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Introdution

Statistial physis

A polymer is a large moleule, or maromoleule, omposed of many repeated

subunits. The problem of modeling polymers' formation and long time behavior

beame popular among physiists and mathematiians due to their ruial impor-

tane in hemistry, biology and physis. Tools of statistial physis and probability

are well-suited for onstruting and analyzing polymer models. This work is based

on two reent artiles [1℄ and [2℄ that investigate suh models. A statistial physial

introdution from [3℄ explains what a partition funtion is whih we are interested

in this work.

Aording to statistial mehanis, the probability that a system in thermal equi-

librium oupies a state with the energy E is proportional to its Boltzmann weight

e
E

kBT
, where T is the absolute temperature and kB is the Boltzmann onstant. L.

Boltzmann onsidered a gas of idential moleules whih exhange energy upon

olliding but otherwise are independent of eah other. An individual moleule of

suh a gas does not have a onstant veloity, so that no exat statement an be

made onerning its state at a partiular time. However, when the gas omes to

equilibrium at some �xed temperature, one an make preditions about the aver-

age fration of moleules whih are in a given state. These average frations are

equivalent to probabilities and therefore the probability distribution for a moleule

over its possible states an be introdued. Let the set of energies available to eah

moleule be denoted by {ǫl}. The probability, Pl, of �nding a moleule in the state

iii



Introdution iv

l with the energy ǫl is

Pl =
exp(−ǫl/(kBT ))

∑

m exp(−ǫm/(kBT ))
.

This is alled the Boltzmann distribution.

J.W. Gibbs introdued the onept of an ensemble, whih is de�ned as a set of

a very large number of systems, all dynamially idential with the system under

onsideration. The ensemble, also alled the anonial ensemble, desribes a sys-

tem whih is not isolated but whih is in thermal ontat with a heat reservoir.

Sine the system exhanges energy with the heat reservoir, the energy of the sys-

tem is not onstant and an be desribed by a probability distribution. Gibbs

proved that the Boltzmann distribution holds not only for a moleule, but also for

a system in thermal equilibrium. The probability P (El) of �nding a system in a

given energy El is

P (El) =
exp(−El/(kBT ))
∑

l exp(−El/(kBT ))
, (0.0.1)

and the sum in the denominator is alled partition funtion.

Now let us return to polymers and onsider only one partile moving between two

points in a random environment. Also, let us restrit ourself to a model where the

partile an only move from the initial point towards the target point. In this ase

we talk about direted polymers. Assume that the starting point is (0, 1) and the

endpoint is (τ, N) (N ∈ N, τ ∈ R+) on the plane with ontinuous horizontal and

disrete vertial oordinates. Then a direted path should be an up-right path, as

the partile an move only towards the target point. Furthermore, suh a path is

semi-disrete, beause of the setup of the oordinate system. More exatly, a path

is a union of horizontal line segments and looks like a simple funtion on (0, τ)

mapping to {1, 2, . . .N}, jumping (almost) always +1 at a jumping point. See

Setion 2.1.1 and Figure 2.1 for more preise desription of semi-disrete up-right

paths.

To a semi-disrete up-right path π one an assign an energy E(π), and here we

onnet to the Boltzmann- and Gibbs measures. We would like to hoose a path

randomly, so we need a probability measure. In aordane with (0.0.1) we assign
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to π a Boltzmann weight e−βE(π)
, and its density will be

dµ(π) =
e−βE(π)

∫

dπe−βE(π)
dπ =

e−βE(π)

Z(β)
dπ,

where β is the inverse temperature multiplied by the Boltzmann weight, and Z(β)

is the partition funtion of the direted polymer and the integration goes over the

spae of all possible paths. If β = 0, this is just a uniform hoie. It is alled the

ground state, if β = ∞, and in this ase all the weight is divided among the paths

that minimize the energy funtion, so it models the priniple of minimum energy.

The reason of the great interest is the relation to KPZ equation (1.2). This equa-

tion is a non-linear stohasti partial di�erential equation (PDE) and it is not well

posed, meaning that we a priori do not know about the regularity of its solution

beause of the non-linear term. However, the Hopf-Cole solution formally solves

the equation in the following way: Consider the solution to the stohasti heat

equation (SHE) (De�nition 2.7). Take its logarithm (it exists) and apply It�'s

formula for that. Then it turns out that the logarithm of the solution to the SHE

is formally the solution to the KPZ equation. Due to regularity problems we do

not know if this solution exists for an arbitrary initial ondition. However Martin

Hairer's work [4℄ in this area was awarded the Fields medal in 2014. In our work

the partition funtion of a ontinuum direted random polymer is the solution to

the SHE with initial data Z0(X). Furthermore, the free energy is given by the

Hopf-Cole solution to the KPZ equation with initial data ln(Z0(X)). So the free

energy is simply the logarithm of the partition funtion and so we work with them

and with the SHE and KPZ equations interhangeably.

As the solution of the KPZ equation is investigated in this work, it is also related

to the KPZ universality lass. The KPZ universality lass was introdued in the

ontext of studying the motion of growing interfaes in a 1986 paper of Kardar,

Parisi and Zhang [5℄ whih has sine been ited thousands of times in both the

mathematis and physis literature. The work was based on studying a ontinuum

stohastially growing height funtion given in terms of a stohasti PDE whih

is now known as the KPZ equation. The time derivative of the height funtion



Introdution vi

depends on three fators: smoothing (the Laplaian), rotationally invariant, slope

dependent, growth speed (the square of the gradient), noise (spae-time white

noise). A growth model is onsidered to be in the KPZ universality lass if its

long time behavior is similar to that of the KPZ equation itself. There are dis-

rete mathematial models that share the three haraterizing properties of the

universality lass and that are expeted to be in this lass. Aording to the KPZ

universality onjeture these models have similar �utuation and statistis prop-

erties. For some of them it was shown that their long time behavior is indeed

similar to that of the KPZ equation, with ertain initial data. Suh a model is e.g.

the model for interating partile systems and simple exlusion proesses [6℄.

The polymer model we are working with is of ourse also expeted to be in the

universality lass, sine in our ase the polymer's free energy is the solution to the

KPZ equation itself. The KPZ universality onjeture says that the saling fator

T 1/3
for the �utuation and the limiting �utuation statistis (in our ase the

Borodin-Péhé distribution from De�nition 2.8) should not depend on the details

of the model.

Direted polymers

Let us give an outline, that mentions di�erent types of polymer models, and some

results showing what is known in this area. The importane of this topi lies

in the relation between direted random polymers and the Kardar-Parisi-Zhang

(KPZ) equation and universality lass. An important progress was possible thanks

to the existene of models with exat solvability properties, that is models for

whih, exat omputations are possible. (E.g. giving a Fredholm-determinant

formula for the partition funtion as one an see it later.) Properties that might

make exat alulations possible are e.g. the exatly known stationary measure,

the existene of ombinatorial orrespondene (Robinson-Shensted-Knuth (RSK)

orrespondene and geometri RSK (gRSK) orrespondene) or the Bethe ansatz
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integrability. A reent artile [7℄ summarizes the main results in onnetion with

direted polymers and their exat solvability. Some of them are listed here.

The �rst disovered exatly solvable model of direted polymers on the square

lattie at �nite temperature was the Log-Gamma polymer. It was introdued be-

ause of the possibility of writing down exatly its stationary measure [8℄. It was

later shown that the model is exatly solvable using the gRSK orrespondene [9℄.

The Strit-Weak polymer, introdued shortly after, also enjoys these two proper-

ties [10℄, that is its stationary measure is known and the gRSK orrespondene

is appliable. The third exat solvability property, namely the Bethe ansatz in-

tegrability has been shown for the reently disovered Beta [11℄ and Inverse-Beta

polymers [12℄ (and a work on the stationary measure of the Beta polymer is ur-

rently in preparation [13℄). Present work is about the O'Connel-Yor semi-disrete

direted polymer and about the ontinuum direted random polymer (CDRP).

Exat solvability properties have been published also about these models. The

stationary measure of the O'Connell-Yor semi-disrete direted polymer is known

[14℄ and it is solvable using the gRSK orrespondene [15℄. Furthermore, the

ontinuum direted random polymer has an exatly known stationary measure:

starting from an initial ondition suh that the free energy of the direted polymer

performs a Brownian motion, it remains so at all times [16℄.

Considering models with exat solvable properties, the following topi is of great

interest: the exat distribution of the �utuations of the free energy at large

sale. This is in fat the question we investigate in this work. In the literature this

problem is approahed with the RSK/gRSK orrespondene [17℄ and also with the

Bethe ansatz integrability [11℄. However our investigation relies on earlier results

for slightly di�erent models that an be validated for our ase. So the already

existing exat omputations in this area gave the motivation and the ideas for our

work.

Now let us turn to the model we are working with. Our main fous is on the

large time behavior of the free energy of a ontinuum direted random polymer.

This CDRP is the saling limit of a semi-disrete polymer, investigated in [2℄. The
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semi-disrete model is a mixture of the O'Connel-Yor semi-disrete and the Log-

Gamma disrete direted random polymers. Our disussion relies on the results

of [2℄ and [1℄.

In [1℄ the O'Connel-Yor model was onsidered without the log-gamma weights.

The large time limit of the free energy was determined in this ase. In [2℄ a Fred-

holm determinant formula was given for the Laplae transform of the partition

funtion of the above mentioned mixture of polymers. Then the model was re-

strited to the ase when there is only one level of perturbation (one olumn of

log-gamma variables and one Brownian motion with nonzero drift). Also it was

modi�ed suh that the log-gamma weight in the orner (whih explodes in the

limit that approahes the stationary solution) was replaed by zero. In this set-

ting another Fredholm determinant formula was given for the Laplae transform

of the ontinuous partition funtion.

Present work proves similar statements for the general semi-disrete direted poly-

mer model with log-gamma boundary soures (it was alled mixture of polymers

above). We give a Fredholm determinant formula for the Laplae transform of the

ontinuous partition funtion (using e.g. the formula for the semi-disrete one,

given in [2℄). Furthermore, our main purpose is to give the distribution of the

�utuations of the free energy at large sale. First a restrition will be made for

the ase with one level of boundary perturbation, just as it was in [2℄. Then we

extend to the general ase using similar ideas.

Let us give now a short outline of our work. In Chapter 1 we make lear the mathe-

matial onepts that are onstantly used throughout, inluding integral operators,

Fredholm determinants, the KPZ equation and the stohasti heat equation, and

we reall the de�nition of onvergene in distribution and Lebesgue's dominated

onvergene theorem.

We introdue the semi-disrete direted random polymer model in Chapter 2. The

semi-disrete and ontinuous partition funtions and free energies are de�ned here.

Besides these, we introdue a speial initial data for the stohasti heat equation,
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whih has an important role later on. Our main result, Theorem 2.9 is also stated

in this hapter.

In Chapter 3 we restrit ourself to the ase when there is only one level of per-

turbations. For this ase we �rst determine a Fredholm determinant formula for

the Laplae transform of the ontinuous partition funtion in Theorem 3.4. Then

Theorem 3.9, the speial ase of Theorem 2.9 is proved. Finally we extend this

proof to the general ase in Chapter 4.



Chapter 1

Preliminaries

In this hapter we would like to make lear the mathematial onepts we are

working with throughout this work. These are the notions of pure funtional

analysis, probability and stohastis. Polymer models are explained in the next

hapter.

1.1 Integral operators and Fredholm determinants

An important result of this work is that we give a Fredholm determinant formula

for the Laplae transform of the ontinuum direted random polymer's partition

funtion. Before introduing the notion for a Fredholm determinant, integral op-

erators need to be de�ned.

De�nition 1.1. [18℄ An integral operator is a map f 7→ Af where the law of the

orrespondene A is given by the integral

Af(t) =

∫

D

G(t, τ, f(τ))dτ, t ∈ D (1.1.1)

where D is a given measurable set of �nite Lebesgue measure in a �nite dimensional

spae and G(t, τ, u), t, τ ∈ D, −∞ < u < ∞, is a given measurable funtion. It is

assumed that G and f are funtions satisfying onditions that ensure the existene

1



Preliminaries 2

of the integral in (1.1.1). If G(t, τ, u) is a non-linear funtion in u, then we have

a non-linear integral operator. If G(t, τ, u) = K(t, τ)u, then (1.1.1) takes the form

Af(t) =

∫

D

K(t, τ)f(τ)dτ, t ∈ D, (1.1.2)

the generated operator is alled a linear integral operator and the funtion K is

alled its kernel.

Now we an turn to the Fredholm determinants. This is how one an ompute the

determinant of an operator. In our ase the operator is always a linear integral

operator, so we write down the de�nition for this ase.

De�nition 1.2. Fredholm-determinant [2℄:

Fix a Hilbert spae L2(X, µ) where X is a measure spae and µ is a measure

on X. Let K be an integral operator ating on f(·) ∈ L2(X) by Kf(x) =
∫

X
K(x, y)f(y) dµ(y), where K(x, y) is the kernel of K and we will assume through-

out that K(x, y) is ontinuous in both x and y. Assuming its onvergene, the

Fredholm determinant expansion of 1+K is de�ned as

det(1+K)L2(X) = 1 +
∞
∑

n=1

1

n!

∫

X

· · ·
∫

X

det [K(xi, xj)]
n
i,j=1

n
∏

i=1

dµ(xi).

Now let us give an example for an important integral kernel, and for the Fredholm

determinant it de�nes. The Airy funtion Ai(x) is the solution of the Airy equation

y′′ = xy. It has an integral representation on the omplex plane:

Ai(z) :=
1

2πi

∞e
π
3 i

∫

∞e−
π
3 i

e
t3

3
−tzdt. (1.1.3)

and the Airy kernel is given by

KAi(x, y) :=

∞
∫

0

Ai(x+ λ)Ai(y + λ)dλ. (1.1.4)
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The Fredholm determinant, this kernel de�nes, is the distribution funtion of the

Tray-Widom distribution. It is the limiting distribution of the largest eigenvalue

of a random matrix from the Gaussian Unitary Ensemble (GUE). Let A denote

the integral operator given by the Airy kernel KAi. Then the distribution funtion

FGUE of the Tray-Widom distribution an be written as the following Fredholm

determinant:

FGUE(r) = det (1− A)L2(r,∞) , r ∈ R (1.1.5)

Beyond that this is an important example in general, it is also signi�ant for us.

We de�ne the Borodin-Péhé distribution later on. Its distribution funtion is also

given by a Fredholm determinant, in fat, its kernel is a generalized Airy kernel.

Furthermore, the Borodin-Péhé distribution is related to random matrix theory.

In Chapter 2 we mention the role of the Tray-Widom distribution in the KPZ

universality lasses, whih the Borodin-Péhé distribution also has, being the large

time limiting statistis for the free energy �utuation.

1.2 Kardar-Parisi-Zhang (KPZ) equation

As we mentioned in the introdution Kardar, Parisi and Zhang proposed the

stohasti evolution equation for a height funtion F(T,X) ∈ R (T ∈ R+ is

time and X ∈ R is spae)

∂tF(T,X) =
1

2
∂2
XF(T,X) +

1

2
(∂XF(T,X))2 + ξ(T,X), F(0, X) = F0(X),

(1.2.1)

where ξ denotes the spae-time Gaussian white noise with

E [ξ(T,X)ξ(S, Y )] = δ(T − S)δ(X − Y ). It an also be found in the introdution

that this stohasti partial di�erential equation is ill-posed. However one an give

a formal solution indiretly via the well-posed stohasti heat equation (SHE):

∂TZ(T,X) = 1
2
∂2
XZ(T,X) + Z(T,X)ξ(T,X), Z(0, X) = Z0(X). (1.2.2)
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Now the Hopf-Cole solution to the KPZ equation is de�ned as

F(T,X) = lnZ(T,X), F(0, X) = lnZ(0, X), (1.2.3)

where Z(T,X) is the solution to the SHE. In the ontinuum direted random

polymer model we are going to investigate, Z(T,X) is the partition funtion and

F(T,X) is the free energy. It is going to be explained in Chapter 2, why Z an

be alled a partition funtion.

1.3 Convergenes

Convergene in distribution and the interhangeability of the integral and the

limit will be essential in our disussion. For instane, in our main statement The-

orem 2.9 we need to prove a onvergene in distribution. Furthermore, by proving

onvergene of Fredholm determinants we need nothing else but upper bounds and

Lebesgue's dominated onvergene theorem. So let us reall the de�nition and the

theorem.

De�nition 1.3. A sequene X1, X2, . . . of random variables is said to onverge in

distribution to a random variable X, if

lim
n→∞

Fn(x) = F (x), ∀x ∈ R,

where Fn and F are the umulative distribution funtions of Xn and X respetively.

Convergene in distribution an be de�ned equivalently by terms of expetations

in the following way:

De�nition 1.4. A sequene X1, X2, . . . of random variables onverges in distri-

bution to a random variable X if and only if

lim
n→∞

E [f(Xn)] = E [f(X)] ,

for any bounded, ontinuous funtion f .



Preliminaries 5

Theorem 1.5 (Lebesgue dominated onvergene theorem). Let {fn} be a sequene
of real-valued measurable funtions on a measure spae (S,A, µ). Suppose that the

sequene onverges pointwise to a funtion f and is dominated by some integrable

funtion g in the sense that |fn(x)| ≤ g(x) for all n in the index set and for all

x ∈ S. Then f is integrable and

lim
n→∞

∫

S

fndµ =

∫

S

fdµ

, moreover,

lim
n→∞

∫

S

|fn − f |dµ = 0.



Chapter 2

Direted random polymer models

2.1 Semi-disrete direted random polymer with

boundary soures

The basi setup presented here is the same as the one published in [2℄. However the

main results are valid for a slightly di�erent model. Let us see �rst the desription

of the model from [2℄.

2.1.1 Semi-disrete up-right paths

This model is a mixture of models introdued by O'Connell and Yor [14, 15℄ and

Seppäläinen [8℄. Indeed, taking M = 0 and τ > 0 reovers the semi-disrete

direted random polymer of [15℄ while taking M > 0 and τ = 0 reovers the

log-gamma disrete direted random polymer of [8℄.

For θ > 0, a random variable X is distributed as Γ(θ) (written X ∼ Γ(θ)) if it has

density with respet to Lebesgue measure given by

d

dx
P(X ≤ x) = 1{x>0}

1

Γ(θ)
x−θ−1e−x

6
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PSfrag replaements

ω−1,1ω−2,1ω−M,1

ω−1,Nω−2,Nω−M,N (τ, N)

B1

B2

B3

BN

s2 s3 sN−1 τ

φ

Figure 2.1: Illustration of the semi-disrete direted random polymer with

log-gamma boundary soures. The thik solid line is a possible direted random

polymer path φ from (−M, 1) to (τ,N). Its energy is given by (2.1.1). The

random variables ω−k,n are distributed as − ln Γ(αk − an), while the Brownian

motions B1, . . . , BN have drifts a1, . . . , aN respetively.

and a random variableW is distributed as − ln Γ(θ) (writtenW ∼ − ln Γ(θ), alled

log-gamma random variable) if W = − lnX for X ∼ Γ(θ).

FixN ≥ 1 andM ≥ 0. Let a = (a1, . . . , aN ) ∈ RN
and α = (α1, . . . , αM) ∈

(

R+

)M

be suh that αk − an > 0 for all 1 ≤ n ≤ N and 1 ≤ k ≤ M . Consider the setting

as in Figure 2.1, where the horizontal axis is disrete on the left of 0 and ontinuous

on the right of 0, while the vertial axis is disrete. In this semi-disrete setting

we introdue randomness in the following way. For all 1 ≤ k ≤ M and 1 ≤ n ≤ N

let ω−k,n ∼ − ln Γ(αk − an) be independent log-gamma random variables spei�ed

by the parameters a, α; and for all 1 ≤ n ≤ N let Bn be independent Brownian

motions with drift an. The ω−k,n an be thought of as sitting at the lattie points

(−k, n) while the Bn an be thought of as sitting along the horizontal rays from

(0, n). We denote by P and E the probability measure and expetation with respet

to these random variables.

A disrete up-right path φd
from (i1, j1) to (iℓ, jℓ) (written as φ

d : (i1, j1) ր (iℓ, jℓ))

is an ordered set of points

(

(i1, j1), (i2, j2), . . . , (iℓ, jℓ)
)

with eah (ik, jk) ∈ Z2
and

eah inrement (ik, jk) − (ik−1, jk−1) either (1, 0) or (0, 1). A semi-disrete up-

right path φsd
from (0, n) to (τ, N) (written as φsd : (0, n) ր (τ, N)) is a union

of horizontal line segments

(

(0, n) → (sn, n)
)

∪
(

(sn, n + 1) → (sn+1, n + 1)
)

∪
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· · ·
(

(sN−1, N) → (τ, N)
)

where 0 ≤ sn < sn+1 < · · · < sN−1 ≤ τ . It is onvenient

to think of φsd
as a surjetive non-dereasing funtion from [0, τ ] onto {n, . . . , N}.

As we are working with a mixture of a disrete and semi-disrete lattie, our up-

right paths φ will be omposed of disrete portions φd
adjoined to a semi-disrete

portions φsd
in suh a way that for some 1 ≤ n ≤ N , φd : (−M, 1) ր (−1, n) and

φsd : (0, n) ր (τ, N).

2.1.2 Energy and partition funtion

To an up-right path, desribed above, we assoiate an energy:

E(φ) =
∑

(i,j)∈φd

ωi,j +

∫ τ

0

dBφsd(s)(s)

=
∑

(i,j)∈φd

ωi,j +Bn(sn)+

+
(

Bn+1(sn+1)− Bn+1(sn)
)

+ . . .+
(

BN(τ)−BN (sN−1)
)

.

(2.1.1)

This energy is random, as it is a funtion of the ωi,j and Bk random variables.

We assoiate a Boltzmann weight eE(φ)
to eah path φ. The polymer measure on

φ is proportional to this weight. The normalizing onstant, or polymer partition

funtion, is written as Z
a,α(τ, N) and is equal to the integral of the Boltzmann

weight over the bakground measure on the path spae φ. Here a and α denote

the drift vetor and the parameters of the log-gamma random variables. Formally

it an be written as in the de�nition below.

De�nition 2.1. The partition funtion for the semi-disrete direted random poly-

mer with log-gamma boundary soures is given as

Z
a,α(τ, N) =

N
∑

n=1

∑

φd:(−M,1)ր(−1,n)

∫

φsd:(0,n)ր(τ,N)

eE(φ)dφsd

where E(φ) is given by (2.1.1), the dependene on a and α is desribed in Se-

tion 2.1.1 and dφsd
represents the Lebesgue measure on the simplex
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0 ≤ sn < sn+1 < · · · < sN−1 ≤ τ with whih φsd
is identi�ed. If n = N , take the

ounting measure (beause there is only one possible φsd
path).

The other important quantity beside Z
a,α(τ, N) is its logarithm whih is alled the

free energy:

De�nition 2.2.

F
a,α(τ, N) = ln (Za,α(τ, N)) (2.1.2)

In order to see new results the following Fredholm determinant formula, provided

in [2℄, is a key. The ondition N ≥ 9 was a tehnial detail needed in the proof

of this formula. However, this ondition has no meaningful role, as N is sent to

in�nity in our further disussion .

Theorem 2.3. [2, Thm. 2.1℄ Fix N ≥ 9, M ≥ 0 and τ > 0. Let

a = (a1, . . . , aN) ∈ R
N

and α = (α1, . . . , αM) ∈
(

R+

)M
be suh that αk − an > 0

for all 1 ≤ n ≤ N and 1 ≤ k ≤ M . For 1 ≤ k ≤ M and 1 ≤ n ≤ N let

ω−k,n ∼ − ln Γ(αk − an) be independent log-gamma random variables and for all

1 ≤ n ≤ N let Bn be independent Brownian motions with drift an. Then for all

u ∈ C with positive real part

E
[

e−uZa,α(τ,N)
]

= det (1+Ku)L2(Ca;α;ϕ)

where the operator Ku is de�ned in terms of its integral kernel

Ku(v, v
′) =

=
1

2πi

∫

Dv

dsΓ(−s)Γ(1 + s)

N
∏

n=1

Γ(v − an)

Γ(s+ v − an)

M
∏

k=1

Γ(αk − v − s)

Γ(αk − v)

usevτs+τs2/2

v + s− v′
.

The ontour Ca;α;ϕ is given in De�nition 2.4 with any ϕ ∈ (0, π/4), as is the

ontour Dv. The meaning of det (1+Ku)L2(Ca;α;ϕ)
is explained in Defnition 1.2.

The ontours in Theorem 2.3 are de�ned suh that they do not interset the

singularities and that the deay is fast enough for the integral to be onvergent.
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PSfrag replaements

Ca;α;ϕ v +Dv Dv

µ η

v
R

2dα'sa's 0
ϕ

Figure 2.2: (Left) The ontour Cη;ϕ (dashed) where the blak dots symbolize

the set of singularities of Ku(v, v
′) in v at ∪1≤n≤N{an, an − 1, . . . } oming from

the fators Γ(v− an). The ontour v+Dv is the solid line. (Right) The ontour

Dv where the light gray dots are the singularities at {1, 2, . . . } and the dark gray

dots are those at ∪1≤m≤M{αm− v, αm+1− v, . . . } oming from Γ(αm − v − s).

De�nition 2.4. Let a = (a1, . . . , aN) ∈ RN
and α = (α1, . . . , αM) ∈

(

R>0

)M

be suh that αm − an > 0 for all 1 ≤ n ≤ N and 1 ≤ m ≤ M . Set µ =

1
2
max(a) + 1

2
min(α) and η = 1

4
max(a) + 3

4
min(α). Then, for all ϕ ∈ (0, π/4),

we de�ne the ontour Ca;α;ϕ = {µ+ ei(π+ϕ)y}y∈R+ ∪ {µ+ ei(π−ϕ)y}y∈R+. The on-

tours are oriented so as to have inreasing imaginary part. For every v ∈ Ca;α;ϕ
we hoose R = −Re(v) + η, d > 0, and de�ne a ontour Dv as follows: Dv goes

by straight lines from R − i∞, to R − id, to 1/2 − id, to 1/2 + id, to R + id, to

R+ i∞. The parameter d is taken small enough so that v +Dv does not interset

Ca;α;ϕ. See Figure 2.2 for an illustration.

2.2 Continuum direted random polymer (CDRP)

The saling limit of a semi-disrete partition funtion (or free energy) is the so-

lution to the SHE, see (1.2.2) (or to the KPZ equation, (1.2)) with a partiular

initial data. This is the statement of Theorem 3.6 and more generally Theorem 4.2.

The de�nitions of the partition funtion and free energy for the CDRP are de�ned

based on this fat.

De�nition 2.5. The partition funtion Z(T,X) for the ontinuum direted ran-

dom polymer with boundary perturbation lnZ0(X) is given by the solution to the



Direted random polymer models 11

stohasti heat equation (SHE, (1.2.2)) with multipliative Gaussian spae-time

white noise and Z0(X) initial data. The initial data Z0(X) may be random but is

assumed to be independent of the spae-time white noise.

Now we explain why Z(T,X) is indeed a partition funtion, based on [1℄. This

an be seen by looking at the Feynman-Ka representation of Z(T,X) [20℄:

Z(T,X) = EB(X)

[

Z0(B(0)) : exp :

{
∫ T

0

ξ(t, B(t))dt

}]

, (2.2.1)

where the expetation E is taken over the law of a Brownian motion B whih

is running bakwards from time T and position X . The : exp : is the Wik

exponential, see the de�nition e.g. in [20℄. Note that the randomness of the spae-

time white noise remains in this formula. By time reversal we may onsider this

expetation as the partition funtion for Brownian bridges whih an depart at

time 0 from any loation B(0) ∈ R and must end at X at time T , piking up the

weights of the spae-time white noise ξ on the path. Here the Wik exponential is

the weight of a path, and if we want to hoose a path randomly, the normalizing

onstant should be the integral of the weights over the spae of all possible paths.

This is exatly what we have on the right-hand side (RHS) of (2.2.1), and this is

how one an see that this should be the saling limit of the semi-disrete partition

funtion.

As long as Z0 is almost surely positive, it follows from work of Müller [21℄ that,

almost surely, Z(T,X) is positive for all T > 0 and X ∈ R. Hene we an take its

logarithm.

De�nition 2.6. For an almost surely positive Z0 de�ne the free energy for the

ontinuum direted random polymer with initial ondition lnZ0(X) as

F(T,X) = ln (Z(T,X)) , (2.2.2)

that is as the Hopf-Cole solution of the KPZ equation (1.2).
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Let us present now in De�nition 2.7 a partiular initial data whih is going to

have a role later on. In fat this is the initial data that is needed to give the

saling limit of a typial semi-disrete random polymer with log-gamma boundary

soures. However, this is not the most natural initial data. I. Corwin summarizes

the most fundamental initial data in [22℄ and the knowledge in onnetion with

their �utuations. The initial data are given in terms of the well-posed SHE in

that work. Here we list the most essential ones.

The initial data Z(0, X) to the SHE is alled the wedge initial data. The �utu-

ation of the solution to the orresponding KPZ equation is distributed aording

to FGUE on the large sale, that is aording to the umulative distribution fun-

tion of the Tray-Widom random matrix distribution for the Gaussian Unitary

Ensemble [23℄. The Z(0, X) = 1 is alled the �at initial data, and the �utu-

ations' distribution at large sale is given by FGOE, the umulative distribution

funtion of the Tray-Widom GOE (Gaussian Orthogonal Ensemble) distribution

[24℄. Finally Z(0, X) = eB(X)
is alled the stationary initial data. The limiting

distribution for the �utuation is also known in this ase [25℄. Now let us return

to the initial data that we are working with.

De�nition 2.7. Fix m ≥ 1 and M ≥ 0. Let b = (b1, . . . , bm) ∈ Rm
and

β = (β1, . . . , βM) ∈
(

R+

)M
be suh that bn < βk for all 1 ≤ n ≤ m and

1 ≤ k ≤ M . Let Bb,1, Bb,2, . . . , Bb,m be independent Brownian motions with

drifts b1, b2, . . . , bm, and let Bβ,1, Bβ,2, . . . , Bβ,M be independent Brownian motions

with drifts β1, β2, . . . , βM . Furthermore, let ω−i,j ∼ − ln Γ(βi − bj) be indepen-

dent log-gamma variables. Let us reate now the random variables Zb,β(X,m) and

Z̃
β,b(−X,M) for all X ≥ 0 jointly, using the above de�ned Brownian motions and

log-gamma variables:

Let Zb,β(X,m) be the partition funtion from De�nition 2.1, using

Bb,1, Bb,2, . . . , Bb,m and ω−i,j (i = 1, . . . ,M , j = 1, . . . , m). Let Z̃
β,b(−X,M) be

also a semi-disrete partition funtion but with the following modi�ation: in the

semi-disrete polymer with log-gamma boundary soures, the log-gamma weights

are ω−i,j ∼ − ln Γ(sj− ti) instead of − ln Γ(ti−sj). Thus by reating Z̃
β,b(−X,M)

we use the Brownian motions Bβ,1, Bβ,2, . . . , Bβ,M and the log-gamma variables
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ω−i,j (i = 1, . . . ,M , j = 1, . . . , m). Now

Zb,β
0 (X) =







Z
b,β(X,m), if X > 0

Z̃
β,b(−X,M), if X ≤ 0,

(2.2.3)

Note that taking the modi�ation for Z̃
β,b

into aount, we have indeed the same

log-gamma variables for positive and negative X-s. In both ases the parameters

of the gamma distributions are in the form of βi−bj , only the log-gamma olumns

beome log-gamma rows (and the rows beome olumns) in the modi�ed setup.

Let us introdue here the notations Zb,β(T,X) and F b,β(T,X). They will denote

the partition funtion and free energy of the CDRP orresponding to the initial

data de�ned above in De�nition 2.7.

2.3 Large time limit � the main result

The main theorem of this work gives the limiting distribution of the free energy

of the CDRP as time goes to in�nity. The distribution funtion is given by a

Fredholm determinant formula whose kernel was given by Borodin and Péhé in

[26℄. It is referred to as Borodin-Péhé distribution throughout.

De�nition 2.8. Fix m ≥ 1 and M ≥ 0. Let b = (b1, . . . , bm) ∈ Rm
and

β = (β1, . . . , βM) ∈
(

R+

)M
, and assume that

b1 ≤ b2 ≤ · · · ≤ bm < β1 ≤ β2 ≤ · · · ≤ βM . The Borodin-Péhé distribution is

de�ned as

FBP,b,β(r) = det (1−KBP,b,β)L2(r,∞) ,

where

KBP,b,β(x, y) =
1

(2πi)2

∫

γ

dw

∫

Γ

dz
1

z − w

ez
3/3−zy

ew3/3−wx

M
∏

k=1

w − βk

z − βk

m
∏

n=1

z − bn
w − bn

. (2.3.1)

Let c > 0 be arbitrary. Then γ, the integration ontour for w, goes from −c− i∞
to −c+i∞ suh that it rosses the real axis between bm and βM . The other ontour
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for z, Γ goes from c− i∞ to c+ i∞ suh that it also rosses the real axis between

bm and βM and it does not interset γ.

In [26℄ this distribution was introdued as a modi�ation of the Airy kernel with

two sets of parameters. This is a generalization of the Airy kernel and also of

the extended (time-dependent) version of that. It was obtained as a limit of a

direted perolation in a quadrant whih has both defetive rows and olumns.

The paper also predits that the extended kernel should appear as a saling limit

also in random matrix theory, however they ould not derive it yet.

Let us state now Theorem 2.9, the main result of this work. It gives the large time

limit of the CDRP free energy with the initial data de�ned before.

Theorem 2.9. Let b = (b1, . . . , bm) ∈ Rm
and β = (β1, . . . βM) ∈ RM

+ be real

vetors suh that bj < βi for all 1 ≤ j ≤ m and 1 ≤ i ≤ M . Consider the

free energy of the CDRP from De�nition 2.6 with boundary perturbation lnZb,β
0 ,

where Zb,β
0 is de�ned in De�nition 2.7; and with drift vetors σb and σβ, where

σ = (2/T )1/3. Then for any r ∈ R,

lim
T→∞

P

(Fσb,σβ(T, 0) + T/24

(T/2)1/3
≤ r

)

= FBP,b,β(r), (2.3.2)

where FBP,b,β is the umulative distribution funtion of the Borodin-Péhé distri-

bution (see De�nition 2.8).

So we took the solution to the KPZ equation with a partiular initial data, and

the theorem laims that its �utuation has Borodin-Péhé distribution at large

sale. As mentioned above, this distribution appeared as the limit of a perolation

model whih is in the KPZ universality lass. Hene our theorem is in aordane

with the universality onjeture.

In the next hapter the simplest m = M = 1 ase is investigated. After under-

standing this instane, we will prove Theorem 2.9.



Chapter 3

Speial ase with one level of

boundary perturbations

In a usual semi-disrete direted random polymer model, there are M olumns of

log-gamma random variables and N independent Brownian motions with (possi-

bly) di�erent drifts. Now we restrit ourselves to the ase when there is only one

olumn of log-gamma variables and every drift is zero exept the �rst one.

A similar model was investigated in [2℄. The only di�erene between that model

and ours is the following: The former setup replaes the weight in the orner (in

(−1, 1)) by zero, whereas we have a log-gamma weight there. Nevertheless we

strongly rely on that paper and use the de�nitions and main theorems to �nd the

results valid for our model.

There are two main purposes of this hapter. The �rst one is to give a Fredholm-

determinant formula for the Laplae transform of a partiular CDRP partition

funtion in Theorem 3.4. The seond aim is to give the large time limit of the

free energy of the same CDRP in Theorem 3.9. This is our main result and main

proof. Later, the proof of the more general statement, Theorem 2.9 will be very

similar. The partition funtion (or free energy) in question is the solution to the

SHE (or KPZ) with initial data Zb,β
0 (X) (or lnZb,β

0 (X)) given in De�nition 2.7

with m = M = 1.

15
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3.1 Initial data

So let us �rst determine Zb,β
0 (X) in ase of m = M = 1, beause it is needed

throughout this hapter. If X > 0 we need to ompute Z
b,β(X, 1), so a partition

funtion of a polymer whih has only one allowed up-right path. Indeed, an up-

right path in this setting starts from (−1, 1), beause M = 1, and ends in (X, 1),

beause m = 1, thus no upward jump is allowed. What remains is a horizontal

path, φ from (−1, 1) to (X, 1), with one log-gamma weight ω−1,1 ∼ − ln Γ(β − b)

and one Brownian inrement, where the Brownian motion has drift b (let us denote

it by Bb). Looking at (2.1.1) it an be seen that

E(φ) = ω−1,1 +Bb(X),

sine there are no "sk" jumping points. Hene in De�nition 2.1 the sums have only

one term and the integral just with respet to the ounting measure, resulting

Z
b,β(X,m) = Z

b,β(X, 1) = eω−1,1+Bb(X). (3.1.1)

If X ≤ 0, then similarly, there is only one path with energy

E(φ) = ω−1,1 +Bβ(X),

where Bβ is a Brownian motion with drift β. Again ω−1,1 ∼ − ln Γ(β− b), beause

of the modi�ation in De�nition 2.7. Therefore

Z̃
β,b(X,M) = Z̃

β,b(X, 1) = eω−1,1+Bβ(X). (3.1.2)

Knowing all of these the ontinuous partition funtion and free energy an be

de�ned with the above alulated initial ondition. This partition funtion was

investigated also in [2℄.

De�nition 3.1. Let us denote by Zb,β
1 (T,X) the solution to the SHE (see (1.2.2))

with initial data Z0(X) = exp(B(X) + ω−1,1), where B(X) is a two-sided Brown-

ian motion with drift β to the left of 0 and drift b to the right of 0, with β > b,
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and ω−1,1 ∼ − ln Γ(β − b) is a log-gamma random variable.

Denote furthermore F b,β
1 (T,X) the free energy for the same CDRP.

F b,β
1 (T,X) = ln(Zb,β

1 (T,X)) with F0(X) = B(X) + ω1,1

On two-sided Brownian motion we understand the following:

B(X) = 1X≤0

(

Bl(X) + βX
)

+ 1X>0

(

Br(X) + bX
)

where Bl : (−∞, 0] → R is a

Brownian motion without drift pinned at Bl(0) = 0, and Br : [0,∞) → R is an

independent Brownian motion pinned at Br(0) = 0.

Note that this de�nition is in aordane with (3.1.1) and (3.1.2). We also intro-

due a notation for the semi-disrete partition funtion in ase of m = M = 1.

De�nition 3.2. Denote Z
a,α
1 (τ, N) the semi-disrete direted random polymer par-

tition funtion with the following parameters: M = 1, a1 = a, an ≡ 0 for n > 1

and α1 = α > a.

3.2 Fredholm determinant formula

Before stating the �rst important result of this hapter and giving the Fredholm

determinant formula for the Laplae transform of Zb,β
1 , we need the kernel whih

de�nes this Fredholm determinant. The de�nition is general for

b1 ≤ b2 ≤ · · · ≤ bm < β1 ≤ β2 ≤ · · · ≤ βM , however the laims of this hapter are

stated for m = M = 1 (and b1 = b, β1 = β).

De�nition 3.3. Let b = b1, b2, . . . , bm) and β = (β1, β2, . . . , βM). Denote K
(σ)
b,β the

integral operator whose kernel is

K
(σ)
b,β (x, y) =

1

(2πi)2

∫

dw

∫

dz
σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew3/3−wx

M
∏

k=1

Γ(σz − βk)

Γ(σw − βk)

m
∏

n=1

Γ(σw − bn)

Γ(σz − bn)
,

where

σ = (2/T )1/3 , (3.2.1)
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and the integration ontour for w is from − 1
4σ

− i∞ to − 1
4σ

+ i∞ and rosses the

real axis between

bm
σ

and

β1

σ
. The other ontour for z goes from

1
4σ
− i∞ to

1
4σ
+i∞,

it also rosses the real axis between

bm
σ

and

β1

σ
and it does not interset the ontour

for w.

And now we provide the formula this setion intends to justify.

Theorem 3.4. Fix S with positive real part, T > 0, b < β real numbers and

assume that X = 0. Set σ as in (3.2.1). Then

E

[

exp
(

−Se
T
24Zb,β

1 (T, 0)
)]

= det
(

1−K
(σ)
b,β

)

L2(R+)
, (3.2.2)

where Zb,β
1 is the partition funtion for the CDRP (De�nition 3.1) and K

(σ)
b,β is

de�ned above in De�nition 3.3.

There are two main theorems that lead to the desired Fredholm-determinant for-

mula. The �rst one (Theorem 3.6) is the onvergene of the semi-disrete partition

funtions to the CDRP partition funtion. The seond one (Theorem 3.8) is the

onvergene of the Fredholm determinants desribing the Laplae transform of the

semi-disrete partition funtion (from Theorem 2.3). The proof of Theorem 3.4

will be quik as soon as we go through the mentioned results. However, some

preparation is needed before stating and applying them.

3.2.1 Convergene of the semi-disrete partition funtion

De�nition 3.5. Let Ψ(z) = d
dz
ln Γ(z) be the digamma funtion. For a given

θ ∈ R+, de�ne

κ(θ) := Ψ′(θ), f(θ) := θΨ′(θ)−Ψ(θ), c(θ) := (−Ψ′′(θ)/2)1/3.

We may alternatively parameterize θ ∈ R+ in terms of κ ∈ R+ as

θκ := (Ψ′)−1(κ) ∈ R+, fκ := inf
t>0

(κt−Ψ(t)) ≡ f(θκ), cκ := c(θκ).
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The theorem below gives the saling limit of the semi-disrete direted random

polymer's partition funtion Z
a,α
1 (τ, N) from De�nition 3.2. The saling below is

the same as the one for the O'Connel-Yor model, given in [19℄:

Fix T > 0, X ∈ R and real numbers b < β. τ grows as

√
N and the saling fator

C is an exponential funtion of N , T and X :

τ =
√
TN +X (3.2.3)

C(N, T,X) = exp

(

N +
1

2
(N − 1) ln(T/N) +

1

2

(√
TN +X

)

+X
√

N/T

)

.

(3.2.4)

Not only the variables of the partition funtion but also the parameters of the

polymer model are saled, in the following way:

a = ϑ+ b, α = ϑ+ β, (3.2.5)

where ϑ = θ√
T/N

≃
√

N/T + 1
2
, with De�nition 3.5.

This saling is used in the theorem and in the orollary below. Theorem 3.6,

the �rst important result we will employ, laims that the saled semi-disrete

partition funtion onverges to that of the CDRP with a partiular initial data

given in De�nition 3.1.

Theorem 3.6. [19℄ Fix T > 0, X ∈ R and real numbers b < β. Consider the

semi-disrete direted random polymer in De�nition 3.2 with partition funtion

Z
a,α
1 (τ, N). Let the a and α parameters of the polymer be de�ned as in (3.2.5).

The saling fator C(N, T,X) is given by (3.2.4). Then, as N goes to in�nity,

Z
a,α
1 (

√
TN +X,N)

C(N, T,X)
⇒ Zb,β

1 (T,X).

The onvergene is in distribution and Zb,β
1 (T,X) is the solution to the SHE with

initial data exp(B(X) + ω−1,1), see De�nition 3.1.

The proof of Theorem 3.4 is basially that both sides of (3.2.2) are the limit of

E
[

euZ
a,α
1 (τ,N)

]

for some u. So let us rewrite Theorem 3.6 so that the limit is the
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exponent in (3.2.2). To do this let

u = Se−N− 1
2
(N−1) ln T

N
− 1

2

√
TN−X

√
N
T
+ T

24
−X

2
+X2

2T , (3.2.6)

where S ∈ C with positive real part. By omparing the exponents of C(N, T,X)

and u and by Theorem 3.6 it an be seen that

uZa,α
1 (

√
TN +X,N) ⇒ Se

X2

2T
+ T

24Zb,β
1 (T,X), as N → ∞ (3.2.7)

holds with the saling applied in the theorem. The following orollary shows

that this modi�ation was useful, that is the left-hand side (LHS) of (3.2.2) an

be written as the limit of the Laplae transform of the semi-disrete partition

funtion.

Corollary 3.7. Fix T > 0, X ∈ R and real numbers b < β. Let Z
a,α
1 (τ, N) and

Zb,β
1 (T,X) be the partition funtions de�ned in De�nition 3.2 and in De�nition 3.1

respetively, and with parameters given by (3.2.5). Then for any S with positive

real part

E

[

e−uZa,α
1 (τ,N)

]

→ E

[

exp
(

−Se
X2

2T
+ T

24Zb,β
1 (T,X)

)]

, as N → ∞ (3.2.8)

where τ =
√
TN +X.

Proof. By (3.2.7) the exponent on the LHS onverges in distribution to the ex-

ponent on the RHS. Our statement is true due to the equivalent de�nition of

onvergene in distribution, De�nition 1.4. Indeed, we took a bounded, ontinu-

ous funtion of uZa,α
1 (τ, N):

Z
a,α
1 (τ, N) > 0,

sine it is an integral of an exponential funtion, and

Re u > 0,
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beause of (3.2.6) and ReS > 0. Thus e−uZa,α
1 (τ,N)

is bounded by 1 and the

expetation on the LHS must onverge.

3.2.2 Convergene of Fredholm determinants

With Corollary 3.7 we have seen that the LHS of (3.2.2) in Theorem 3.4 is a the

limit of the Laplae transform of Z
a,α
1 (τ, N) as N goes to in�nity. We will see that

the same fat an be said about the RHS of (3.2.2).

Reall the Fredholm-determinant formula (2.3) for the Laplae-transform of the

semi-disrete partition funtion Z
a,α
1 (τ, N). Giving the limit of this formula as

N goes to in�nity, yields the Fredholm-determinant formula for the ontinuous

partition funtion as well.

Theorem 3.8. [2, Thm. 6.3.℄ Fix S with positive real part, T > 0, b < β real

numbers and assume that X = 0. Set τ , a, α and σ as in (3.2.3), (3.2.5) and

in (3.2.1) respetively. Use u given in (3.2.6). Denote Ku the integral operator

de�ned in Theorem 2.3 and K
(σ)
b,β is given in De�nition 3.3. Then

lim
N→∞

det(1 +Ku)L2(Ca+;α;π/4) = det(1−K
(σ)
b,β )L2(R+) (3.2.9)

where a+ = max{a, 0}.

Now we have everything to give a straightforward proof for Theorem 3.4. As

mentioned before, we show that both sides of (3.2.2) are the limit of the same

expetation.

Proof of Theorem 3.4. Fix S with positive real part, T > 0, b < β real numbers

and assume that X = 0. Set τ , a, α and σ as in (3.2.3), (3.2.5) and in (3.2.1)

respetively. Use u given in (3.2.6). Thus the onditions of Theorem 3.8 hold, just

like those of Theorem 2.3 with ϕ = π/4. Then on the one hand,

lim
N→∞

E

[

e−uZa,α
1 (τ,N)

]

= lim
N→∞

det (1−Ku)L2(Ca;α;π/4)
= det

(

1−K
(σ)
b,β

)

L2(R+)
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by Theorem 2.3, by Theorem 3.8, and beause a+ = a for large N . On the other

hand, we know from Corollary 3.7 that

lim
N→∞

E

[

e−uZa,α
1 (τ,N)

]

= E

[

exp
(

−Se
X2

2T
+ T

24Zb,β
1 (T,X)

)]

.

The two limits must be the same hene the theorem is proved.

3.3 Large time limit

Theorem 3.9. Let b and β be real numbers. Consider the free energy of the CDRP

(De�nition 3.1) with drift vetors σb and σβ, where b < β and σ = (2/T )1/3. Then

for any r ∈ R,

lim
T→∞

P

(

Fσb,σβ
1 (T, 0) + T/24

(T/2)1/3
≤ r

)

= FBP,b,β(r), (3.3.1)

where FBP,b,β is the umulative distribution funtion of the BP distribution (De�-

nition 2.8).

3.3.1 Preparation and the proof

In the ourse of the proof we would like to show the onvergene of the Fredholm

determinants by using Lebesgue's dominated onvergene theorem. We are allowed

to apply this theorem if there is an integrable upper bound for the absolute value

of the integrand. For this aim the following results are su�ient:

• An upper bound for

∣

∣

∣
K

(σ)
b,β

∣

∣

∣
:

Lemma 3.10. [2, Lemma B.4℄ Fix b < β so that β−b < 1. There is a �nite

onstant C suh that for any x, y ∈ R+

|K(σ)
b,β (x, y)| ≤ C exp

(

−β

σ
y +

b

σ
x

)

, (3.3.2)
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see K
(σ)
b,β in De�nition 3.3 and σ is given by (3.2.1).

• An upper bound for the determinant of a matrix in terms of the length of

its olumn vetors:

Lemma 3.11. Hadamard's inequality:

Let M be the n× n matrix having olumn vetors vi. Then

|det(M)| ≤
n
∏

i=1

‖vi‖ . (3.3.3)

In partiular, if the absolute value of eah entry of the matrix is at most one,

the upper bound is nn/2
.

Relying on these two results Proposition 3.12, i.e. the onvergene of Ffredholm

determinants is shown in the next setion. This is the key statement that almost

immediately implies Theorem 3.9.

Proposition 3.12.

det
(

1−K
(σ)
σb,σβ

)

L2(R+)
→ det (1−KBP,b,β)L2(r,∞) , as σ → 0, (3.3.4)

where K
(σ)
b,β and KBP,b,β are given in De�nition 3.3 and in De�nition 2.8.

We also need a probability lemma to onlude the onvergene in distribution at

the end of the proof.

Lemma 3.13. [1, Lemma 8.1℄ Consider a sequene of funtions (fn)n≥1 mapping

R → [0, 1] with the following properties:

(a) fn(x) is stritly dereasing in x, ∀n

(b) lim
x→−∞

fn(x) = 1, ∀n

() lim
x→∞

fn(x) = 0, ∀n

(d) fn(x) → 1x≤0, as n → ∞, uniformly on R \ [−δ, δ], ∀δ > 0
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Consider a sequene of random variables Xn and a ontinuous probability distri-

bution funtion p(r). Then

lim
n→∞

E [fn(Xn − r)] = p(r) ∀r ∈ R ⇒ lim
n→∞

P (Xn ≤ r) = p(r)

Putting together Proposition 3.12 and Lemma 3.13, and also hoosing an appro-

priate sequene of funtions, leads to the proof of Theorem 3.9.

Proof of Theorem 3.9. (Based on the proof of Corollary 1.15 in [1℄.)

Let β > b, S = e−r/σ
, and let (ΘT )T≥0 be a sequene of funtions with

ΘT (x) = exp(−ex/σ), where σ = (2/T )1/3. Now observe that

ΘT

(

Fσb,σβ
1 (T, 0) + T/24

σ−1
− r

)

= exp
(

−SeF
σb,σβ
1 (T,0)+T/24

)

=

= exp
(

−SeT/24Zb,β(T, 0)
)

. (3.3.5)

Note furthermore, that Theorem 3.4 and Proposition3.12 apply here. Therefore,

by (3.3.5) and by De�nition 2.8 we onlude that the expetation of the random

variable in question (LHS of (3.3.1)) onverges to the umulative distribution

funtion of the Borodin-Péhé distribution, as σ → 0.

E

[

ΘT

(

Fσb,σβ
1 (T, 0) + T/24

σ−1
− r

)]

= E

[

exp(−SeF
σb,σβ
1 (T,0)+T/24)

]

=

= det
(

1−K
(σ)
σb,σβ

)

L2(R+)
→ det (1−KBP,b,β)L2(r,∞) = FBP,b,β(r) (3.3.6)

The onditions of Lemma 3.13 hold for fT (x) := ΘT (x) = exp(−ex/σ),

XT :=
Fσb,σβ

1 (T,0)+T/24

σ−1 and p(r) := FBP,b,β(r):

(a) ΘT : R 7→ [0, 1] ∀T , and ΘT (x) is stritly dereasing in x ∀T .

(b) lim
x→−∞

ΘT (x) = 1, ∀n

() lim
x→∞

ΘT (x) = 0, ∀n
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(d) ΘT (x) → 1x≤0, as T → ∞, uniformly on R \ [−δ, δ], ∀δ > 0

In ondition (d) the onvergene is uniform indeed, sine on R \ [−δ, δ], if x > δ,

then

ΘT (x) = exp(−ex/σ) < exp(−eδ/σ),

whih an be arbitrarily small independently of x, and if x < −δ, then

ΘT (x) = exp(−ex/σ) > exp(−e−δ/σ),

where e−δ/σ
an be arbitrarily lose to zero, independently of x. These are true

for any δ > 0, as T → ∞ (and as σ → 0). Sine FBP,b,β(r) is ontinuous, and

E [ΘT (XT − r)] → p(r) due to (3.3.6), every ondition holds for Lemma 3.13. It

laims that the distribution funtion of XT onverges to p(r) = FBP,b,β(r) and this

was the statement of the theorem.

3.3.2 Details

Proof of Proposition 3.12. First the onvergene of the kernels is needed, then we

arrive to the statement of the proposition by Lebesgue's dominated onvergene

theorem.

STEP 1

K
(σ)
σb,σβ(x, y) → KBP,b,β(x+ r, y + r), as σ → 0 (3.3.7)

Proof of STEP 1:

K
(σ)
σb,σβ(x, y) =

1

(2πi)2

∫

dw

∫

dz
σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew3/3−wx

Γ(σ(β − z))

Γ(σ(z − b))

Γ(σ(w − b))

Γ(σ(β − w))

Convergene of the �rst fator of the integrand:

σπSσ(z−w)

σπ(z − w) + o(σ2)
=

e−
r(z−w)σ

σ

z − w + o(σ)
→ e−r(z−w)

z − w
, as σ → 0
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Convergene of the Gamma funtions:

Γ(σ(z − b))

Γ(σ(w − b))
→ w − b

z − b

Thus

lim
σ→0

K
(σ)
σb,σβ(x, y) =

=
1

(2πi)2

∫

dw

∫

dz
e−r(z−w)

z − w

ez
3/3−zy

ew3/3−wx

β − w

β − z

z − b

w − b
= KBP,b,β(x+ r, y + r),

by De�nition 2.8, and this was our laim.

Reall the de�nition of a Fredholm-determinant, and onsider only the n-dimensional

integral part without the summation. Our next step is to show that this integral

with the saling limit kernel onverges to the integral with the Borodin-Péhé

kernel.

STEP 2

lim
σ→0

∫

R+

· · ·
∫

R+

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1

n
∏

i=1

dxi =

=

∫ ∞

r

· · ·
∫ ∞

r

det [KBP,b,β(xi, xj)]
n
i,j=1

n
∏

i=1

dxi (3.3.8)

Proof of STEP 2:

The determinant funtion is ontinuous, therefore

lim
σ→0

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1
= det [KBP,b,β(xi, xj)]

n
i,j=1 (3.3.9)

holds by (3.3.7). To interhange the limit in σ and the integral, we need to �nd

an integrable upper bound for the determinant on the LHS.

We have an upper bound for eah entry of

[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1
by Lemma 3.10.

Indeed, our parameters σb and σβ are lose, σ tending to zero, hene the lemma

applies. Thus the upper bound is

∣

∣

∣
K

(σ)
σb,σβ(x, y)

∣

∣

∣
≤ C exp (−βy + bx) , (3.3.10)
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with the onditions of Lemma 3.10. The entrywise upper bound leads to an

upper bound for the determinant by Hadamard's inequality (Lemma 3.11). Let

us multiply the ith row in the LHS by

1
C
exp(−bxi) ∀i = 1, . . . , n, and the jth

olumn by

1
C
exp(βxj) ∀j = 1, . . . , n and all this matrix A, with elements Aij ,

i, j = 1, . . . , n. Using the upper bound in (3.3.10) it follows that

|Aij| =
eβxj−bxi

C

∣

∣

∣
K

(σ)
σb,σβ(xi, xj)

∣

∣

∣
≤ eβxj−bxi

C
Cebxi−βxj = 1 (3.3.11)

Note furthermore that the onstrution of A gives

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1
= C2n exp

(

n
∑

j=1

xj (b− β)

)

det(A) (3.3.12)

So Lemma 3.11 and the estimation (3.3.11) give |det(A)| ≤ nn/2
, and together

with (3.3.12) this means

∣

∣

∣

∣

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1

∣

∣

∣

∣

≤ C2n exp

(

n
∑

j=1

xj (b− β)

)

nn/2
(3.3.13)

Now the RHS is integrable, beause β > b, hene (3.3.8) holds and STEP 2 is

done.

STEP 3

lim
σ→∞

∞
∑

n=1

1

n!

∫

R+

· · ·
∫

R+

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1

n
∏

i=1

dµ(xi) =

=

∞
∑

n=1

1

n!

∫ ∞

r

· · ·
∫ ∞

r

det [KBP,b,β(xi, xj)]
n
i,j=1

n
∏

i=1

dxi (3.3.14)

Proof of STEP 3:

It is enough to show that after dividing by n! and integrating the upper bound,

given in STEP 2 (in (3.3.13)), the result will be summable. The summability

would imply that the sum and the limit an be interhanged.

fn(σ) :=
1

n!

∫

R+

· · ·
∫

R+

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1

n
∏

i=1

dxi ≤
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≤ nn/2

n!
C2n

∫

R+

· · ·
∫

R+

exp

(

−(β − b)
n
∑

j=1

xj

)

n
∏

i=1

dxi =

=
nn/2

n!
C2n 1

(β − b)n
,

and this is summable due to D'Alambert's ratio test:

lim sup
n→∞

(n+ 1)
n+1
2 C2n+2n!(β − b)n

(n+ 1)!(β − b)n+1nn/2C2n−2
=

= lim sup
n→∞

(

n+ 1

n

)n/2 √
n + 1

n+ 1

C4

β − b
= 0 (3.3.15)

Hene, altogether we know that the sum

∑∞
n=1 fn(σ) onverges uniformly, and

that fn(σ) tends to the RHS of (3.3.12). Therefore the sum and the limit an be

interhanged and STEP 3 is done, implying Proposition 3.12 is proved.



Chapter 4

General ase

4.1 Large time limit

Let us return to the typial semi-disrete direted polymers with log-gamma

boundary soures. So given M olumns and N rows of independent log-gamma

variables, ω−i,j ∼ − ln Γ(αi − aj) and N independent Brownian motions Bi with

drifts ai. The setting is suh that ai < αj for all i = 1, 2, . . . , N and j = 1, 2, . . . ,M .

It is also assumed now that there arem ≤ N Brownian motions with nonzero drifts

and (a1, a2, . . . , aN ) = (a1, a2, . . . , am, 0, . . . , 0). Reall that the energy of an up-

right path in this setting was given by (2.1.1). Furthermore, the partition funtion

Z
a,α

and free energy F
a,α

of suh a polymer were de�ned in De�nition 2.1 and Def-

inition 2.2. It was mentioned that Zb,β
, the solution to the SHE and the partition

funtion for the CDRP (De�nition 2.5), is going to be the saling limit of Z
a,α

.

We also gave the orresponding initial data to the SHE in De�nition 2.7. This

laim is stated preisely in Theorem 4.2 is used in our disussion.

The purpose of this hapter is to prove Theorem 2.9, that is to prove that the large

time limit of the CDRP free energy is the Borodin-Péhé distribution. It is the

generalization of Theorem 3.9 and its proof is pretty similar. This is the reason

for being a little bit skethy, but, onsidering the previously proved statements,

orret. The orresponding statements for the m = M = 1 ase are indiated

29
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in brakets at eah main step. So the proof gives an outline of the proof from

Chapter 3, too.

Proof of Theorem 2.9. � Summary

1. E

[

exp
(

−Se
T
24Zb,β(T, 0)

)]

= det
(

1−K
(σ)
b,β

)

L2(R+)
(Theorem 3.4)

Proof of Step 1.:

(a)

Z
a,α(

√
TN+X,N)

C(N,m,T,X)
⇒ Zb,β(T,X) (Theorem 3.6) The preise statement an

be found in Theorem 4.2 below.

(b) E
[

e−uZa,α(τ,N)
]

→ E

[

exp
(

−Se
X2

2T
+ T

24Zb,β(T,X)
)]

, as N → ∞

with an appropriate u. (Corollary 3.7)

Indeed, onsider the statement of Corollary 3.7 with

u =
S

C(N,m, T,X)
exp

(

X2

2T
+

T

24

)

=

S exp

(

−N − 1

2
(N −m) ln

(

T

N

)

− 1

2

(√
TN +X

)

−X

√

N

T
+

X2

2T
+

T

24

)

.

With S having positive real part and Za,α(τ, N) > 0 for positive τ and

N one an tell the same proof as for Corollary 3.7.

() E
[

e−uZa,α(τ,N)
]

= det (1+Ku)L2(Ca;α;ϕ)
(Theorem 2.3)

This is a general statement. It was not spei�ed for m = M = 1.

(d) lim
N→∞

det(1+Ku)L2(Ca+;α;π/4) = det(1−K
(σ)
b,β )L2(R+), (Theorem 3.8)

Theorem 3.8 was ited from [2℄, where it was stated for β and b being real

numbers and not vetors. However, with minor tehnial modi�ations

the proof an be performed for the general ase as well. Thus one an

state Theorem 3.8 also for a, α, b and β vetors used in this hapter.

Statement (b) is a orollary of (a). Then Putting together (b), () and (d),

Step 1. is done by the same argument as the one for Theorem 3.4. Thus
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we gained a Fredholm determinant formula for the Laplae transform of the

ontinuous partition funtion.

2. det
(

1−K
(σ)
σb,σβ

)

L2(R+)
→ det (1−KBP,b,β)L2(r,∞) , as σ → 0 (Proposition 3.12)

Proof of Step 2.:

(a) K
(σ)
σb,σβ(x, y) → KBP,b,β(x+ r, y + r), as σ → 0 (Eq. 3.3.7)

We have totally the same limit as in (3.3.7) with more fators.

(b) |K(σ)
b,β (x, y)| ≤ C exp

(

−β1

σ
y + bm

σ
x
)

, (Lemma 3.10)

Assume here that b1 ≤ b2 ≤ · · · ≤ bm < β1 ≤ β2 · · · ≤ βM . Again,

Lemma 3.10 was ited from [2, Lemma B.4℄, where it was stated for

β and b being real numbers and not vetors. Now b1, . . . , bm−1 and

β2, . . . , βM are on the appropriate sides of bm and β1 thus one an give

basially the same reasoning as in [2℄. The preise statement for this

ase an be found below in Lemma 4.1.

() Hadamard bound (Lemma 3.11) and Lebesgue

Having the same upper bound for the kernel, one an apply the Hadamard

bound and Lebesgue's dominated onvergene theorem, and get a summable

sequene in the same way as in the proof of Proposition 3.12.

Hene the proof of Step 2, that is the proof of the Fredholm determinants'

onvergene, is done.

3. lim
T→∞

P

(Fσb,σβ(T, 0) + T/24

(T/2)1/3
≤ r

)

= FBP,b,β(r) (Theorem 3.9)

Proof of Step 3, i.e. of Theorem 2.9:

With S = e−r/σ
, σ = (2/T )1/3 and ΘT (x) = exp(e−r/σ), Step 1. and Step 2.

imply

E

[

ΘT

(Fσb,σβ(T, 0) + T/24

σ−1
− r

)]

= E

[

exp(−SeF
σb,σβ(T,0)+T/24)

]

=

= det
(

1−K
(σ)
σb,σβ

)

L2(R+)
→ det (1−KBP,b,β)L2(r,∞) = FBP,b,β(r) as σ → 0.

Then by Lemma 3.13 Step 3. immediately follows with the same reasoning

as in Theorem 3.9.
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Now let us state the lemma we referred to in Step 2.(b).

Lemma 4.1. [2, Lemma B.4℄ Fix b1 ≤ b2 ≤ · · · ≤ bm < β1 ≤ β2 · · · ≤ βM so that

βi − bj < 1 for any 1 ≤ i ≤ M and 1 ≤ j ≤ m. Then there is a �nite onstant C

suh that for any x, y ∈ R+

|K(σ)
b,β (x, y)| ≤ C exp

(

−β1

σ
y +

bm
σ
x

)

, (4.1.1)

see K
(σ)
b,β in De�nition 3.3 and σ is given by (3.2.1).

4.2 Saling limit

The only statement that is still needed to make omplete the proof of Theorem 2.9

is the one that determines the saling limit of the semi-disrete partition funtion

Z
a,α

. First we make lear the saling of the semi-disrete polymer's parameters

similarly to the m = M = 1 ase.

Fix T > 0, X ∈ R and real vetors b = (b1, . . . , bm, 0, . . . , 0) ∈ R
N
and

β = (β1, . . . βM) ∈ RM
+ . Reall the de�nition of θκ from De�nition 3.5. Now let a

and α be saled in the following way:

aj = ϑ+ bj , j = 1, 2, . . . , N

αi = ϑ+ βi, i = 1, 2, . . . ,M
(4.2.1)

where ϑ = θ√
T/N

≃
√

N/T + 1
2
. Now before de�ning the saling fator and stat-

ing the theorem, we give a heuristi explanation for the order of magnitude of the

saling fator. It shows that the saling fator indiates the relation between Z
a,α

and (the also semi-disrete) Z
b,β
.

Let B1, . . . , BN be independent Brownian motions with drifts a1, . . . , aN respe-

tively and let B(1), . . . , B(N)
be independent standard Brownian motions. Let
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ω−i,j ∼ − ln Γ(αi − aj), and let τ =
√
NT +X . Then by (2.1.1)

E(a,α)(φ) =
∑

(−i,j)∈φd

j≤m

ω−i,j +
∑

(−i,j)∈φd

j>m

ω−i,j +Bn(sn)

+
(

Bn+1(sn+1)− Bn+1(sn)
)

+ . . .+
(

BN(τ)−BN (sN−1)
)

=

=
∑

(−i,j)∈φd

j≤m

ω−i,j +
∑

(−i,j)∈φd

j>m

ω−i,j +B(n)(sn)

+
(

B(n+1)(sn+1)− B(n+1)(sn)
)

+ . . .+
(

B(N)(τ)−BN (sN−1)
)

+bnsn + bn+1(sn+1 − sn) + . . . bm(sm − sm−1)

+ϑ (sn + sn+1 − sn + . . .+ τ − sN−1) .

Now for j ≤ m it is true that ω−i,j ∼ − ln Γ(βi − bj), beause βi − bj = αi − aj .

We also know ω−i,j ∼ − ln Γ(αi) for j > m, beause aj = 0 for j > m. But

then ω−i,j ≃ − ln
√

N
T
, if N is large, beause of the de�nition of α. Furthermore,

the standard Brownian motion terms, and the terms with oe�ients bk (k =

n, . . . , m) give together the sum of the inrements of Brownian motions with drifts

b1, . . . bm, 0 . . . 0. Finally the last term is just ϑτ = ϑ(
√
TN + X) whih an be

fatored out of the integral and sums de�ning the semi-disrete partition funtion.

Let us denote informally by

d≃ that the order of magnitude of the LHS and of the

RHS is the same in distribution. Then by the argument above, we have

Z
a,α
(√

TN +X,N
)

d≃

exp

(

(N −m)

(

− ln

(

√

N

T

))

+ ϑ
(√

TN +X
)

)

Z
b,β
(√

TN +X,N
)

and thus the saling onstant should be

C(N,m, T,X) = exp

(

(N −m)

(

− ln

(

√

N

T

))

+ ϑ
(√

TN +X
)

)

=

exp

(

1

2
(N −m) ln

(

T

N

)

+N +
1

2

(√
TN +X

)

+X

√

N

T

)

. (4.2.2)



General ase 34

Now we state the theorem whih was needed to prove Step 1 in the proof of

Theorem 2.9. The initial ondition is the one given in De�nition 2.7, so here an

be seen the importane of that pretty speial onstrution.

Theorem 4.2. [19℄ Fix T > 0, X ∈ R and real vetors

b = (b1, . . . , bm) ∈ Rm
and β = (β1, . . . βM) ∈ RM

+ suh that bj < βi for all

1 ≤ j ≤ m and 1 ≤ i ≤ M . Consider the semi-disrete direted random polymer

with parameters a and α de�ned in (4.2.1) (let bm+1 = · · · = bN = 0 at this point)

and with partition funtion Z
a,α(τ, N) form De�nition 2.1. The saling fator

C(N,m, T,X) is given by (4.2.2). Then, as N goes to in�nity,

Z
a,α(

√
TN +X,N)

C(N,m, T,X)
⇒ Zb,β(T,X).

The onvergene is in distribution and Zb,β(T,X) is the solution to the SHE with

initial data Zb,β
0 (X), see De�nition 2.7.

4.3 Conlusion

Semi-disrete and ontinuum direted random polymer models were investigated.

We summarized many important known results in the ourse of our disussion. A

speial initial ondition was made lear whih was needed to the saling limit of the

semi-disrete partition funtion. We gave a Fredholm determinant formula for the

Laplae transform of the ontinuous partition funtion (whih is also a Fredholm

determinant formula for a double exponential expression of the KPZ solution free

energy). With the help of this formula, we found the limiting distribution of the

free energy �utuations at large sale. In other words, we determined the large

time limit behavior of the Hopf-Cole solution of the KPZ equation for a partiular

initial data. The limiting distribution was the Borodin-Péhé distribution, whih

was given by a generalized Airy kernel and whih was derived as a saling limit

of a last passage perolation model. Sine the saling fator was T 1/3
and due

to the above properties of the Borodin-Péhé distribution, our statement was in

aordane with the KPZ universality onjeture.
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