1939), 262-272.
[7] C. A. Rogers and C. Zong, Covering convex bodies by translates of convex bodies, Mathematika 44 (1997), 215-218.
[8] W. Süss, Über eine Affininvariante von Eibereichen, Arch. Math. 1 (1948), 127-128.

Zsolt Lángi

Dept. of Geometry, Budapest University of Technology
Egry József u. 1.
1111 Budapest
Hungary
e-mail: zlangi@math.bme.hu

[^0]: Partially supported by the Alberta Ingenuity Fund.

