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Introduction

Statistical physics

A polymer is a large molecule, or macromolecule, composed of many repeated
subunits. The problem of modeling polymers’ formation and long time behavior
became popular among physicists and mathematicians due to their crucial impor-
tance in chemistry, biology and physics. Tools of statistical physics and probability
are well-suited for constructing and analyzing polymer models. This work is based
on two recent articles [1] and [2| that investigate such models. A statistical physical
introduction from [3] explains what a partition function is which we are interested

in this work.

According to statistical mechanics, the probability that a system in thermal equi-
librium occupies a state with the energy F is proportional to its Boltzmann weight
e’“BLT, where T is the absolute temperature and kg is the Boltzmann constant. L.
Boltzmann considered a gas of identical molecules which exchange energy upon
colliding but otherwise are independent of each other. An individual molecule of
such a gas does not have a constant velocity, so that no exact statement can be
made concerning its state at a particular time. However, when the gas comes to
equilibrium at some fixed temperature, one can make predictions about the aver-
age fraction of molecules which are in a given state. These average fractions are
equivalent to probabilities and therefore the probability distribution for a molecule
over its possible states can be introduced. Let the set of energies available to each

molecule be denoted by {¢ }. The probability, P, of finding a molecule in the state

il
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[ with the energy ¢ is
exp(—e¢ /(kgT))
D m eXp(—€m/(k5T))

This is called the Boltzmann distribution.

P =

J.W. Gibbs introduced the concept of an ensemble, which is defined as a set of
a very large number of systems, all dynamically identical with the system under
consideration. The ensemble, also called the canonical ensemble, describes a sys-
tem which is not isolated but which is in thermal contact with a heat reservoir.
Since the system exchanges energy with the heat reservoir, the energy of the sys-
tem is not constant and can be described by a probability distribution. Gibbs
proved that the Boltzmann distribution holds not only for a molecule, but also for
a system in thermal equilibrium. The probability P(E;) of finding a system in a
given energy FEj is

P(El) o eXp(_El/(kBT)) (001)

- exp(=E/(kpT))’

and the sum in the denominator is called partition function.

Now let us return to polymers and consider only one particle moving between two
points in a random environment. Also, let us restrict ourself to a model where the
particle can only move from the initial point towards the target point. In this case
we talk about directed polymers. Assume that the starting point is (0, 1) and the
endpoint is (1, N) (N € N, 7 € R,) on the plane with continuous horizontal and
discrete vertical coordinates. Then a directed path should be an up-right path, as
the particle can move only towards the target point. Furthermore, such a path is
semi-discrete, because of the setup of the coordinate system. More exactly, a path
is a union of horizontal line segments and looks like a simple function on (0, 7)
mapping to {1,2,... N}, jumping (almost) always +1 at a jumping point. See
Section 2.1.1 and Figure 2.1 for more precise description of semi-discrete up-right

paths.

To a semi-discrete up-right path 7 one can assign an energy E(m), and here we
connect to the Boltzmann- and Gibbs measures. We would like to choose a path

randomly, so we need a probability measure. In accordance with (0.0.1) we assign
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to 7 a Boltzmann weight e #(™) and its density will be

4 e BE(T) 1 e—ﬁE(W)d
p(m) = [ dre=PE@ = Z(B) T

where [ is the inverse temperature multiplied by the Boltzmann weight, and Z(/3)
is the partition function of the directed polymer and the integration goes over the
space of all possible paths. If 5 = 0, this is just a uniform choice. It is called the
ground state, if 5 = oo, and in this case all the weight is divided among the paths

that minimize the energy function, so it models the principle of minimum energy.

The reason of the great interest is the relation to KPZ equation (1.2). This equa-
tion is a non-linear stochastic partial differential equation (PDE) and it is not well
posed, meaning that we a priori do not know about the regularity of its solution
because of the non-linear term. However, the Hopf-Cole solution formally solves
the equation in the following way: Consider the solution to the stochastic heat
equation (SHE) (Definition 2.7). Take its logarithm (it exists) and apply Ito’s
formula for that. Then it turns out that the logarithm of the solution to the SHE
is formally the solution to the KPZ equation. Due to regularity problems we do
not know if this solution exists for an arbitrary initial condition. However Martin
Hairer’s work [4] in this area was awarded the Fields medal in 2014. In our work
the partition function of a continuum directed random polymer is the solution to
the SHE with initial data Z,(X). Furthermore, the free energy is given by the
Hopf-Cole solution to the KPZ equation with initial data In(Zy(X)). So the free
energy is simply the logarithm of the partition function and so we work with them

and with the SHE and KPZ equations interchangeably.

As the solution of the KPZ equation is investigated in this work, it is also related
to the KPZ universality class. The KPZ universality class was introduced in the
context of studying the motion of growing interfaces in a 1986 paper of Kardar,
Parisi and Zhang [5] which has since been cited thousands of times in both the
mathematics and physics literature. The work was based on studying a continuum
stochastically growing height function given in terms of a stochastic PDE which

is now known as the KPZ equation. The time derivative of the height function
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depends on three factors: smoothing (the Laplacian), rotationally invariant, slope
dependent, growth speed (the square of the gradient), noise (space-time white
noise). A growth model is considered to be in the KPZ universality class if its
long time behavior is similar to that of the KPZ equation itself. There are dis-
crete mathematical models that share the three characterizing properties of the
universality class and that are expected to be in this class. According to the KPZ
universality conjecture these models have similar fluctuation and statistics prop-
erties. For some of them it was shown that their long time behavior is indeed
similar to that of the KPZ equation, with certain initial data. Such a model is e.g.

the model for interacting particle systems and simple exclusion processes [6].

The polymer model we are working with is of course also expected to be in the
universality class, since in our case the polymer’s free energy is the solution to the
KPZ equation itself. The KPZ universality conjecture says that the scaling factor
T'/3 for the fluctuation and the limiting fluctuation statistics (in our case the
Borodin-Péché distribution from Definition 2.8) should not depend on the details
of the model.

Directed polymers

Let us give an outline, that mentions different types of polymer models, and some
results showing what is known in this area. The importance of this topic lies
in the relation between directed random polymers and the Kardar-Parisi-Zhang
(KPZ) equation and universality class. An important progress was possible thanks
to the existence of models with exact solvability properties, that is models for
which, exact computations are possible. (E.g. giving a Fredholm-determinant
formula for the partition function as one can see it later.) Properties that might
make exact calculations possible are e.g. the exactly known stationary measure,
the existence of combinatorial correspondence (Robinson-Schensted-Knuth (RSK)

correspondence and geometric RSK (gRSK) correspondence) or the Bethe ansatz
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integrability. A recent article |7| summarizes the main results in connection with

directed polymers and their exact solvability. Some of them are listed here.

The first discovered exactly solvable model of directed polymers on the square
lattice at finite temperature was the Log-Gamma polymer. It was introduced be-
cause of the possibility of writing down exactly its stationary measure [8]. It was
later shown that the model is exactly solvable using the gRSK correspondence [9].
The Strict-Weak polymer, introduced shortly after, also enjoys these two proper-
ties [10], that is its stationary measure is known and the gRSK correspondence
is applicable. The third exact solvability property, namely the Bethe ansatz in-
tegrability has been shown for the recently discovered Beta [11] and Inverse-Beta
polymers [12] (and a work on the stationary measure of the Beta polymer is cur-
rently in preparation [13]). Present work is about the O’Connel-Yor semi-discrete
directed polymer and about the continuum directed random polymer (CDRP).
Exact solvability properties have been published also about these models. The
stationary measure of the O’Connell-Yor semi-discrete directed polymer is known
[14] and it is solvable using the gRSK correspondence [15]. Furthermore, the
continuum directed random polymer has an exactly known stationary measure:
starting from an initial condition such that the free energy of the directed polymer

performs a Brownian motion, it remains so at all times |16].

Considering models with exact solvable properties, the following topic is of great
interest: the exact distribution of the fluctuations of the free energy at large
scale. This is in fact the question we investigate in this work. In the literature this
problem is approached with the RSK/gRSK correspondence [17] and also with the
Bethe ansatz integrability [11]. However our investigation relies on earlier results
for slightly different models that can be validated for our case. So the already
existing exact computations in this area gave the motivation and the ideas for our

work.

Now let us turn to the model we are working with. Our main focus is on the
large time behavior of the free energy of a continuum directed random polymer.

This CDRP is the scaling limit of a semi-discrete polymer, investigated in [2]. The
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semi-discrete model is a mixture of the O’Connel-Yor semi-discrete and the Log-
Gamma, discrete directed random polymers. Our discussion relies on the results

of [2| and [1].

In [1] the O’Connel-Yor model was considered without the log-gamma weights.
The large time limit of the free energy was determined in this case. In |2] a Fred-
holm determinant formula was given for the Laplace transform of the partition
function of the above mentioned mixture of polymers. Then the model was re-
stricted to the case when there is only one level of perturbation (one column of
log-gamma variables and one Brownian motion with nonzero drift). Also it was
modified such that the log-gamma weight in the corner (which explodes in the
limit that approaches the stationary solution) was replaced by zero. In this set-
ting another Fredholm determinant formula was given for the Laplace transform

of the continuous partition function.

Present work proves similar statements for the general semi-discrete directed poly-
mer model with log-gamma boundary sources (it was called mixture of polymers
above). We give a Fredholm determinant formula for the Laplace transform of the
continuous partition function (using e.g. the formula for the semi-discrete one,
given in [2]). Furthermore, our main purpose is to give the distribution of the
fluctuations of the free energy at large scale. First a restriction will be made for
the case with one level of boundary perturbation, just as it was in [2|. Then we

extend to the general case using similar ideas.

Let us give now a short outline of our work. In Chapter 1 we make clear the mathe-
matical concepts that are constantly used throughout, including integral operators,
Fredholm determinants, the KPZ equation and the stochastic heat equation, and
we recall the definition of convergence in distribution and Lebesgue’s dominated

convergence theorem.

We introduce the semi-discrete directed random polymer model in Chapter 2. The
semi-discrete and continuous partition functions and free energies are defined here.

Besides these, we introduce a special initial data for the stochastic heat equation,
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which has an important role later on. Our main result, Theorem 2.9 is also stated

in this chapter.

In Chapter 3 we restrict ourself to the case when there is only one level of per-
turbations. For this case we first determine a Fredholm determinant formula for
the Laplace transform of the continuous partition function in Theorem 3.4. Then
Theorem 3.9, the special case of Theorem 2.9 is proved. Finally we extend this

proof to the general case in Chapter 4.



Chapter 1

Preliminaries

In this chapter we would like to make clear the mathematical concepts we are
working with throughout this work. These are the notions of pure functional
analysis, probability and stochastics. Polymer models are explained in the next

chapter.

1.1 Integral operators and Fredholm determinants

An important result of this work is that we give a Fredholm determinant formula
for the Laplace transform of the continuum directed random polymer’s partition
function. Before introducing the notion for a Fredholm determinant, integral op-

erators need to be defined.

Definition 1.1. /18] An integral operator is a map f +— Af where the law of the

correspondence A is given by the integral
AF () :/G(t,T,f(T))dT, teD (1.1.1)
D

where D is a given measurable set of finite Lebesgue measure in a finite dimensional
space and G(t,T,u), t,7 € D, —00 < u < 00, s a given measurable function. It is
assumed that G and f are functions satisfying conditions that ensure the existence

1
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of the integral in (1.1.1). If G(t,7,u) is a non-linear function in u, then we have

a non-linear integral operator. If G(t,7,u) = K(t,7)u, then (1.1.1) takes the form
Af () :/K(t,T)f(T)dT, teD, (1.1.2)
D

the generated operator is called a linear integral operator and the function K is

called its kernel.

Now we can turn to the Fredholm determinants. This is how one can compute the
determinant of an operator. In our case the operator is always a linear integral

operator, so we write down the definition for this case.

Definition 1.2. Fredholm-determinant [2]:

Fiz a Hilbert space L*(X,u) where X is a measure space and p is a measure
on X. Let K be an integral operator acting on f(-) € L*(X) by Kf(x) =
Jx Kz, y) f(y) du(y), where K (x,y) is the kernel of K and we will assume through-
out that K(x,y) is continuous in both x and y. Assuming its convergence, the

Fredholm determinant expansion of 1 + K s defined as
o0 1 . n
dot(1+ K)oy =1+ 3 ﬁ/ . / det [K (v, 2)]2_y [ i)
n=1" X X i=1

Now let us give an example for an important integral kernel, and for the Fredholm
determinant it defines. The Airy function Ai(z) is the solution of the Airy equation

y” = xy. It has an integral representation on the complex plane:

CER
1 3
Ai(2) =5 / es *dt. (1.1.3)
ooe_%;'i

and the Airy kernel is given by

o0

Kz, y) = /Az'(x + V) Aily + N, (1.1.4)
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The Fredholm determinant, this kernel defines, is the distribution function of the
Tracy-Widom distribution. It is the limiting distribution of the largest eigenvalue
of a random matrix from the Gaussian Unitary Ensemble (GUE). Let A denote
the integral operator given by the Airy kernel K 4;,. Then the distribution function
Faup of the Tracy-Widom distribution can be written as the following Fredholm
determinant:

FGUE(T) = det (IL—A)LQ( relR (115)

7,00)

Beyond that this is an important example in general, it is also significant for us.
We define the Borodin-Péché distribution later on. Its distribution function is also
given by a Fredholm determinant, in fact, its kernel is a generalized Airy kernel.
Furthermore, the Borodin-Péché distribution is related to random matrix theory.
In Chapter 2 we mention the role of the Tracy-Widom distribution in the KPZ
universality classes, which the Borodin-Péché distribution also has, being the large

time limiting statistics for the free energy fluctuation.

1.2 Kardar-Parisi-Zhang (KPZ) equation

As we mentioned in the introduction Kardar, Parisi and Zhang proposed the
stochastic evolution equation for a height function F(7,X) € R (T € R, is

time and X € R is space)

O.F(T, X) = 202 F(T, X) + %(GX}"(T, X))+ (T, X), F(0,X) = Fo(X),

T2
(1.2.1)
where £ denotes the space-time Gaussian white noise with
E (T, X)E(S,Y)] =0(T — S)6(X —Y). It can also be found in the introduction
that this stochastic partial differential equation is ill-posed. However one can give

a formal solution indirectly via the well-posed stochastic heat equation (SHE):

OrZ(T, X) = 102 Z(T, X) + Z(T, X)&(T, X), Z(0,X) = Zo(X).  (1.2.2)
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Now the Hopf-Cole solution to the KPZ equation is defined as
F(T,X)=nZ(T,X), F0,X)=InZ0,X), (1.2.3)

where Z(T,X) is the solution to the SHE. In the continuum directed random
polymer model we are going to investigate, Z(7, X) is the partition function and
F(T, X) is the free energy. It is going to be explained in Chapter 2, why Z can

be called a partition function.

1.3 Convergences

Convergence in distribution and the interchangeability of the integral and the
limit will be essential in our discussion. For instance, in our main statement The-
orem 2.9 we need to prove a convergence in distribution. Furthermore, by proving
convergence of Fredholm determinants we need nothing else but upper bounds and
Lebesgue’s dominated convergence theorem. So let us recall the definition and the

theorem.

Definition 1.3. A sequence X1, Xs, ... of random variables is said to converge in

distribution to a random variable X, if

lim F,(z) = F(z), Yz € R,

n—o0

where F,, and F are the cumulative distribution functions of X,, and X respectively.

Convergence in distribution can be defined equivalently by terms of expectations

in the following way:

Definition 1.4. A sequence X1, Xo,... of random variables converges in distri-

bution to a random variable X if and only if

lim E[f(X,)] = E[f(X)],

n—o0

for any bounded, continuous function f.
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Theorem 1.5 (Lebesgue dominated convergence theorem). Let {f,} be a sequence
of real-valued measurable functions on a measure space (S, A, 1). Suppose that the
sequence converges pointwise to a function f and is dominated by some integrable
function g in the sense that |f,(x)| < g(x) for all n in the index set and for all
x €S. Then f is integrable and

lim [ fudy = / fdu
S S

n— o0

, moreover,

lim / ‘fn - f‘dM =0.
n—oo S



Chapter 2

Directed random polymer models

2.1 Semi-discrete directed random polymer with

boundary sources

The basic setup presented here is the same as the one published in |2]. However the
main results are valid for a slightly different model. Let us see first the description

of the model from |2].

2.1.1 Semi-discrete up-right paths

This model is a mixture of models introduced by O’Connell and Yor [14, 15] and
Seppéldinen [8]. Indeed, taking M = 0 and 7 > 0 recovers the semi-discrete
directed random polymer of [15] while taking M > 0 and 7 = 0 recovers the

log-gamma discrete directed random polymer of [§].

For 6 > 0, a random variable X is distributed as I'(#) (written X ~ I'(9)) if it has

density with respect to Lebesgue measure given by

d 1
—~PX < -1 N - 01 _—x
LK =) =14 Oyt ¢
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W_pMN W_2 NW_1 N (7-7 N)
° ° @ oo —o- By
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° ° ® -/ Bs
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/) ‘ ‘ o
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FIGURE 2.1: Illustration of the semi-discrete directed random polymer with

log-gamma boundary sources. The thick solid line is a possible directed random

polymer path ¢ from (—M,1) to (7,N). Its energy is given by (2.1.1). The

random variables w_y, , are distributed as —InI'(a; — a,,), while the Brownian
motions By, ..., By have drifts aq,...,ay respectively.

and a random variable W is distributed as — InI'(#) (written W ~ —InT'(6), called

log-gamma random variable) if W = —In X for X ~ I'(6).

Fix N >1and M > 0. Leta= (a1,...,ay) € RN and a = (ay,...,ap) € (R+)M
be such that ap —a, >0forall1 <n < N and 1 <k < M. Consider the setting
as in Figure 2.1, where the horizontal axis is discrete on the left of 0 and continuous
on the right of 0, while the vertical axis is discrete. In this semi-discrete setting
we introduce randomness in the following way. Forall 1 <k < M and 1 <n <N
let w_j, ~ —InT'(ay — ay,) be independent log-gamma random variables specified
by the parameters a,a; and for all 1 < n < N let B,, be independent Brownian
motions with drift a,,. The w_;, can be thought of as sitting at the lattice points
(—k,n) while the B, can be thought of as sitting along the horizontal rays from
(0,n). We denote by P and E the probability measure and expectation with respect

to these random variables.

A discrete up-right path ¢¢ from (i, j1) to (g, j;) (written as ¢ : (i1, j1) 7 (ie, j¢))
is an ordered set of points ((il,jl), (12, 72)5 - - - (ig,jg)) with each (i, j.) € Z* and
each increment (ig,jx) — (ix—1,jk—1) either (1,0) or (0,1). A semi-discrete up-
right path ¢*@ from (0,n) to (7, N) (written as ¢*? : (0,n) (7, N)) is a union
of horizontal line segments ((0,n) — (sn,n)) U (($p,n + 1) = (Spq1,m+ 1)) U
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. ((sN_l,N) — (7, N)) where 0 < s, < 841 < -+- < sy_1 < 7. It is convenient

to think of ¢*? as a surjective non-decreasing function from [0, 7] onto {n,..., N}.

As we are working with a mixture of a discrete and semi-discrete lattice, our up-
right paths ¢ will be composed of discrete portions ¢ adjoined to a semi-discrete
portions ¢*¢ in such a way that for some 1 <n < N, ¢¢: (=M,1) 7 (—1,n) and
¢*¢: (0,n) S (1,N).

2.1.2 Energy and partition function

To an up-right path, described above, we associate an energy:

Z LUZ] / dB¢sd(5)(S)

(i,4)€p? 0

> wij+ Bulsa)+ (2.1.1)
(i,)€¢?

+ (Bug1(8n41) = Buyi(sn)) + - . + (By(7) = Bx(sn-1)).

This energy is random, as it is a function of the w; ; and Bj random variables.
We associate a Boltzmann weight e”®) to each path ¢. The polymer measure on
¢ is proportional to this weight. The normalizing constant, or polymer partition
function, is written as Z“*(7, N) and is equal to the integral of the Boltzmann
weight over the background measure on the path space ¢. Here a and o denote
the drift vector and the parameters of the log-gamma random variables. Formally

it can be written as in the definition below.

Definition 2.1. The partition function for the semi-discrete directed random poly-

mer with log-gamma boundary sources is given as

Zaa 7_ N Z Z / E(¢)d¢sd

n=1 gd:(—M,1) (~1n A N)

where E(¢) is given by (2.1.1), the dependence on a and « is described in Sec-

tion 2.1.1 and d¢*? represents the Lebesgue measure on the simplex
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0 <5, < Spe1 < -+ < sy <7 with which ¢*¢ is identified. If n = N, take the

counting measure (because there is only one possible ¢** path).

The other important quantity beside Z%%(7, N) is its logarithm which is called the

free energy:

Definition 2.2.
F**(1,N) = In(Z“*(7, N)) (2.1.2)

In order to see new results the following Fredholm determinant formula, provided
in 2], is a key. The condition N > 9 was a technical detail needed in the proof
of this formula. However, this condition has no meaningful role, as NV is sent to

infinity in our further discussion .

Theorem 2.3. [2, Thm. 2.1] Fix N > 9, M >0 and 7 > 0. Let
a=(ay,...,ay) € RY and a = (ay,...,an) € (R+)M be such that oy, — a, > 0
forall 1 <n < Nand 1 < k < M. Forl1 <k < Mand1l <n < N let
Wegn ~ —InT(a — a,) be independent log-gamma random variables and for all
1 <n < N let B, be independent Brownian motions with drift a,. Then for all
u € C with positive real part

]E I:e_uza,a(ﬂN)] — det (]]_ + KU)LQ(CQ'Q'AP)

where the operator K, is defined in terms of its integral kernel

Ky (v, ) =
N M 2
1 v —ay, (g — v — ) use?™s+7°/2
= — dsT'(—s)I'(1 .
27 Jp, ° +SH S—i-v—an)H MNag—v) v4+s—0

The contour Cgayp is given in Definition 2.4 with any ¢ € (0,7/4), as is the
contour D,,. The meaning of det (1 + Ku)LQ(CMw) is explained in Defnition 1.2.

The contours in Theorem 2.3 are defined such that they do not intersect the

singularities and that the decay is fast enough for the integral to be convergent.
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. Caasp v+ D,

AN A
S o
R R
: a’s s $ ,7/ a’s

O loooo0oo0o0

7 //l)

e R

FIGURE 2.2: (Left) The contour C,., (dashed) where the black dots symbolize
the set of singularities of K, (v,v") in v at Uj<p<n{an,an —1,...} coming from
the factors I'(v — ay,). The contour v+ D, is the solid line. (Right) The contour
D, where the light gray dots are the singularities at {1,2, ...} and the dark gray
dots are those at Uj<m<nar{am — v, @ +1—wv,...} coming from I'(a, —v — s).

Definition 2.4. Let a = (ai,...,ax) € RY and a = (ay,...,ay) € (R>0)M
be such that o,y —a, > 0 for alll < n < N and1 < m < M. Set p =
L max(a) + 1 min(a) and n = 1 max(a) + 2 min(a). Then, for all p € (0,7/4),
we define the contour Cpp.p = {1t + ei(wﬂo)y}yeRJr U{p+ ei(”_@y}yeM. The con-
tours are oriented so as to have increasing imaginary part. For every v € Coayp
we choose R = —Re(v) +n, d > 0, and define a contour D, as follows: D, goes
by straight lines from R — ioco, to R —id, to 1/2 —id, to 1/2+id, to R+ id, to
R +ico. The parameter d is taken small enough so that v+ D, does not intersect

Cosap- See Figure 2.2 for an illustration.

2.2 Continuum directed random polymer (CDRP)

The scaling limit of a semi-discrete partition function (or free energy) is the so-
lution to the SHE, see (1.2.2) (or to the KPZ equation, (1.2)) with a particular
initial data. This is the statement of Theorem 3.6 and more generally Theorem 4.2.
The definitions of the partition function and free energy for the CDRP are defined
based on this fact.

Definition 2.5. The partition function Z(T,X) for the continuum directed ran-

dom polymer with boundary perturbation In Zy(X) is given by the solution to the
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stochastic heat equation (SHE, (1.2.2)) with multiplicative Gaussian space-time
white noise and Zy(X) initial data. The initial data Zy(X) may be random but is

assumed to be independent of the space-time white noise.

Now we explain why Z(7, X) is indeed a partition function, based on [1]. This
can be seen by looking at the Feynman-Kac representation of Z(7, X) [20]:

Z(T, X) = Epcx) {ZO(B(O)) oxp {/OTg(t, B(t))dt}] , (2.2.1)

where the expectation E is taken over the law of a Brownian motion B which
is running backwards from time 7" and position X. The : exp : is the Wick
exponential, see the definition e.g. in [20]. Note that the randomness of the space-
time white noise remains in this formula. By time reversal we may consider this
expectation as the partition function for Brownian bridges which can depart at
time 0 from any location B(0) € R and must end at X at time 7', picking up the
weights of the space-time white noise ¢ on the path. Here the Wick exponential is
the weight of a path, and if we want to choose a path randomly, the normalizing
constant should be the integral of the weights over the space of all possible paths.
This is exactly what we have on the right-hand side (RHS) of (2.2.1), and this is
how one can see that this should be the scaling limit of the semi-discrete partition

function.

As long as Z; is almost surely positive, it follows from work of Miiller [21] that,
almost surely, Z(7, X) is positive for all 7" > 0 and X € R. Hence we can take its

logarithm.

Definition 2.6. For an almost surely positive Zy define the free energy for the

continuum directed random polymer with initial condition In Zo(X) as
F(T,X)=mn(2(T, X)), (2.2.2)

that is as the Hopf-Cole solution of the KPZ equation (1.2).
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Let us present now in Definition 2.7 a particular initial data which is going to
have a role later on. In fact this is the initial data that is needed to give the
scaling limit of a typical semi-discrete random polymer with log-gamma boundary
sources. However, this is not the most natural initial data. I. Corwin summarizes
the most fundamental initial data in [22] and the knowledge in connection with
their fluctuations. The initial data are given in terms of the well-posed SHE in

that work. Here we list the most essential ones.

The initial data Z(0, X) to the SHE is called the wedge initial data. The fluctu-
ation of the solution to the corresponding KPZ equation is distributed according
to Fgue on the large scale, that is according to the cumulative distribution func-
tion of the Tracy-Widom random matrix distribution for the Gaussian Unitary
Ensemble [23]. The Z(0,X) = 1 is called the flat initial data, and the fluctu-
ations’ distribution at large scale is given by Fgop, the cumulative distribution
function of the Tracy-Widom GOE (Gaussian Orthogonal Ensemble) distribution
[24]. Finally Z(0,X) = P& is called the stationary initial data. The limiting
distribution for the fluctuation is also known in this case |25]. Now let us return

to the initial data that we are working with.

Definition 2.7. Fizm >1 and M > 0. Let b= (by,...,b,) € R™ and

B = (B1,.--,0u) € (R+)M be such that b, < By for all 1 < n < m and
1 <k < M. Let By1,Bpo,...,Bym be independent Brownian motions with
drifts by, by, ..., by, and let Bg i, Bga, ..., By be independent Brownian motions
with drifts By, Ba, ..., Bu. Furthermore, let w_;; ~ —InI'(B; — b;) be indepen-
dent log-gamma variables. Let us create now the random variables Z%°(X,m) and
Z/B’b(—X, M) for all X > 0 jointly, using the above defined Brownian motions and
log-gamma variables:

Let Z%%(X,m) be the partition function from Definition 2.1, using
By1,Bya, s By and w_i; (i = 1,...,M, j = 1,...,m). Let Z°*(=X, M) be
also a semi-discrete partition function but with the following modification: in the
semi-discrete polymer with log-gamma boundary sources, the log-gamma weights
are w_;; ~ —InT(s; —t;) instead of —InT(t; —s;). Thus by creating Z°*(—X, M)

we use the Brownian motions Bg1,Bga,...,Bgn and the log-gamma variables
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woi; (i=1,....M,j=1,...,m). Now

Zb%(X,m), if X >0
ZoP(X) =4 " (X,m) / (2.2.3)
Z°0 (=X M), if X <0,

Note that taking the modification for Z%* into account, we have indeed the same
log-gamma variables for positive and negative X-s. In both cases the parameters
of the gamma distributions are in the form of 3; —b;, only the log-gamma columns

become log-gamma rows (and the rows become columns) in the modified setup.

Let us introduce here the notations Z%%(T, X) and F>#(T, X). They will denote
the partition function and free energy of the CDRP corresponding to the initial
data defined above in Definition 2.7.

2.3 Large time limit — the main result

The main theorem of this work gives the limiting distribution of the free energy
of the CDRP as time goes to infinity. The distribution function is given by a
Fredholm determinant formula whose kernel was given by Borodin and Péché in

[26]. It is referred to as Borodin-Péché distribution throughout.

Definition 2.8. Fizm > 1 and M > 0. Let b= (by,...,b,) € R™ and

B=(b1,...,Bmu) € (R+)M, and assume that
by < by <---<b, <1 <Py <--- < Buy. The Borodin-Péché distribution s
defined as

FBp7b7g(7”) = det (]l — KBP,b,B)LQ(r,oo) )

where
1 1 /3= Mw—ﬁk o 2 —b,
K =——[d d g . (2.3.1
5res(79) (27i)? /y w/F T —wew'/iun k[[l z — By g w — by, ( )

Let ¢ > 0 be arbitrary. Then -y, the integration contour for w, goes from —c — ico

to —c+ioco such that it crosses the real axis between b,, and By;. The other contour
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for z, T' goes from ¢ —ico to ¢+ ioco such that it also crosses the real axis between

by, and By and it does not intersect .

In |26] this distribution was introduced as a modification of the Airy kernel with
two sets of parameters. This is a generalization of the Airy kernel and also of
the extended (time-dependent) version of that. It was obtained as a limit of a
directed percolation in a quadrant which has both defective rows and columns.
The paper also predicts that the extended kernel should appear as a scaling limit

also in random matrix theory, however they could not derive it yet.

Let us state now Theorem 2.9, the main result of this work. It gives the large time

limit of the CDRP free energy with the initial data defined before.

Theorem 2.9. Let b = (by,...,by,) € R™ and B = (B1,...0u) € RY be real
vectors such that b; < B; for all1 < j < m and 1 < i < M. Consider the
free energy of the CDRP from Definition 2.6 with boundary perturbation In Zg’ﬁ,
where Zg”g is defined in Definition 2.7; and with drift vectors ob and of3, where
o = (2/T)Y3. Then for anyr € R,

T—o0

. FoboB(T,0) + T/24
lim P ( (T/Q)l/?’ S ’f’) == FBp’b’ﬁ(’f’), (232)

where Fppy g is the cumulative distribution function of the Borodin-Péché distri-

bution (see Definition 2.8).

So we took the solution to the KPZ equation with a particular initial data, and
the theorem claims that its fluctuation has Borodin-Péché distribution at large
scale. As mentioned above, this distribution appeared as the limit of a percolation
model which is in the KPZ universality class. Hence our theorem is in accordance

with the universality conjecture.

In the next chapter the simplest m = M = 1 case is investigated. After under-

standing this instance, we will prove Theorem 2.9.



Chapter 3

Special case with one level of

boundary perturbations

In a usual semi-discrete directed random polymer model, there are M columns of
log-gamma random variables and N independent Brownian motions with (possi-
bly) different drifts. Now we restrict ourselves to the case when there is only one

column of log-gamma variables and every drift is zero except the first one.

A similar model was investigated in [2]. The only difference between that model
and ours is the following: The former setup replaces the weight in the corner (in
(—1,1)) by zero, whereas we have a log-gamma weight there. Nevertheless we
strongly rely on that paper and use the definitions and main theorems to find the

results valid for our model.

There are two main purposes of this chapter. The first one is to give a Fredholm-
determinant formula for the Laplace transform of a particular CDRP partition
function in Theorem 3.4. The second aim is to give the large time limit of the
free energy of the same CDRP in Theorem 3.9. This is our main result and main
proof. Later, the proof of the more general statement, Theorem 2.9 will be very
similar. The partition function (or free energy) in question is the solution to the
SHE (or KPZ) with initial data Z0”(X) (or In 20" (X)) given in Definition 2.7
with m =M = 1.

15
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3.1 Initial data

So let us first determine Z0”(X) in case of m = M = 1, because it is needed
throughout this chapter. If X > 0 we need to compute Z*’(X, 1), so a partition
function of a polymer which has only one allowed up-right path. Indeed, an up-
right path in this setting starts from (—1, 1), because M = 1, and ends in (X, 1),
because m = 1, thus no upward jump is allowed. What remains is a horizontal
path, ¢ from (—1,1) to (X, 1), with one log-gamma weight w_;; ~ —InT'(5 — b)
and one Brownian increment, where the Brownian motion has drift b (let us denote

it by Bp). Looking at (2.1.1) it can be seen that
E(¢) = w_11 + By(X),

since there are no "s;" jumping points. Hence in Definition 2.1 the sums have only

one term and the integral just with respect to the counting measure, resulting
74 (X, m) = Z"°(X, 1) = ew-11+ B, (3.1.1)
If X <0, then similarly, there is only one path with energy
E(¢) = w_11 + Bs(X),

where Bj is a Brownian motion with drift 8. Again w_1; ~ —InT'(8 —b), because

of the modification in Definition 2.7. Therefore
ZP0(X, M) = ZPP (X, 1) = et BelX), (3.1.2)

Knowing all of these the continuous partition function and free energy can be
defined with the above calculated initial condition. This partition function was

investigated also in [2].

Definition 3.1. Let us denote by Z0°(T, X) the solution to the SHE (see (1.2.2))
with initial data Zo(X) = exp(B(X) + w_11), where B(X) is a two-sided Brown-
wan motion with drift B to the left of 0 and drift b to the right of 0, with 8 > b,
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and w_y1 ~ —InT(B —0b) is a log-gamma random variable.

Denote furthermore .Ff’ﬁ(T, X) the free energy for the same CDRP.

FPP(T, X) = In(ZY(T, X)) with Fo(X) = B(X) 4w,

On two-sided Brownian motion we understand the following:
B(X) =1x<o(B(X) 4 8X) + 1x50(B"(X) + bX) where B' : (—00,0] = R is a
Brownian motion without drift pinned at B'(0) = 0, and B" : [0,00) — R is an

independent Brownian motion pinned at B"(0) = 0.

Note that this definition is in accordance with (3.1.1) and (3.1.2). We also intro-

duce a notation for the semi-discrete partition function in case of m = M = 1.

Definition 3.2. Denote Z7*(1, N) the semi-discrete directed random polymer par-
tition function with the following parameters: M =1, a1 = a, a, =0 forn > 1

and o = o > a.

3.2 Fredholm determinant formula

Before stating the first important result of this chapter and giving the Fredholm
determinant formula for the Laplace transform of Zf’ﬁ , we need the kernel which
defines this Fredholm determinant. The definition is general for

by <by < - < by, <1 <Py <--- < B, however the claims of this chapter are

stated for m = M =1 (and by = b, 51 = ).

Definition 3.3. Let b=by,by,...,b,) and B = (B, B, ... Bur). Denote K\7) the

integral operator whose kernel is

Sa(z w) 2?3y M (0z — Bk i (cw —by,)
K (z dw [ dz—2" ‘
0.5 (% v Zsin (om(z — w)) ew?/3-wa kl_[l g (0z —by)
where

o= (2/T)"?, (3.2.1)
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and the integration contour for w is from —-— —ico to —— —i— ico and crosses the

real axis between 2= and 2. The other contour for zZ goes from — —i00 to 7= 4100
o o % 40 4

it also crosses the real axis between %’" and % and it does not intersect the contour

for w.

And now we provide the formula this section intends to justify.

Theorem 3.4. Fiz S with positive real part, T > 0, b < [ real numbers and
assume that X = 0. Set o as in (3.2.1). Then

E [exp (—Se%z{”ﬁ(T, 0))] = det (n ~K) (3.2.2)

’ >L2<R+>’

where Z P s the partition function for the CDRP (Definition 3.1) and Kbﬁ I8
defined above in Definition 3.35.

There are two main theorems that lead to the desired Fredholm-determinant for-
mula. The first one (Theorem 3.6) is the convergence of the semi-discrete partition
functions to the CDRP partition function. The second one (Theorem 3.8) is the
convergence of the Fredholm determinants describing the Laplace transform of the
semi-discrete partition function (from Theorem 2.3). The proof of Theorem 3.4
will be quick as soon as we go through the mentioned results. However, some

preparation is needed before stating and applying them.

3.2.1 Convergence of the semi-discrete partition function

Definition 3.5. Let U(z) = L InT(2) be the digamma function. For a given
0 € Ry, define

R(0) = W'(0), [(0):=0W'(0) —W(0), c(b):=(-V"(0)/2)")°.
We may alternatively parameterize 8 € R, in terms of k € Ry as

0. = (V) Y(k) ERy, fo:i= 1nf(/<ot —U(t) = f(bk), cn:=c(0x).
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The theorem below gives the scaling limit of the semi-discrete directed random
polymer’s partition function Zi"*(7, N) from Definition 3.2. The scaling below is
the same as the one for the O’Connel-Yor model, given in [19]:

Fix T > 0, X € R and real numbers b < 8. 7 grows as v/ N and the scaling factor

C is an exponential function of N, T" and X:
r=VTN+X (3.2.3)

1 1
C(N,T,X) =exp (N—i— §(N —1)In(T/N) + 3 (\/TN+X> +X\/N/T) .
(3.2.4)
Not only the variables of the partition function but also the parameters of the

polymer model are scaled, in the following way:
a=794+b, a=v+0, (3.2.5)

where ¥ = 0\/T/—N ~ \/N/T + 5, with Definition 3.5.

This scaling is used in the theorem and in the corollary below. Theorem 3.6,
the first important result we will employ, claims that the scaled semi-discrete
partition function converges to that of the CDRP with a particular initial data

given in Definition 3.1.

Theorem 3.6. [19/ Fix T > 0, X € R and real numbers b < . Consider the
semi-discrete directed random polymer in Definition 3.2 with partition function
Z7%(1,N). Let the a and o parameters of the polymer be defined as in (3.2.5).
The scaling factor C(N,T, X) is given by (3.2.4). Then, as N goes to infinity,

Z3° (VTN + X, N)

b,8
cNT X~ A (T, X).

The convergence 1s in distribution and Zf’ﬁ(T, X) is the solution to the SHE with
initial data exp(B(X) + w_11), see Definition 3.1.

The proof of Theorem 3.4 is basically that both sides of (3.2.2) are the limit of

E [e“ztll’a(T’N)} for some u. So let us rewrite Theorem 3.6 so that the limit is the
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exponent in (3.2.2). To do this let

1 T 1 N, T X, 6 X2
u— Se—N—§(N—1)lnW—E\/TN—X\/T-Fﬂ—?-‘rﬁ’ (3.2.6)

where S € C with positive real part. By comparing the exponents of C(N, T, X)
and u and by Theorem 3.6 it can be seen that

2
wZ3* (VTN + X, N) = Sear 2 ZM9(T, X), as N — oo (3.2.7)

holds with the scaling applied in the theorem. The following corollary shows
that this modification was useful, that is the left-hand side (LHS) of (3.2.2) can
be written as the limit of the Laplace transform of the semi-discrete partition

function.

Corollary 3.7. Fiz T > 0, X € R and real numbers b < 3. Let Z7* (7, N) and
Zi”’B(T, X) be the partition functions defined in Definition 3.2 and in Definition 3.1
respectively, and with parameters given by (3.2.5). Then for any S with positive

real part
a,a 2
E [6—uZ1 (T,N)] o E [exp (—Se);_TJr%Zf’ﬁ(T,X))] , as N — oo (3.2.8)
where T = VTN + X.

Proof. By (3.2.7) the exponent on the LHS converges in distribution to the ex-
ponent on the RHS. Our statement is true due to the equivalent definition of
convergence in distribution, Definition 1.4. Indeed, we took a bounded, continu-
ous function of uZ* (7, N):

Z4%(r,N) > 0,

since it is an integral of an exponential function, and

Reu > 0,



Special case with one level of boundary perturbations 21

because of (3.2.6) and ReS > 0. Thus e %" ("V) is hounded by 1 and the

expectation on the LHS must converge. O

3.2.2 Convergence of Fredholm determinants

With Corollary 3.7 we have seen that the LHS of (3.2.2) in Theorem 3.4 is a the
limit of the Laplace transform of Z{"“(7, N) as N goes to infinity. We will see that
the same fact can be said about the RHS of (3.2.2).

Recall the Fredholm-determinant formula (2.3) for the Laplace-transform of the
semi-discrete partition function Z{"*(7, N). Giving the limit of this formula as
N goes to infinity, yields the Fredholm-determinant formula for the continuous

partition function as well.

Theorem 3.8. [2, Thm. 6.3.] Fiz S with positive real part, T > 0, b < (3 real
numbers and assume that X = 0. Set 7, a, « and o as in (3.2.3), (3.2.5) and

in (3.2.1) respectively. Use u given in (3.2.6). Denote K, the integral operator
defined in Theorem 2.3 and Kl(:g is given in Definition 3.3. Then

lim det(1 + Ky)z2(c, ... = det(L — Ki))2m,) (3.2.9)

N—oo

where a; = max{a,0}.

Now we have everything to give a straightforward proof for Theorem 3.4. As
mentioned before, we show that both sides of (3.2.2) are the limit of the same

expectation.

Proof of Theorem 3.J. Fix S with positive real part, 7" > 0, b < (8 real numbers
and assume that X = 0. Set 7, a, a and ¢ as in (3.2.3), (3.2.5) and in (3.2.1)
respectively. Use u given in (3.2.6). Thus the conditions of Theorem 3.8 hold, just
like those of Theorem 2.3 with ¢ = 7/4. Then on the one hand,

: —uZPY(,N)Y| 1 o _ _ 1o
]\}'I—IgoE |:€ ' :| - ]\}'1—I>noo det (]l Ku)LQ(ca;aﬂrM) = det <]l Kb’ﬁ>L2(R+)
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by Theorem 2.3, by Theorem 3.8, and because a, = a for large N. On the other
hand, we know from Corollary 3.7 that

a,a 2
lim E [e-uzl WV)] —E [exp (—Se%JF%Zf’ﬁ(T,X))] .

N—oo

The two limits must be the same hence the theorem is proved. O

3.3 Large time limit

Theorem 3.9. Let b and 8 be real numbers. Consider the free energy of the CDRP
(Definition 3.1) with drift vectors ob and o3, where b < 8 and o = (2/T)Y/3. Then

for any r € R,

T—o00

, ForoP(T 0) + T/24
lim P ( 1 ((T/Q))l/?’ / < 7’) = Fpppp(r), (3.3.1)

where Fppy g is the cumulative distribution function of the BP distribution (Defi-
nition 2.8).

3.3.1 Preparation and the proof

In the course of the proof we would like to show the convergence of the Fredholm
determinants by using Lebesgue’s dominated convergence theorem. We are allowed
to apply this theorem if there is an integrable upper bound for the absolute value
of the integrand. For this aim the following results are sufficient:

Kl()aﬁ) :

e An upper bound for

Lemma 3.10. /2, Lemma B.4] Fiz b < /3 so that 5 —b < 1. There is a finite
constant C' such that for any x,y € Ry

(0) g b
|Kb,ﬁ('r7y)‘ < Cexp (—;y + ;33) ) (3.3.2)
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see KI()UB) in Definition 3.3 and o is given by (3.2.1).

e An upper bound for the determinant of a matrix in terms of the length of

its column vectors:

Lemma 3.11. Hadamard’s inequality:

Let M be the n X n matrix having column vectors v;. Then
[det(M)] < [T llvill - (3.3.3)
i=1

In particular, if the absolute value of each entry of the matrix is at most one,

the upper bound is n"/?.

Relying on these two results Proposition 3.12, i.e. the convergence of Ffredholm
determinants is shown in the next section. This is the key statement that almost

immediately implies Theorem 3.9.
Proposition 3.12.
det (1 - K.7,5) a4 (1= Kpus) oy a5 0 =0, (3.3.4)

where K,(,Ug and Kppyp g are given in Definition 3.3 and in Definition 2.8.
We also need a probability lemma to conclude the convergence in distribution at
the end of the proof.
Lemma 3.13. [1, Lemma 8.1] Consider a sequence of functions (f,),~, mapping
R — [0, 1] with the following properties:
(a) fn(x) is strictly decreasing in x, ¥n
(b) lim f,(z)=1,Vn

T——00
(c) lim f,(x) =0, Vn

T—> 00

(d) fn(x) — Lli<o, as n — oo, uniformly on R\ [=6,0], V§ > 0
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Consider a sequence of random variables X,, and a continuous probability distri-
bution function p(r). Then

lim E[f.(X, —7)]=p(r) VreR = lim P(X, <r)=p(r)

n— o0 n—oo

Putting together Proposition 3.12 and Lemma 3.13, and also choosing an appro-

priate sequence of functions, leads to the proof of Theorem 3.9.

Proof of Theorem 3.9. (Based on the proof of Corollary 1.15 in [1].)
Let 8> b, S =e7"/7, and let (O7)r>0 be a sequence of functions with

Or(z) = exp(—e™?), where o = (2/T)*?. Now observe that

ab,o
Or (Fl 6(T> 0)+7/24 _ r) — exp <_S€}'{’b’gﬁ(T,0)+T/24> _

O——l

= exp (—SeT/*2"9(T,0)) . (3.3.5)

Note furthermore, that Theorem 3.4 and Proposition3.12 apply here. Therefore,
by (3.3.5) and by Definition 2.8 we conclude that the expectation of the random
variable in question (LHS of (3.3.1)) converges to the cumulative distribution

function of the Borodin-Péché distribution, as ¢ — 0.

E

o

oboB T/24
@T<f1 (T,0) +T/24

—F [eXp(_Se}-fb,aﬂ(T,o)—irT/M)] _

= det (]l — K((j[lr))(jﬁ) — det (IL — KBp’b’ﬁ)LQ(r 0) = FBp7b7g(7”) (336)
7P L2 (Ry) ’

The conditions of Lemma 3.13 hold for fr(z) := Op(x) = exp(—e®/?),

X - FLTAT0) T2
T - -— o—1

and p(r) := Fpppg(r):

(a) O : R+ [0,1] VT, and Or(z) is strictly decreasing in x VT

(b) lim Or(x)=1,Vn

T—r—00

(¢) lim O©p(x) =0, Vn

T—00
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(d) ©r(x) — 1,<o, as T'— 00, uniformly on R\ [—-4, ], V6 > 0

In condition (d) the convergence is uniform indeed, since on R\ [—6, 0], if x > J,
then
Or(x) = exp(—€"7) < exp(—€e’/?),

which can be arbitrarily small independently of x, and if x < —¢, then

Or(z) = exp(—e"/?) > exp(—e /7),

%/ can be arbitrarily close to zero, independently of z. These are true

where e”
for any 6 > 0, as 7" — oo (and as ¢ — 0). Since Fppy(r) is continuous, and
E [O7(X7r — )] — p(r) due to (3.3.6), every condition holds for Lemma 3.13. It
claims that the distribution function of Xr converges to p(r) = Fppp (1) and this

was the statement of the theorem. O

3.3.2 Details

Proof of Proposition 3.12. First the convergence of the kernels is needed, then we
arrive to the statement of the proposition by Lebesgue’s dominated convergence

theorem.

STEP 1
Kfj{fgﬁ(x, y) = Kpppglz+ry+71), as o — 0 (3.3.7)

Proof of STEP 1:

@ (& w ”5"(’“' " e D(o(8 — 2)) Do(w ~ b))
Kotos(2:4) (2m1)? /d / sin(om(z — w)) ew’/3~wr T(g(z — b)) T(a(8 — w))

Convergence of the first factor of the integrand:
omSTEw) ot e—T(z—w)

= — ,as o0 —0
on(z —w)+o(0?) z—w+o(o) Z—w ’
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Convergence of the Gamma functions:

Thus
lim Kgb)aﬁ (z,y) =

o—0

—r( 3/3 zy —b
27“ /dw/dz fwz =Kpppplr +1,y+71),

ew3/3 wr 38—z w—>b

by Definition 2.8, and this was our claim.

Recall the definition of a Fredholm-determinant, and consider only the n-dimensional
integral part without the summation. Our next step is to show that this integral
with the scaling limit kernel converges to the integral with the Borodin-Péché

kernel.

STEP 2

lim/ . / det [Kgg)a (xz,x)]n dz; =
=0 Jp, R, boB ! i,j:lg
_ / / det [Kppp sz )], [ des (3.3.8)
T T i=1

Proof of STEP 2:

The determinant function is continuous, therefore

n

hm det [Kgb)gﬁ(xl, ;) = det [Kpppp(2i, 7))}, (3.3.9)

2,7=1

holds by (3.3.7). To interchange the limit in o and the integral, we need to find
an integrable upper bound for the determinant on the LHS.

We have an upper bound for each entry of [Kgb)aﬁ(xz,x]) i by Lemma 3.10.
Indeed, our parameters ob and o are close, o tending to zero, hence the lemma

applies. Thus the upper bound is

‘Kcrbaﬁ x y)‘ < Cexp (=py +bx), (3.3.10)
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with the conditions of Lemma 3.10. The entrywise upper bound leads to an
upper bound for the determinant by Hadamard’s inequality (Lemma 3.11). Let
us multiply the ith row in the LHS by %exp(—bxi) Vi = 1,...,n, and the jth
column by %exp(ﬂxj) Vj =1,...,n and call this matrix A, with elements A,;,

i,7 =1,...,n. Using the upper bound in (3.3.10) it follows that

eﬁr]-—bri 6B$j_bwi

|Ay| = Cetmihmi =1 (3.3.11)

<

Kgaa(% ;)

Note furthermore that the construction of A gives

det [Kg”b?aﬁ(xi, xj)Lj_l = O exp (Z z (b— 5)) det(A) (3.3.12)
J— j=1
So Lemma 3.11 and the estimation (3.3.11) give |det(A)| < n™?2, and together
with (3.3.12) this means

n

det |:K¢(7(2a,8 (JIZ', ,I']):|

‘ < C?"exp (i: x; (b— B)) n"? (3.3.13)

i1

Now the RHS is integrable, because 8 > b, hence (3.3.8) holds and STEP 2 is

done.

STEP 3

n
n

=1
lim —/ / det [K(U) Ty T ] dp(x;) =
—00 ; n! R, R, "b"’ﬁ( i) i,j=1 21:[ i)

1

[eS) 1 o o ) .
- ; E/ / det [Kppp,s(2i; 25)]; ;- dei (3.3.14)
Proof of STEP 3:

It is enough to show that after dividing by n! and integrating the upper bound,
given in STEP 2 (in (3.3.13)), the result will be summable. The summability

would imply that the sum and the limit can be interchanged.

n

1 n
(0)=— [ - [ det KD (z;, 2 dz; <
ful0) n! /R+ /R+ ¢ [ "b"’ﬁ(x 7$J)]i,j:11_‘[ T

i=1
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nn/2 n n
< C’Q”/ / exp (—(5 —b) :17) dz; =
n‘ R, R, ; J g
_ nn/2cv2n 1 |
W By

and this is summable due to D’Alambert’s ratio test:

. (n+1)"2 C22pl(8 — b)"
lim sup =
nooo (N + D)I(B = b)rtinr/2C2n-2

n/2 4

n+1 vn+1 C
= li =0 3.3.15
lgl_igp< n ) n+1 8-0b ( )

Hence, altogether we know that the sum » ° f,(0) converges uniformly, and
that f, (o) tends to the RHS of (3.3.12). Therefore the sum and the limit can be
interchanged and STEP 3 is done, implying Proposition 3.12 is proved. O



Chapter 4

(zeneral case

4.1 Large time limit

Let us return to the typical semi-discrete directed polymers with log-gamma
boundary sources. So given M columns and N rows of independent log-gamma
variables, w_; ; ~ —InT'(e; — a;) and N independent Brownian motions B; with
drifts a,. The settingis such that a; < o foralli =1,2,..., Nandj =1,2,..., M.
It is also assumed now that there are m < N Brownian motions with nonzero drifts
and (a1, as,...,ay) = (a1,a9,...,am,,0,...,0). Recall that the energy of an up-
right path in this setting was given by (2.1.1). Furthermore, the partition function
Z%% and free energy F““ of such a polymer were defined in Definition 2.1 and Def-
inition 2.2. It was mentioned that Z%% the solution to the SHE and the partition
function for the CDRP (Definition 2.5), is going to be the scaling limit of Z*.
We also gave the corresponding initial data to the SHE in Definition 2.7. This

claim is stated precisely in Theorem 4.2 is used in our discussion.

The purpose of this chapter is to prove Theorem 2.9, that is to prove that the large
time limit of the CDRP free energy is the Borodin-Péché distribution. It is the
generalization of Theorem 3.9 and its proof is pretty similar. This is the reason
for being a little bit sketchy, but, considering the previously proved statements,

correct. The corresponding statements for the m = M = 1 case are indicated

29



General case 30

in brackets at each main step. So the proof gives an outline of the proof from

Chapter 3, too.
Proof of Theorem 2.9. — Summary

1. E [exp (—Se% Z08(T, 0))] = det (n — K (Theorem 3.4)

)LQ(RH
Proof of Step 1.:

(a) % w = Z%(T, X) (Theorem 3.6) The precise statement can

be found in Theorem 4.2 below.

(b) E[ev2":M] S R [exp (-Se§+%zbﬂ(T, X))] as N — 0o
with an appropriate u. (Corollary 3.7)

Indeed, consider the statement of Corollary 3.7 with

. S (X T
= X _— _ =
CN,m, T, X) " P\aor " 24

1 T\ 1 N X* T
Sexp<—N—§(N—m)1n<N)—§<\/TN+X)—X T+ﬁ+ﬂ>'

With S having positive real part and Z**(r, N) > 0 for positive 7 and

N one can tell the same proof as for Corollary 3.7.

(C) E [e—uza,a(T,N)} = det (]]_ + Ku)LQ(Ca;a;Lp) (TheOI‘em 23)
This is a general statement. It was not specified for m = M = 1.

() lim det(L+Ky)rae,, .00 = dot(L — Ki3) 2, ), (Theorem 3.8)
Theorem 3.8 was cited from [2], where it was stated for 5 and b being real
numbers and not vectors. However, with minor technical modifications

the proof can be performed for the general case as well. Thus one can

state Theorem 3.8 also for a, o, b and 8 vectors used in this chapter.

Statement (b) is a corollary of (a). Then Putting together (b), (c) and (d),

Step 1. is done by the same argument as the one for Theorem 3.4. Thus
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we gained a Fredholm determinant formula for the Laplace transform of the

continuous partition function.

2. det <]l - K((;Bgﬁ — det (1 — KBp,b,g)LQ(mo) , as 0 — 0 (Proposition 3.12)

)LQ(RH
Proof of Step 2.:

(a) Kﬁ?gﬁ(x,y) — Kpppg(x +r,y+71), as o — 0 (Eq. 3.3.7)

We have totally the same limit as in (3.3.7) with more factors.

(b) \KI()UB) (7,y)| < Cexp (=2y + b=z), (Lemma 3.10)
Assume here that by < by < -+ < b, < [y < fo--- < [y Again,
Lemma 3.10 was cited from |2, Lemma B.4|, where it was stated for
£ and b being real numbers and not vectors. Now by,...,b,_1 and
Ba, ..., B are on the appropriate sides of b,, and [, thus one can give
basically the same reasoning as in [2|. The precise statement for this

case can be found below in Lemma 4.1.

(c) Hadamard bound (Lemma 3.11) and Lebesgue

Having the same upper bound for the kernel, one can apply the Hadamard
bound and Lebesgue’s dominated convergence theorem, and get a summable

sequence in the same way as in the proof of Proposition 3.12.

Hence the proof of Step 2, that is the proof of the Fredholm determinants’

convergence, is done.

oboB(T T/24
3. lim P (J: ((T/’QO))IZ / < 7’) = Fppp3(r) (Theorem 3.9)

Proof of Step 3, i.e. of Theorem 2.9:
With S =e7"/7, 0 = (2/T)"? and Or(x) = exp(e™"/7), Step 1. and Step 2.

imply

oboB (T T/24 b0
]E |:@T <.F ( 70) + / _ T):| — ]E [exp(—Se}- b, B(T,O)+T/24)

0——1

_ _1<clo) _ _
= det <]l Kgb’gﬁ)L2(R+) — det (IL KBP7b75>L2(r,oo) = FBp’b’ﬁ(’f’) as 0 — 0.

Then by Lemma 3.13 Step 3. immediately follows with the same reasoning

as in Theorem 3.9.
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Now let us state the lemma we referred to in Step 2.(b).

Lemma 4.1. [2, Lemma B.j] Fiz by <by < -+ <b,, <y < [y < P so that
Bi—bj <1 foranyl <i< M and1 < j <m. Then there is a finite constant C

such that for any x,y € R,y
ag bm
\KIE’)(:E,y)\ < Cexp (——ily + - 93) ) (4.1.1)

see K,(fg in Definition 3.3 and o is given by (3.2.1).

4.2 Scaling limit

The only statement that is still needed to make complete the proof of Theorem 2.9
is the one that determines the scaling limit of the semi-discrete partition function
Z%“. First we make clear the scaling of the semi-discrete polymer’s parameters

similarly to the m = M =1 case.

Fix T > 0, X € R and real vectors b = (by,...,by,0,...,0) € RY and
B =(b1,...0mu) € R_]\f. Recall the definition of 6,, from Definition 3.5. Now let a
and « be scaled in the following way:

a; = ’L9+bj, j:1,2,...,N

(4.2.1)
oy = ’(9+5Z, i:1,2,...,M

where ¥ = 6\/T/—N ~ /N/T + % Now before defining the scaling factor and stat-
ing the theorem, we give a heuristic explanation for the order of magnitude of the
scaling factor. It shows that the scaling factor indicates the relation between Z*“

and (the also semi-discrete) Z°.

Let Bi,..., By be independent Brownian motions with drifts aq,...,ay respec-

tively and let BM ... BN) be independent standard Brownian motions. Let
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w_;; ~—Inl(a; —a;), and let 7 = vV NT + X. Then by (2.1.1)

E(ava)(qﬁ) = Z W+ Z W—jj + Bn(sn)

i<m i>m

+(Bns1(Sn41) = Bnga(sn)) + .. + (By(7) = By(sn-1)) =

= Z w—iJ —+ Z w_i,j + B(”)(sn)
(—i,5) €0t (—i,5)ep?
i<m ji>m

+(B™ D (s,11) = B™(s,)) + ...+ (BN (1) — BN (sn_1))
+bn$n + bn-i—l(sn-‘rl - Sn) + ... bm(sm - Sm—l)
+9(Sp+ Snp1—Sp+ ...+ T — Sy_1) -

Now for j < m it is true that w_; ; ~ —InT'(5; — b;), because §; — b; = a; — a;.
We also know w_; ; ~ —In['(ey) for j > m, because a; = 0 for j > m. But
then w_; ; >~ —1In \/g, if NV is large, because of the definition of o. Furthermore,
the standard Brownian motion terms, and the terms with coefficients by (k =
n,...,m) give together the sum of the increments of Brownian motions with drifts
b, ...by,0...0. Finally the last term is just ¥7 = 9(v/TN + X) which can be
factored out of the integral and sums defining the semi-discrete partition function.
Let us denote informally by £ that the order of magnitude of the LHS and of the

RHS is the same in distribution. Then by the argument above, we have

Z00 <\/TN +X, N) L

exp ((N—m) <—1n (@)) + <\/ﬁ—|—X>> A <\/ﬁ+X,N)

and thus the scaling constant should be

C(N,m,T,X) = exp ((N—m) (—ln (\/?)) +19<\/ﬁ+X)> -

exp (%(N—m) In (%) +N+% <\/ﬁ+X> +X\/¥> . (4.2.2)
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Now we state the theorem which was needed to prove Step 1 in the proof of
Theorem 2.9. The initial condition is the one given in Definition 2.7, so here can

be seen the importance of that pretty special construction.

Theorem 4.2. [19] Fiz T > 0, X € R and real vectors

b= (b,....,bn) € R™ and B = (B1,...Pu) € RY such that b; < B; for all
1<j<mand1 <i< M. Consider the semi-discrete directed random polymer
with parameters a and o defined in (4.2.1) (let by = -+ - = by = 0 at this point)
and with partition function Z*(t,N) form Definition 2.1. The scaling factor
C(N,m, T, X) is given by (4.2.2). Then, as N goes to infinity,

Z+*(VTN + X, N)

Z88(T X).
cNmTx) 2T

The convergence is in distribution and Z%°(T, X) is the solution to the SHE with
initial data Z0°(X), see Definition 2.7.

4.3 Conclusion

Semi-discrete and continuum directed random polymer models were investigated.
We summarized many important known results in the course of our discussion. A
special initial condition was made clear which was needed to the scaling limit of the
semi-discrete partition function. We gave a Fredholm determinant formula for the
Laplace transform of the continuous partition function (which is also a Fredholm
determinant formula for a double exponential expression of the KPZ solution free
energy). With the help of this formula, we found the limiting distribution of the
free energy fluctuations at large scale. In other words, we determined the large
time limit behavior of the Hopf-Cole solution of the KPZ equation for a particular
initial data. The limiting distribution was the Borodin-Péché distribution, which
was given by a generalized Airy kernel and which was derived as a scaling limit
of a last passage percolation model. Since the scaling factor was T3 and due
to the above properties of the Borodin-Péché distribution, our statement was in

accordance with the KPZ universality conjecture.
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