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Introdu
tion

Statisti
al physi
s

A polymer is a large mole
ule, or ma
romole
ule, 
omposed of many repeated

subunits. The problem of modeling polymers' formation and long time behavior

be
ame popular among physi
ists and mathemati
ians due to their 
ru
ial impor-

tan
e in 
hemistry, biology and physi
s. Tools of statisti
al physi
s and probability

are well-suited for 
onstru
ting and analyzing polymer models. This work is based

on two re
ent arti
les [1℄ and [2℄ that investigate su
h models. A statisti
al physi
al

introdu
tion from [3℄ explains what a partition fun
tion is whi
h we are interested

in this work.

A

ording to statisti
al me
hani
s, the probability that a system in thermal equi-

librium o

upies a state with the energy E is proportional to its Boltzmann weight

e
E

kBT
, where T is the absolute temperature and kB is the Boltzmann 
onstant. L.

Boltzmann 
onsidered a gas of identi
al mole
ules whi
h ex
hange energy upon


olliding but otherwise are independent of ea
h other. An individual mole
ule of

su
h a gas does not have a 
onstant velo
ity, so that no exa
t statement 
an be

made 
on
erning its state at a parti
ular time. However, when the gas 
omes to

equilibrium at some �xed temperature, one 
an make predi
tions about the aver-

age fra
tion of mole
ules whi
h are in a given state. These average fra
tions are

equivalent to probabilities and therefore the probability distribution for a mole
ule

over its possible states 
an be introdu
ed. Let the set of energies available to ea
h

mole
ule be denoted by {ǫl}. The probability, Pl, of �nding a mole
ule in the state

iii
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l with the energy ǫl is

Pl =
exp(−ǫl/(kBT ))

∑

m exp(−ǫm/(kBT ))
.

This is 
alled the Boltzmann distribution.

J.W. Gibbs introdu
ed the 
on
ept of an ensemble, whi
h is de�ned as a set of

a very large number of systems, all dynami
ally identi
al with the system under


onsideration. The ensemble, also 
alled the 
anoni
al ensemble, des
ribes a sys-

tem whi
h is not isolated but whi
h is in thermal 
onta
t with a heat reservoir.

Sin
e the system ex
hanges energy with the heat reservoir, the energy of the sys-

tem is not 
onstant and 
an be des
ribed by a probability distribution. Gibbs

proved that the Boltzmann distribution holds not only for a mole
ule, but also for

a system in thermal equilibrium. The probability P (El) of �nding a system in a

given energy El is

P (El) =
exp(−El/(kBT ))
∑

l exp(−El/(kBT ))
, (0.0.1)

and the sum in the denominator is 
alled partition fun
tion.

Now let us return to polymers and 
onsider only one parti
le moving between two

points in a random environment. Also, let us restri
t ourself to a model where the

parti
le 
an only move from the initial point towards the target point. In this 
ase

we talk about dire
ted polymers. Assume that the starting point is (0, 1) and the

endpoint is (τ, N) (N ∈ N, τ ∈ R+) on the plane with 
ontinuous horizontal and

dis
rete verti
al 
oordinates. Then a dire
ted path should be an up-right path, as

the parti
le 
an move only towards the target point. Furthermore, su
h a path is

semi-dis
rete, be
ause of the setup of the 
oordinate system. More exa
tly, a path

is a union of horizontal line segments and looks like a simple fun
tion on (0, τ)

mapping to {1, 2, . . .N}, jumping (almost) always +1 at a jumping point. See

Se
tion 2.1.1 and Figure 2.1 for more pre
ise des
ription of semi-dis
rete up-right

paths.

To a semi-dis
rete up-right path π one 
an assign an energy E(π), and here we


onne
t to the Boltzmann- and Gibbs measures. We would like to 
hoose a path

randomly, so we need a probability measure. In a

ordan
e with (0.0.1) we assign



Introdu
tion v

to π a Boltzmann weight e−βE(π)
, and its density will be

dµ(π) =
e−βE(π)

∫

dπe−βE(π)
dπ =

e−βE(π)

Z(β)
dπ,

where β is the inverse temperature multiplied by the Boltzmann weight, and Z(β)

is the partition fun
tion of the dire
ted polymer and the integration goes over the

spa
e of all possible paths. If β = 0, this is just a uniform 
hoi
e. It is 
alled the

ground state, if β = ∞, and in this 
ase all the weight is divided among the paths

that minimize the energy fun
tion, so it models the prin
iple of minimum energy.

The reason of the great interest is the relation to KPZ equation (1.2). This equa-

tion is a non-linear sto
hasti
 partial di�erential equation (PDE) and it is not well

posed, meaning that we a priori do not know about the regularity of its solution

be
ause of the non-linear term. However, the Hopf-Cole solution formally solves

the equation in the following way: Consider the solution to the sto
hasti
 heat

equation (SHE) (De�nition 2.7). Take its logarithm (it exists) and apply It�'s

formula for that. Then it turns out that the logarithm of the solution to the SHE

is formally the solution to the KPZ equation. Due to regularity problems we do

not know if this solution exists for an arbitrary initial 
ondition. However Martin

Hairer's work [4℄ in this area was awarded the Fields medal in 2014. In our work

the partition fun
tion of a 
ontinuum dire
ted random polymer is the solution to

the SHE with initial data Z0(X). Furthermore, the free energy is given by the

Hopf-Cole solution to the KPZ equation with initial data ln(Z0(X)). So the free

energy is simply the logarithm of the partition fun
tion and so we work with them

and with the SHE and KPZ equations inter
hangeably.

As the solution of the KPZ equation is investigated in this work, it is also related

to the KPZ universality 
lass. The KPZ universality 
lass was introdu
ed in the


ontext of studying the motion of growing interfa
es in a 1986 paper of Kardar,

Parisi and Zhang [5℄ whi
h has sin
e been 
ited thousands of times in both the

mathemati
s and physi
s literature. The work was based on studying a 
ontinuum

sto
hasti
ally growing height fun
tion given in terms of a sto
hasti
 PDE whi
h

is now known as the KPZ equation. The time derivative of the height fun
tion
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depends on three fa
tors: smoothing (the Lapla
ian), rotationally invariant, slope

dependent, growth speed (the square of the gradient), noise (spa
e-time white

noise). A growth model is 
onsidered to be in the KPZ universality 
lass if its

long time behavior is similar to that of the KPZ equation itself. There are dis-


rete mathemati
al models that share the three 
hara
terizing properties of the

universality 
lass and that are expe
ted to be in this 
lass. A

ording to the KPZ

universality 
onje
ture these models have similar �u
tuation and statisti
s prop-

erties. For some of them it was shown that their long time behavior is indeed

similar to that of the KPZ equation, with 
ertain initial data. Su
h a model is e.g.

the model for intera
ting parti
le systems and simple ex
lusion pro
esses [6℄.

The polymer model we are working with is of 
ourse also expe
ted to be in the

universality 
lass, sin
e in our 
ase the polymer's free energy is the solution to the

KPZ equation itself. The KPZ universality 
onje
ture says that the s
aling fa
tor

T 1/3
for the �u
tuation and the limiting �u
tuation statisti
s (in our 
ase the

Borodin-Pé
hé distribution from De�nition 2.8) should not depend on the details

of the model.

Dire
ted polymers

Let us give an outline, that mentions di�erent types of polymer models, and some

results showing what is known in this area. The importan
e of this topi
 lies

in the relation between dire
ted random polymers and the Kardar-Parisi-Zhang

(KPZ) equation and universality 
lass. An important progress was possible thanks

to the existen
e of models with exa
t solvability properties, that is models for

whi
h, exa
t 
omputations are possible. (E.g. giving a Fredholm-determinant

formula for the partition fun
tion as one 
an see it later.) Properties that might

make exa
t 
al
ulations possible are e.g. the exa
tly known stationary measure,

the existen
e of 
ombinatorial 
orresponden
e (Robinson-S
hensted-Knuth (RSK)


orresponden
e and geometri
 RSK (gRSK) 
orresponden
e) or the Bethe ansatz
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integrability. A re
ent arti
le [7℄ summarizes the main results in 
onne
tion with

dire
ted polymers and their exa
t solvability. Some of them are listed here.

The �rst dis
overed exa
tly solvable model of dire
ted polymers on the square

latti
e at �nite temperature was the Log-Gamma polymer. It was introdu
ed be-


ause of the possibility of writing down exa
tly its stationary measure [8℄. It was

later shown that the model is exa
tly solvable using the gRSK 
orresponden
e [9℄.

The Stri
t-Weak polymer, introdu
ed shortly after, also enjoys these two proper-

ties [10℄, that is its stationary measure is known and the gRSK 
orresponden
e

is appli
able. The third exa
t solvability property, namely the Bethe ansatz in-

tegrability has been shown for the re
ently dis
overed Beta [11℄ and Inverse-Beta

polymers [12℄ (and a work on the stationary measure of the Beta polymer is 
ur-

rently in preparation [13℄). Present work is about the O'Connel-Yor semi-dis
rete

dire
ted polymer and about the 
ontinuum dire
ted random polymer (CDRP).

Exa
t solvability properties have been published also about these models. The

stationary measure of the O'Connell-Yor semi-dis
rete dire
ted polymer is known

[14℄ and it is solvable using the gRSK 
orresponden
e [15℄. Furthermore, the


ontinuum dire
ted random polymer has an exa
tly known stationary measure:

starting from an initial 
ondition su
h that the free energy of the dire
ted polymer

performs a Brownian motion, it remains so at all times [16℄.

Considering models with exa
t solvable properties, the following topi
 is of great

interest: the exa
t distribution of the �u
tuations of the free energy at large

s
ale. This is in fa
t the question we investigate in this work. In the literature this

problem is approa
hed with the RSK/gRSK 
orresponden
e [17℄ and also with the

Bethe ansatz integrability [11℄. However our investigation relies on earlier results

for slightly di�erent models that 
an be validated for our 
ase. So the already

existing exa
t 
omputations in this area gave the motivation and the ideas for our

work.

Now let us turn to the model we are working with. Our main fo
us is on the

large time behavior of the free energy of a 
ontinuum dire
ted random polymer.

This CDRP is the s
aling limit of a semi-dis
rete polymer, investigated in [2℄. The
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semi-dis
rete model is a mixture of the O'Connel-Yor semi-dis
rete and the Log-

Gamma dis
rete dire
ted random polymers. Our dis
ussion relies on the results

of [2℄ and [1℄.

In [1℄ the O'Connel-Yor model was 
onsidered without the log-gamma weights.

The large time limit of the free energy was determined in this 
ase. In [2℄ a Fred-

holm determinant formula was given for the Lapla
e transform of the partition

fun
tion of the above mentioned mixture of polymers. Then the model was re-

stri
ted to the 
ase when there is only one level of perturbation (one 
olumn of

log-gamma variables and one Brownian motion with nonzero drift). Also it was

modi�ed su
h that the log-gamma weight in the 
orner (whi
h explodes in the

limit that approa
hes the stationary solution) was repla
ed by zero. In this set-

ting another Fredholm determinant formula was given for the Lapla
e transform

of the 
ontinuous partition fun
tion.

Present work proves similar statements for the general semi-dis
rete dire
ted poly-

mer model with log-gamma boundary sour
es (it was 
alled mixture of polymers

above). We give a Fredholm determinant formula for the Lapla
e transform of the


ontinuous partition fun
tion (using e.g. the formula for the semi-dis
rete one,

given in [2℄). Furthermore, our main purpose is to give the distribution of the

�u
tuations of the free energy at large s
ale. First a restri
tion will be made for

the 
ase with one level of boundary perturbation, just as it was in [2℄. Then we

extend to the general 
ase using similar ideas.

Let us give now a short outline of our work. In Chapter 1 we make 
lear the mathe-

mati
al 
on
epts that are 
onstantly used throughout, in
luding integral operators,

Fredholm determinants, the KPZ equation and the sto
hasti
 heat equation, and

we re
all the de�nition of 
onvergen
e in distribution and Lebesgue's dominated


onvergen
e theorem.

We introdu
e the semi-dis
rete dire
ted random polymer model in Chapter 2. The

semi-dis
rete and 
ontinuous partition fun
tions and free energies are de�ned here.

Besides these, we introdu
e a spe
ial initial data for the sto
hasti
 heat equation,
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whi
h has an important role later on. Our main result, Theorem 2.9 is also stated

in this 
hapter.

In Chapter 3 we restri
t ourself to the 
ase when there is only one level of per-

turbations. For this 
ase we �rst determine a Fredholm determinant formula for

the Lapla
e transform of the 
ontinuous partition fun
tion in Theorem 3.4. Then

Theorem 3.9, the spe
ial 
ase of Theorem 2.9 is proved. Finally we extend this

proof to the general 
ase in Chapter 4.



Chapter 1

Preliminaries

In this 
hapter we would like to make 
lear the mathemati
al 
on
epts we are

working with throughout this work. These are the notions of pure fun
tional

analysis, probability and sto
hasti
s. Polymer models are explained in the next


hapter.

1.1 Integral operators and Fredholm determinants

An important result of this work is that we give a Fredholm determinant formula

for the Lapla
e transform of the 
ontinuum dire
ted random polymer's partition

fun
tion. Before introdu
ing the notion for a Fredholm determinant, integral op-

erators need to be de�ned.

De�nition 1.1. [18℄ An integral operator is a map f 7→ Af where the law of the


orresponden
e A is given by the integral

Af(t) =

∫

D

G(t, τ, f(τ))dτ, t ∈ D (1.1.1)

where D is a given measurable set of �nite Lebesgue measure in a �nite dimensional

spa
e and G(t, τ, u), t, τ ∈ D, −∞ < u < ∞, is a given measurable fun
tion. It is

assumed that G and f are fun
tions satisfying 
onditions that ensure the existen
e

1
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of the integral in (1.1.1). If G(t, τ, u) is a non-linear fun
tion in u, then we have

a non-linear integral operator. If G(t, τ, u) = K(t, τ)u, then (1.1.1) takes the form

Af(t) =

∫

D

K(t, τ)f(τ)dτ, t ∈ D, (1.1.2)

the generated operator is 
alled a linear integral operator and the fun
tion K is


alled its kernel.

Now we 
an turn to the Fredholm determinants. This is how one 
an 
ompute the

determinant of an operator. In our 
ase the operator is always a linear integral

operator, so we write down the de�nition for this 
ase.

De�nition 1.2. Fredholm-determinant [2℄:

Fix a Hilbert spa
e L2(X, µ) where X is a measure spa
e and µ is a measure

on X. Let K be an integral operator a
ting on f(·) ∈ L2(X) by Kf(x) =
∫

X
K(x, y)f(y) dµ(y), where K(x, y) is the kernel of K and we will assume through-

out that K(x, y) is 
ontinuous in both x and y. Assuming its 
onvergen
e, the

Fredholm determinant expansion of 1+K is de�ned as

det(1+K)L2(X) = 1 +
∞
∑

n=1

1

n!

∫

X

· · ·
∫

X

det [K(xi, xj)]
n
i,j=1

n
∏

i=1

dµ(xi).

Now let us give an example for an important integral kernel, and for the Fredholm

determinant it de�nes. The Airy fun
tion Ai(x) is the solution of the Airy equation

y′′ = xy. It has an integral representation on the 
omplex plane:

Ai(z) :=
1

2πi

∞e
π
3 i

∫

∞e−
π
3 i

e
t3

3
−tzdt. (1.1.3)

and the Airy kernel is given by

KAi(x, y) :=

∞
∫

0

Ai(x+ λ)Ai(y + λ)dλ. (1.1.4)
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The Fredholm determinant, this kernel de�nes, is the distribution fun
tion of the

Tra
y-Widom distribution. It is the limiting distribution of the largest eigenvalue

of a random matrix from the Gaussian Unitary Ensemble (GUE). Let A denote

the integral operator given by the Airy kernel KAi. Then the distribution fun
tion

FGUE of the Tra
y-Widom distribution 
an be written as the following Fredholm

determinant:

FGUE(r) = det (1− A)L2(r,∞) , r ∈ R (1.1.5)

Beyond that this is an important example in general, it is also signi�
ant for us.

We de�ne the Borodin-Pé
hé distribution later on. Its distribution fun
tion is also

given by a Fredholm determinant, in fa
t, its kernel is a generalized Airy kernel.

Furthermore, the Borodin-Pé
hé distribution is related to random matrix theory.

In Chapter 2 we mention the role of the Tra
y-Widom distribution in the KPZ

universality 
lasses, whi
h the Borodin-Pé
hé distribution also has, being the large

time limiting statisti
s for the free energy �u
tuation.

1.2 Kardar-Parisi-Zhang (KPZ) equation

As we mentioned in the introdu
tion Kardar, Parisi and Zhang proposed the

sto
hasti
 evolution equation for a height fun
tion F(T,X) ∈ R (T ∈ R+ is

time and X ∈ R is spa
e)

∂tF(T,X) =
1

2
∂2
XF(T,X) +

1

2
(∂XF(T,X))2 + ξ(T,X), F(0, X) = F0(X),

(1.2.1)

where ξ denotes the spa
e-time Gaussian white noise with

E [ξ(T,X)ξ(S, Y )] = δ(T − S)δ(X − Y ). It 
an also be found in the introdu
tion

that this sto
hasti
 partial di�erential equation is ill-posed. However one 
an give

a formal solution indire
tly via the well-posed sto
hasti
 heat equation (SHE):

∂TZ(T,X) = 1
2
∂2
XZ(T,X) + Z(T,X)ξ(T,X), Z(0, X) = Z0(X). (1.2.2)



Preliminaries 4

Now the Hopf-Cole solution to the KPZ equation is de�ned as

F(T,X) = lnZ(T,X), F(0, X) = lnZ(0, X), (1.2.3)

where Z(T,X) is the solution to the SHE. In the 
ontinuum dire
ted random

polymer model we are going to investigate, Z(T,X) is the partition fun
tion and

F(T,X) is the free energy. It is going to be explained in Chapter 2, why Z 
an

be 
alled a partition fun
tion.

1.3 Convergen
es

Convergen
e in distribution and the inter
hangeability of the integral and the

limit will be essential in our dis
ussion. For instan
e, in our main statement The-

orem 2.9 we need to prove a 
onvergen
e in distribution. Furthermore, by proving


onvergen
e of Fredholm determinants we need nothing else but upper bounds and

Lebesgue's dominated 
onvergen
e theorem. So let us re
all the de�nition and the

theorem.

De�nition 1.3. A sequen
e X1, X2, . . . of random variables is said to 
onverge in

distribution to a random variable X, if

lim
n→∞

Fn(x) = F (x), ∀x ∈ R,

where Fn and F are the 
umulative distribution fun
tions of Xn and X respe
tively.

Convergen
e in distribution 
an be de�ned equivalently by terms of expe
tations

in the following way:

De�nition 1.4. A sequen
e X1, X2, . . . of random variables 
onverges in distri-

bution to a random variable X if and only if

lim
n→∞

E [f(Xn)] = E [f(X)] ,

for any bounded, 
ontinuous fun
tion f .
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Theorem 1.5 (Lebesgue dominated 
onvergen
e theorem). Let {fn} be a sequen
e
of real-valued measurable fun
tions on a measure spa
e (S,A, µ). Suppose that the

sequen
e 
onverges pointwise to a fun
tion f and is dominated by some integrable

fun
tion g in the sense that |fn(x)| ≤ g(x) for all n in the index set and for all

x ∈ S. Then f is integrable and

lim
n→∞

∫

S

fndµ =

∫

S

fdµ

, moreover,

lim
n→∞

∫

S

|fn − f |dµ = 0.



Chapter 2

Dire
ted random polymer models

2.1 Semi-dis
rete dire
ted random polymer with

boundary sour
es

The basi
 setup presented here is the same as the one published in [2℄. However the

main results are valid for a slightly di�erent model. Let us see �rst the des
ription

of the model from [2℄.

2.1.1 Semi-dis
rete up-right paths

This model is a mixture of models introdu
ed by O'Connell and Yor [14, 15℄ and

Seppäläinen [8℄. Indeed, taking M = 0 and τ > 0 re
overs the semi-dis
rete

dire
ted random polymer of [15℄ while taking M > 0 and τ = 0 re
overs the

log-gamma dis
rete dire
ted random polymer of [8℄.

For θ > 0, a random variable X is distributed as Γ(θ) (written X ∼ Γ(θ)) if it has

density with respe
t to Lebesgue measure given by

d

dx
P(X ≤ x) = 1{x>0}

1

Γ(θ)
x−θ−1e−x

6
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ω−1,1ω−2,1ω−M,1

ω−1,Nω−2,Nω−M,N (τ, N)

B1

B2

B3

BN

s2 s3 sN−1 τ

φ

Figure 2.1: Illustration of the semi-dis
rete dire
ted random polymer with

log-gamma boundary sour
es. The thi
k solid line is a possible dire
ted random

polymer path φ from (−M, 1) to (τ,N). Its energy is given by (2.1.1). The

random variables ω−k,n are distributed as − ln Γ(αk − an), while the Brownian

motions B1, . . . , BN have drifts a1, . . . , aN respe
tively.

and a random variableW is distributed as − ln Γ(θ) (writtenW ∼ − ln Γ(θ), 
alled

log-gamma random variable) if W = − lnX for X ∼ Γ(θ).

FixN ≥ 1 andM ≥ 0. Let a = (a1, . . . , aN ) ∈ RN
and α = (α1, . . . , αM) ∈

(

R+

)M

be su
h that αk − an > 0 for all 1 ≤ n ≤ N and 1 ≤ k ≤ M . Consider the setting

as in Figure 2.1, where the horizontal axis is dis
rete on the left of 0 and 
ontinuous

on the right of 0, while the verti
al axis is dis
rete. In this semi-dis
rete setting

we introdu
e randomness in the following way. For all 1 ≤ k ≤ M and 1 ≤ n ≤ N

let ω−k,n ∼ − ln Γ(αk − an) be independent log-gamma random variables spe
i�ed

by the parameters a, α; and for all 1 ≤ n ≤ N let Bn be independent Brownian

motions with drift an. The ω−k,n 
an be thought of as sitting at the latti
e points

(−k, n) while the Bn 
an be thought of as sitting along the horizontal rays from

(0, n). We denote by P and E the probability measure and expe
tation with respe
t

to these random variables.

A dis
rete up-right path φd
from (i1, j1) to (iℓ, jℓ) (written as φ

d : (i1, j1) ր (iℓ, jℓ))

is an ordered set of points

(

(i1, j1), (i2, j2), . . . , (iℓ, jℓ)
)

with ea
h (ik, jk) ∈ Z2
and

ea
h in
rement (ik, jk) − (ik−1, jk−1) either (1, 0) or (0, 1). A semi-dis
rete up-

right path φsd
from (0, n) to (τ, N) (written as φsd : (0, n) ր (τ, N)) is a union

of horizontal line segments

(

(0, n) → (sn, n)
)

∪
(

(sn, n + 1) → (sn+1, n + 1)
)

∪
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· · ·
(

(sN−1, N) → (τ, N)
)

where 0 ≤ sn < sn+1 < · · · < sN−1 ≤ τ . It is 
onvenient

to think of φsd
as a surje
tive non-de
reasing fun
tion from [0, τ ] onto {n, . . . , N}.

As we are working with a mixture of a dis
rete and semi-dis
rete latti
e, our up-

right paths φ will be 
omposed of dis
rete portions φd
adjoined to a semi-dis
rete

portions φsd
in su
h a way that for some 1 ≤ n ≤ N , φd : (−M, 1) ր (−1, n) and

φsd : (0, n) ր (τ, N).

2.1.2 Energy and partition fun
tion

To an up-right path, des
ribed above, we asso
iate an energy:

E(φ) =
∑

(i,j)∈φd

ωi,j +

∫ τ

0

dBφsd(s)(s)

=
∑

(i,j)∈φd

ωi,j +Bn(sn)+

+
(

Bn+1(sn+1)− Bn+1(sn)
)

+ . . .+
(

BN(τ)−BN (sN−1)
)

.

(2.1.1)

This energy is random, as it is a fun
tion of the ωi,j and Bk random variables.

We asso
iate a Boltzmann weight eE(φ)
to ea
h path φ. The polymer measure on

φ is proportional to this weight. The normalizing 
onstant, or polymer partition

fun
tion, is written as Z
a,α(τ, N) and is equal to the integral of the Boltzmann

weight over the ba
kground measure on the path spa
e φ. Here a and α denote

the drift ve
tor and the parameters of the log-gamma random variables. Formally

it 
an be written as in the de�nition below.

De�nition 2.1. The partition fun
tion for the semi-dis
rete dire
ted random poly-

mer with log-gamma boundary sour
es is given as

Z
a,α(τ, N) =

N
∑

n=1

∑

φd:(−M,1)ր(−1,n)

∫

φsd:(0,n)ր(τ,N)

eE(φ)dφsd

where E(φ) is given by (2.1.1), the dependen
e on a and α is des
ribed in Se
-

tion 2.1.1 and dφsd
represents the Lebesgue measure on the simplex
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0 ≤ sn < sn+1 < · · · < sN−1 ≤ τ with whi
h φsd
is identi�ed. If n = N , take the


ounting measure (be
ause there is only one possible φsd
path).

The other important quantity beside Z
a,α(τ, N) is its logarithm whi
h is 
alled the

free energy:

De�nition 2.2.

F
a,α(τ, N) = ln (Za,α(τ, N)) (2.1.2)

In order to see new results the following Fredholm determinant formula, provided

in [2℄, is a key. The 
ondition N ≥ 9 was a te
hni
al detail needed in the proof

of this formula. However, this 
ondition has no meaningful role, as N is sent to

in�nity in our further dis
ussion .

Theorem 2.3. [2, Thm. 2.1℄ Fix N ≥ 9, M ≥ 0 and τ > 0. Let

a = (a1, . . . , aN) ∈ R
N

and α = (α1, . . . , αM) ∈
(

R+

)M
be su
h that αk − an > 0

for all 1 ≤ n ≤ N and 1 ≤ k ≤ M . For 1 ≤ k ≤ M and 1 ≤ n ≤ N let

ω−k,n ∼ − ln Γ(αk − an) be independent log-gamma random variables and for all

1 ≤ n ≤ N let Bn be independent Brownian motions with drift an. Then for all

u ∈ C with positive real part

E
[

e−uZa,α(τ,N)
]

= det (1+Ku)L2(Ca;α;ϕ)

where the operator Ku is de�ned in terms of its integral kernel

Ku(v, v
′) =

=
1

2πi

∫

Dv

dsΓ(−s)Γ(1 + s)

N
∏

n=1

Γ(v − an)

Γ(s+ v − an)

M
∏

k=1

Γ(αk − v − s)

Γ(αk − v)

usevτs+τs2/2

v + s− v′
.

The 
ontour Ca;α;ϕ is given in De�nition 2.4 with any ϕ ∈ (0, π/4), as is the


ontour Dv. The meaning of det (1+Ku)L2(Ca;α;ϕ)
is explained in Defnition 1.2.

The 
ontours in Theorem 2.3 are de�ned su
h that they do not interse
t the

singularities and that the de
ay is fast enough for the integral to be 
onvergent.
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PSfrag repla
ements

Ca;α;ϕ v +Dv Dv

µ η

v
R

2dα'sa's 0
ϕ

Figure 2.2: (Left) The 
ontour Cη;ϕ (dashed) where the bla
k dots symbolize

the set of singularities of Ku(v, v
′) in v at ∪1≤n≤N{an, an − 1, . . . } 
oming from

the fa
tors Γ(v− an). The 
ontour v+Dv is the solid line. (Right) The 
ontour

Dv where the light gray dots are the singularities at {1, 2, . . . } and the dark gray

dots are those at ∪1≤m≤M{αm− v, αm+1− v, . . . } 
oming from Γ(αm − v − s).

De�nition 2.4. Let a = (a1, . . . , aN) ∈ RN
and α = (α1, . . . , αM) ∈

(

R>0

)M

be su
h that αm − an > 0 for all 1 ≤ n ≤ N and 1 ≤ m ≤ M . Set µ =

1
2
max(a) + 1

2
min(α) and η = 1

4
max(a) + 3

4
min(α). Then, for all ϕ ∈ (0, π/4),

we de�ne the 
ontour Ca;α;ϕ = {µ+ ei(π+ϕ)y}y∈R+ ∪ {µ+ ei(π−ϕ)y}y∈R+. The 
on-

tours are oriented so as to have in
reasing imaginary part. For every v ∈ Ca;α;ϕ
we 
hoose R = −Re(v) + η, d > 0, and de�ne a 
ontour Dv as follows: Dv goes

by straight lines from R − i∞, to R − id, to 1/2 − id, to 1/2 + id, to R + id, to

R+ i∞. The parameter d is taken small enough so that v +Dv does not interse
t

Ca;α;ϕ. See Figure 2.2 for an illustration.

2.2 Continuum dire
ted random polymer (CDRP)

The s
aling limit of a semi-dis
rete partition fun
tion (or free energy) is the so-

lution to the SHE, see (1.2.2) (or to the KPZ equation, (1.2)) with a parti
ular

initial data. This is the statement of Theorem 3.6 and more generally Theorem 4.2.

The de�nitions of the partition fun
tion and free energy for the CDRP are de�ned

based on this fa
t.

De�nition 2.5. The partition fun
tion Z(T,X) for the 
ontinuum dire
ted ran-

dom polymer with boundary perturbation lnZ0(X) is given by the solution to the
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sto
hasti
 heat equation (SHE, (1.2.2)) with multipli
ative Gaussian spa
e-time

white noise and Z0(X) initial data. The initial data Z0(X) may be random but is

assumed to be independent of the spa
e-time white noise.

Now we explain why Z(T,X) is indeed a partition fun
tion, based on [1℄. This


an be seen by looking at the Feynman-Ka
 representation of Z(T,X) [20℄:

Z(T,X) = EB(X)

[

Z0(B(0)) : exp :

{
∫ T

0

ξ(t, B(t))dt

}]

, (2.2.1)

where the expe
tation E is taken over the law of a Brownian motion B whi
h

is running ba
kwards from time T and position X . The : exp : is the Wi
k

exponential, see the de�nition e.g. in [20℄. Note that the randomness of the spa
e-

time white noise remains in this formula. By time reversal we may 
onsider this

expe
tation as the partition fun
tion for Brownian bridges whi
h 
an depart at

time 0 from any lo
ation B(0) ∈ R and must end at X at time T , pi
king up the

weights of the spa
e-time white noise ξ on the path. Here the Wi
k exponential is

the weight of a path, and if we want to 
hoose a path randomly, the normalizing


onstant should be the integral of the weights over the spa
e of all possible paths.

This is exa
tly what we have on the right-hand side (RHS) of (2.2.1), and this is

how one 
an see that this should be the s
aling limit of the semi-dis
rete partition

fun
tion.

As long as Z0 is almost surely positive, it follows from work of Müller [21℄ that,

almost surely, Z(T,X) is positive for all T > 0 and X ∈ R. Hen
e we 
an take its

logarithm.

De�nition 2.6. For an almost surely positive Z0 de�ne the free energy for the


ontinuum dire
ted random polymer with initial 
ondition lnZ0(X) as

F(T,X) = ln (Z(T,X)) , (2.2.2)

that is as the Hopf-Cole solution of the KPZ equation (1.2).
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Let us present now in De�nition 2.7 a parti
ular initial data whi
h is going to

have a role later on. In fa
t this is the initial data that is needed to give the

s
aling limit of a typi
al semi-dis
rete random polymer with log-gamma boundary

sour
es. However, this is not the most natural initial data. I. Corwin summarizes

the most fundamental initial data in [22℄ and the knowledge in 
onne
tion with

their �u
tuations. The initial data are given in terms of the well-posed SHE in

that work. Here we list the most essential ones.

The initial data Z(0, X) to the SHE is 
alled the wedge initial data. The �u
tu-

ation of the solution to the 
orresponding KPZ equation is distributed a

ording

to FGUE on the large s
ale, that is a

ording to the 
umulative distribution fun
-

tion of the Tra
y-Widom random matrix distribution for the Gaussian Unitary

Ensemble [23℄. The Z(0, X) = 1 is 
alled the �at initial data, and the �u
tu-

ations' distribution at large s
ale is given by FGOE, the 
umulative distribution

fun
tion of the Tra
y-Widom GOE (Gaussian Orthogonal Ensemble) distribution

[24℄. Finally Z(0, X) = eB(X)
is 
alled the stationary initial data. The limiting

distribution for the �u
tuation is also known in this 
ase [25℄. Now let us return

to the initial data that we are working with.

De�nition 2.7. Fix m ≥ 1 and M ≥ 0. Let b = (b1, . . . , bm) ∈ Rm
and

β = (β1, . . . , βM) ∈
(

R+

)M
be su
h that bn < βk for all 1 ≤ n ≤ m and

1 ≤ k ≤ M . Let Bb,1, Bb,2, . . . , Bb,m be independent Brownian motions with

drifts b1, b2, . . . , bm, and let Bβ,1, Bβ,2, . . . , Bβ,M be independent Brownian motions

with drifts β1, β2, . . . , βM . Furthermore, let ω−i,j ∼ − ln Γ(βi − bj) be indepen-

dent log-gamma variables. Let us 
reate now the random variables Zb,β(X,m) and

Z̃
β,b(−X,M) for all X ≥ 0 jointly, using the above de�ned Brownian motions and

log-gamma variables:

Let Zb,β(X,m) be the partition fun
tion from De�nition 2.1, using

Bb,1, Bb,2, . . . , Bb,m and ω−i,j (i = 1, . . . ,M , j = 1, . . . , m). Let Z̃
β,b(−X,M) be

also a semi-dis
rete partition fun
tion but with the following modi�
ation: in the

semi-dis
rete polymer with log-gamma boundary sour
es, the log-gamma weights

are ω−i,j ∼ − ln Γ(sj− ti) instead of − ln Γ(ti−sj). Thus by 
reating Z̃
β,b(−X,M)

we use the Brownian motions Bβ,1, Bβ,2, . . . , Bβ,M and the log-gamma variables
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ω−i,j (i = 1, . . . ,M , j = 1, . . . , m). Now

Zb,β
0 (X) =







Z
b,β(X,m), if X > 0

Z̃
β,b(−X,M), if X ≤ 0,

(2.2.3)

Note that taking the modi�
ation for Z̃
β,b

into a

ount, we have indeed the same

log-gamma variables for positive and negative X-s. In both 
ases the parameters

of the gamma distributions are in the form of βi−bj , only the log-gamma 
olumns

be
ome log-gamma rows (and the rows be
ome 
olumns) in the modi�ed setup.

Let us introdu
e here the notations Zb,β(T,X) and F b,β(T,X). They will denote

the partition fun
tion and free energy of the CDRP 
orresponding to the initial

data de�ned above in De�nition 2.7.

2.3 Large time limit � the main result

The main theorem of this work gives the limiting distribution of the free energy

of the CDRP as time goes to in�nity. The distribution fun
tion is given by a

Fredholm determinant formula whose kernel was given by Borodin and Pé
hé in

[26℄. It is referred to as Borodin-Pé
hé distribution throughout.

De�nition 2.8. Fix m ≥ 1 and M ≥ 0. Let b = (b1, . . . , bm) ∈ Rm
and

β = (β1, . . . , βM) ∈
(

R+

)M
, and assume that

b1 ≤ b2 ≤ · · · ≤ bm < β1 ≤ β2 ≤ · · · ≤ βM . The Borodin-Pé
hé distribution is

de�ned as

FBP,b,β(r) = det (1−KBP,b,β)L2(r,∞) ,

where

KBP,b,β(x, y) =
1

(2πi)2

∫

γ

dw

∫

Γ

dz
1

z − w

ez
3/3−zy

ew3/3−wx

M
∏

k=1

w − βk

z − βk

m
∏

n=1

z − bn
w − bn

. (2.3.1)

Let c > 0 be arbitrary. Then γ, the integration 
ontour for w, goes from −c− i∞
to −c+i∞ su
h that it 
rosses the real axis between bm and βM . The other 
ontour
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for z, Γ goes from c− i∞ to c+ i∞ su
h that it also 
rosses the real axis between

bm and βM and it does not interse
t γ.

In [26℄ this distribution was introdu
ed as a modi�
ation of the Airy kernel with

two sets of parameters. This is a generalization of the Airy kernel and also of

the extended (time-dependent) version of that. It was obtained as a limit of a

dire
ted per
olation in a quadrant whi
h has both defe
tive rows and 
olumns.

The paper also predi
ts that the extended kernel should appear as a s
aling limit

also in random matrix theory, however they 
ould not derive it yet.

Let us state now Theorem 2.9, the main result of this work. It gives the large time

limit of the CDRP free energy with the initial data de�ned before.

Theorem 2.9. Let b = (b1, . . . , bm) ∈ Rm
and β = (β1, . . . βM) ∈ RM

+ be real

ve
tors su
h that bj < βi for all 1 ≤ j ≤ m and 1 ≤ i ≤ M . Consider the

free energy of the CDRP from De�nition 2.6 with boundary perturbation lnZb,β
0 ,

where Zb,β
0 is de�ned in De�nition 2.7; and with drift ve
tors σb and σβ, where

σ = (2/T )1/3. Then for any r ∈ R,

lim
T→∞

P

(Fσb,σβ(T, 0) + T/24

(T/2)1/3
≤ r

)

= FBP,b,β(r), (2.3.2)

where FBP,b,β is the 
umulative distribution fun
tion of the Borodin-Pé
hé distri-

bution (see De�nition 2.8).

So we took the solution to the KPZ equation with a parti
ular initial data, and

the theorem 
laims that its �u
tuation has Borodin-Pé
hé distribution at large

s
ale. As mentioned above, this distribution appeared as the limit of a per
olation

model whi
h is in the KPZ universality 
lass. Hen
e our theorem is in a

ordan
e

with the universality 
onje
ture.

In the next 
hapter the simplest m = M = 1 
ase is investigated. After under-

standing this instan
e, we will prove Theorem 2.9.



Chapter 3

Spe
ial 
ase with one level of

boundary perturbations

In a usual semi-dis
rete dire
ted random polymer model, there are M 
olumns of

log-gamma random variables and N independent Brownian motions with (possi-

bly) di�erent drifts. Now we restri
t ourselves to the 
ase when there is only one


olumn of log-gamma variables and every drift is zero ex
ept the �rst one.

A similar model was investigated in [2℄. The only di�eren
e between that model

and ours is the following: The former setup repla
es the weight in the 
orner (in

(−1, 1)) by zero, whereas we have a log-gamma weight there. Nevertheless we

strongly rely on that paper and use the de�nitions and main theorems to �nd the

results valid for our model.

There are two main purposes of this 
hapter. The �rst one is to give a Fredholm-

determinant formula for the Lapla
e transform of a parti
ular CDRP partition

fun
tion in Theorem 3.4. The se
ond aim is to give the large time limit of the

free energy of the same CDRP in Theorem 3.9. This is our main result and main

proof. Later, the proof of the more general statement, Theorem 2.9 will be very

similar. The partition fun
tion (or free energy) in question is the solution to the

SHE (or KPZ) with initial data Zb,β
0 (X) (or lnZb,β

0 (X)) given in De�nition 2.7

with m = M = 1.

15
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3.1 Initial data

So let us �rst determine Zb,β
0 (X) in 
ase of m = M = 1, be
ause it is needed

throughout this 
hapter. If X > 0 we need to 
ompute Z
b,β(X, 1), so a partition

fun
tion of a polymer whi
h has only one allowed up-right path. Indeed, an up-

right path in this setting starts from (−1, 1), be
ause M = 1, and ends in (X, 1),

be
ause m = 1, thus no upward jump is allowed. What remains is a horizontal

path, φ from (−1, 1) to (X, 1), with one log-gamma weight ω−1,1 ∼ − ln Γ(β − b)

and one Brownian in
rement, where the Brownian motion has drift b (let us denote

it by Bb). Looking at (2.1.1) it 
an be seen that

E(φ) = ω−1,1 +Bb(X),

sin
e there are no "sk" jumping points. Hen
e in De�nition 2.1 the sums have only

one term and the integral just with respe
t to the 
ounting measure, resulting

Z
b,β(X,m) = Z

b,β(X, 1) = eω−1,1+Bb(X). (3.1.1)

If X ≤ 0, then similarly, there is only one path with energy

E(φ) = ω−1,1 +Bβ(X),

where Bβ is a Brownian motion with drift β. Again ω−1,1 ∼ − ln Γ(β− b), be
ause

of the modi�
ation in De�nition 2.7. Therefore

Z̃
β,b(X,M) = Z̃

β,b(X, 1) = eω−1,1+Bβ(X). (3.1.2)

Knowing all of these the 
ontinuous partition fun
tion and free energy 
an be

de�ned with the above 
al
ulated initial 
ondition. This partition fun
tion was

investigated also in [2℄.

De�nition 3.1. Let us denote by Zb,β
1 (T,X) the solution to the SHE (see (1.2.2))

with initial data Z0(X) = exp(B(X) + ω−1,1), where B(X) is a two-sided Brown-

ian motion with drift β to the left of 0 and drift b to the right of 0, with β > b,
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and ω−1,1 ∼ − ln Γ(β − b) is a log-gamma random variable.

Denote furthermore F b,β
1 (T,X) the free energy for the same CDRP.

F b,β
1 (T,X) = ln(Zb,β

1 (T,X)) with F0(X) = B(X) + ω1,1

On two-sided Brownian motion we understand the following:

B(X) = 1X≤0

(

Bl(X) + βX
)

+ 1X>0

(

Br(X) + bX
)

where Bl : (−∞, 0] → R is a

Brownian motion without drift pinned at Bl(0) = 0, and Br : [0,∞) → R is an

independent Brownian motion pinned at Br(0) = 0.

Note that this de�nition is in a

ordan
e with (3.1.1) and (3.1.2). We also intro-

du
e a notation for the semi-dis
rete partition fun
tion in 
ase of m = M = 1.

De�nition 3.2. Denote Z
a,α
1 (τ, N) the semi-dis
rete dire
ted random polymer par-

tition fun
tion with the following parameters: M = 1, a1 = a, an ≡ 0 for n > 1

and α1 = α > a.

3.2 Fredholm determinant formula

Before stating the �rst important result of this 
hapter and giving the Fredholm

determinant formula for the Lapla
e transform of Zb,β
1 , we need the kernel whi
h

de�nes this Fredholm determinant. The de�nition is general for

b1 ≤ b2 ≤ · · · ≤ bm < β1 ≤ β2 ≤ · · · ≤ βM , however the 
laims of this 
hapter are

stated for m = M = 1 (and b1 = b, β1 = β).

De�nition 3.3. Let b = b1, b2, . . . , bm) and β = (β1, β2, . . . , βM). Denote K
(σ)
b,β the

integral operator whose kernel is

K
(σ)
b,β (x, y) =

1

(2πi)2

∫

dw

∫

dz
σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew3/3−wx

M
∏

k=1

Γ(σz − βk)

Γ(σw − βk)

m
∏

n=1

Γ(σw − bn)

Γ(σz − bn)
,

where

σ = (2/T )1/3 , (3.2.1)
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and the integration 
ontour for w is from − 1
4σ

− i∞ to − 1
4σ

+ i∞ and 
rosses the

real axis between

bm
σ

and

β1

σ
. The other 
ontour for z goes from

1
4σ
− i∞ to

1
4σ
+i∞,

it also 
rosses the real axis between

bm
σ

and

β1

σ
and it does not interse
t the 
ontour

for w.

And now we provide the formula this se
tion intends to justify.

Theorem 3.4. Fix S with positive real part, T > 0, b < β real numbers and

assume that X = 0. Set σ as in (3.2.1). Then

E

[

exp
(

−Se
T
24Zb,β

1 (T, 0)
)]

= det
(

1−K
(σ)
b,β

)

L2(R+)
, (3.2.2)

where Zb,β
1 is the partition fun
tion for the CDRP (De�nition 3.1) and K

(σ)
b,β is

de�ned above in De�nition 3.3.

There are two main theorems that lead to the desired Fredholm-determinant for-

mula. The �rst one (Theorem 3.6) is the 
onvergen
e of the semi-dis
rete partition

fun
tions to the CDRP partition fun
tion. The se
ond one (Theorem 3.8) is the


onvergen
e of the Fredholm determinants des
ribing the Lapla
e transform of the

semi-dis
rete partition fun
tion (from Theorem 2.3). The proof of Theorem 3.4

will be qui
k as soon as we go through the mentioned results. However, some

preparation is needed before stating and applying them.

3.2.1 Convergen
e of the semi-dis
rete partition fun
tion

De�nition 3.5. Let Ψ(z) = d
dz
ln Γ(z) be the digamma fun
tion. For a given

θ ∈ R+, de�ne

κ(θ) := Ψ′(θ), f(θ) := θΨ′(θ)−Ψ(θ), c(θ) := (−Ψ′′(θ)/2)1/3.

We may alternatively parameterize θ ∈ R+ in terms of κ ∈ R+ as

θκ := (Ψ′)−1(κ) ∈ R+, fκ := inf
t>0

(κt−Ψ(t)) ≡ f(θκ), cκ := c(θκ).
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The theorem below gives the s
aling limit of the semi-dis
rete dire
ted random

polymer's partition fun
tion Z
a,α
1 (τ, N) from De�nition 3.2. The s
aling below is

the same as the one for the O'Connel-Yor model, given in [19℄:

Fix T > 0, X ∈ R and real numbers b < β. τ grows as

√
N and the s
aling fa
tor

C is an exponential fun
tion of N , T and X :

τ =
√
TN +X (3.2.3)

C(N, T,X) = exp

(

N +
1

2
(N − 1) ln(T/N) +

1

2

(√
TN +X

)

+X
√

N/T

)

.

(3.2.4)

Not only the variables of the partition fun
tion but also the parameters of the

polymer model are s
aled, in the following way:

a = ϑ+ b, α = ϑ+ β, (3.2.5)

where ϑ = θ√
T/N

≃
√

N/T + 1
2
, with De�nition 3.5.

This s
aling is used in the theorem and in the 
orollary below. Theorem 3.6,

the �rst important result we will employ, 
laims that the s
aled semi-dis
rete

partition fun
tion 
onverges to that of the CDRP with a parti
ular initial data

given in De�nition 3.1.

Theorem 3.6. [19℄ Fix T > 0, X ∈ R and real numbers b < β. Consider the

semi-dis
rete dire
ted random polymer in De�nition 3.2 with partition fun
tion

Z
a,α
1 (τ, N). Let the a and α parameters of the polymer be de�ned as in (3.2.5).

The s
aling fa
tor C(N, T,X) is given by (3.2.4). Then, as N goes to in�nity,

Z
a,α
1 (

√
TN +X,N)

C(N, T,X)
⇒ Zb,β

1 (T,X).

The 
onvergen
e is in distribution and Zb,β
1 (T,X) is the solution to the SHE with

initial data exp(B(X) + ω−1,1), see De�nition 3.1.

The proof of Theorem 3.4 is basi
ally that both sides of (3.2.2) are the limit of

E
[

euZ
a,α
1 (τ,N)

]

for some u. So let us rewrite Theorem 3.6 so that the limit is the
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exponent in (3.2.2). To do this let

u = Se−N− 1
2
(N−1) ln T

N
− 1

2

√
TN−X

√
N
T
+ T

24
−X

2
+X2

2T , (3.2.6)

where S ∈ C with positive real part. By 
omparing the exponents of C(N, T,X)

and u and by Theorem 3.6 it 
an be seen that

uZa,α
1 (

√
TN +X,N) ⇒ Se

X2

2T
+ T

24Zb,β
1 (T,X), as N → ∞ (3.2.7)

holds with the s
aling applied in the theorem. The following 
orollary shows

that this modi�
ation was useful, that is the left-hand side (LHS) of (3.2.2) 
an

be written as the limit of the Lapla
e transform of the semi-dis
rete partition

fun
tion.

Corollary 3.7. Fix T > 0, X ∈ R and real numbers b < β. Let Z
a,α
1 (τ, N) and

Zb,β
1 (T,X) be the partition fun
tions de�ned in De�nition 3.2 and in De�nition 3.1

respe
tively, and with parameters given by (3.2.5). Then for any S with positive

real part

E

[

e−uZa,α
1 (τ,N)

]

→ E

[

exp
(

−Se
X2

2T
+ T

24Zb,β
1 (T,X)

)]

, as N → ∞ (3.2.8)

where τ =
√
TN +X.

Proof. By (3.2.7) the exponent on the LHS 
onverges in distribution to the ex-

ponent on the RHS. Our statement is true due to the equivalent de�nition of


onvergen
e in distribution, De�nition 1.4. Indeed, we took a bounded, 
ontinu-

ous fun
tion of uZa,α
1 (τ, N):

Z
a,α
1 (τ, N) > 0,

sin
e it is an integral of an exponential fun
tion, and

Re u > 0,
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be
ause of (3.2.6) and ReS > 0. Thus e−uZa,α
1 (τ,N)

is bounded by 1 and the

expe
tation on the LHS must 
onverge.

3.2.2 Convergen
e of Fredholm determinants

With Corollary 3.7 we have seen that the LHS of (3.2.2) in Theorem 3.4 is a the

limit of the Lapla
e transform of Z
a,α
1 (τ, N) as N goes to in�nity. We will see that

the same fa
t 
an be said about the RHS of (3.2.2).

Re
all the Fredholm-determinant formula (2.3) for the Lapla
e-transform of the

semi-dis
rete partition fun
tion Z
a,α
1 (τ, N). Giving the limit of this formula as

N goes to in�nity, yields the Fredholm-determinant formula for the 
ontinuous

partition fun
tion as well.

Theorem 3.8. [2, Thm. 6.3.℄ Fix S with positive real part, T > 0, b < β real

numbers and assume that X = 0. Set τ , a, α and σ as in (3.2.3), (3.2.5) and

in (3.2.1) respe
tively. Use u given in (3.2.6). Denote Ku the integral operator

de�ned in Theorem 2.3 and K
(σ)
b,β is given in De�nition 3.3. Then

lim
N→∞

det(1 +Ku)L2(Ca+;α;π/4) = det(1−K
(σ)
b,β )L2(R+) (3.2.9)

where a+ = max{a, 0}.

Now we have everything to give a straightforward proof for Theorem 3.4. As

mentioned before, we show that both sides of (3.2.2) are the limit of the same

expe
tation.

Proof of Theorem 3.4. Fix S with positive real part, T > 0, b < β real numbers

and assume that X = 0. Set τ , a, α and σ as in (3.2.3), (3.2.5) and in (3.2.1)

respe
tively. Use u given in (3.2.6). Thus the 
onditions of Theorem 3.8 hold, just

like those of Theorem 2.3 with ϕ = π/4. Then on the one hand,

lim
N→∞

E

[

e−uZa,α
1 (τ,N)

]

= lim
N→∞

det (1−Ku)L2(Ca;α;π/4)
= det

(

1−K
(σ)
b,β

)

L2(R+)
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by Theorem 2.3, by Theorem 3.8, and be
ause a+ = a for large N . On the other

hand, we know from Corollary 3.7 that

lim
N→∞

E

[

e−uZa,α
1 (τ,N)

]

= E

[

exp
(

−Se
X2

2T
+ T

24Zb,β
1 (T,X)

)]

.

The two limits must be the same hen
e the theorem is proved.

3.3 Large time limit

Theorem 3.9. Let b and β be real numbers. Consider the free energy of the CDRP

(De�nition 3.1) with drift ve
tors σb and σβ, where b < β and σ = (2/T )1/3. Then

for any r ∈ R,

lim
T→∞

P

(

Fσb,σβ
1 (T, 0) + T/24

(T/2)1/3
≤ r

)

= FBP,b,β(r), (3.3.1)

where FBP,b,β is the 
umulative distribution fun
tion of the BP distribution (De�-

nition 2.8).

3.3.1 Preparation and the proof

In the 
ourse of the proof we would like to show the 
onvergen
e of the Fredholm

determinants by using Lebesgue's dominated 
onvergen
e theorem. We are allowed

to apply this theorem if there is an integrable upper bound for the absolute value

of the integrand. For this aim the following results are su�
ient:

• An upper bound for

∣

∣

∣
K

(σ)
b,β

∣

∣

∣
:

Lemma 3.10. [2, Lemma B.4℄ Fix b < β so that β−b < 1. There is a �nite


onstant C su
h that for any x, y ∈ R+

|K(σ)
b,β (x, y)| ≤ C exp

(

−β

σ
y +

b

σ
x

)

, (3.3.2)
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see K
(σ)
b,β in De�nition 3.3 and σ is given by (3.2.1).

• An upper bound for the determinant of a matrix in terms of the length of

its 
olumn ve
tors:

Lemma 3.11. Hadamard's inequality:

Let M be the n× n matrix having 
olumn ve
tors vi. Then

|det(M)| ≤
n
∏

i=1

‖vi‖ . (3.3.3)

In parti
ular, if the absolute value of ea
h entry of the matrix is at most one,

the upper bound is nn/2
.

Relying on these two results Proposition 3.12, i.e. the 
onvergen
e of Ffredholm

determinants is shown in the next se
tion. This is the key statement that almost

immediately implies Theorem 3.9.

Proposition 3.12.

det
(

1−K
(σ)
σb,σβ

)

L2(R+)
→ det (1−KBP,b,β)L2(r,∞) , as σ → 0, (3.3.4)

where K
(σ)
b,β and KBP,b,β are given in De�nition 3.3 and in De�nition 2.8.

We also need a probability lemma to 
on
lude the 
onvergen
e in distribution at

the end of the proof.

Lemma 3.13. [1, Lemma 8.1℄ Consider a sequen
e of fun
tions (fn)n≥1 mapping

R → [0, 1] with the following properties:

(a) fn(x) is stri
tly de
reasing in x, ∀n

(b) lim
x→−∞

fn(x) = 1, ∀n

(
) lim
x→∞

fn(x) = 0, ∀n

(d) fn(x) → 1x≤0, as n → ∞, uniformly on R \ [−δ, δ], ∀δ > 0
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Consider a sequen
e of random variables Xn and a 
ontinuous probability distri-

bution fun
tion p(r). Then

lim
n→∞

E [fn(Xn − r)] = p(r) ∀r ∈ R ⇒ lim
n→∞

P (Xn ≤ r) = p(r)

Putting together Proposition 3.12 and Lemma 3.13, and also 
hoosing an appro-

priate sequen
e of fun
tions, leads to the proof of Theorem 3.9.

Proof of Theorem 3.9. (Based on the proof of Corollary 1.15 in [1℄.)

Let β > b, S = e−r/σ
, and let (ΘT )T≥0 be a sequen
e of fun
tions with

ΘT (x) = exp(−ex/σ), where σ = (2/T )1/3. Now observe that

ΘT

(

Fσb,σβ
1 (T, 0) + T/24

σ−1
− r

)

= exp
(

−SeF
σb,σβ
1 (T,0)+T/24

)

=

= exp
(

−SeT/24Zb,β(T, 0)
)

. (3.3.5)

Note furthermore, that Theorem 3.4 and Proposition3.12 apply here. Therefore,

by (3.3.5) and by De�nition 2.8 we 
on
lude that the expe
tation of the random

variable in question (LHS of (3.3.1)) 
onverges to the 
umulative distribution

fun
tion of the Borodin-Pé
hé distribution, as σ → 0.

E

[

ΘT

(

Fσb,σβ
1 (T, 0) + T/24

σ−1
− r

)]

= E

[

exp(−SeF
σb,σβ
1 (T,0)+T/24)

]

=

= det
(

1−K
(σ)
σb,σβ

)

L2(R+)
→ det (1−KBP,b,β)L2(r,∞) = FBP,b,β(r) (3.3.6)

The 
onditions of Lemma 3.13 hold for fT (x) := ΘT (x) = exp(−ex/σ),

XT :=
Fσb,σβ

1 (T,0)+T/24

σ−1 and p(r) := FBP,b,β(r):

(a) ΘT : R 7→ [0, 1] ∀T , and ΘT (x) is stri
tly de
reasing in x ∀T .

(b) lim
x→−∞

ΘT (x) = 1, ∀n

(
) lim
x→∞

ΘT (x) = 0, ∀n
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(d) ΘT (x) → 1x≤0, as T → ∞, uniformly on R \ [−δ, δ], ∀δ > 0

In 
ondition (d) the 
onvergen
e is uniform indeed, sin
e on R \ [−δ, δ], if x > δ,

then

ΘT (x) = exp(−ex/σ) < exp(−eδ/σ),

whi
h 
an be arbitrarily small independently of x, and if x < −δ, then

ΘT (x) = exp(−ex/σ) > exp(−e−δ/σ),

where e−δ/σ

an be arbitrarily 
lose to zero, independently of x. These are true

for any δ > 0, as T → ∞ (and as σ → 0). Sin
e FBP,b,β(r) is 
ontinuous, and

E [ΘT (XT − r)] → p(r) due to (3.3.6), every 
ondition holds for Lemma 3.13. It


laims that the distribution fun
tion of XT 
onverges to p(r) = FBP,b,β(r) and this

was the statement of the theorem.

3.3.2 Details

Proof of Proposition 3.12. First the 
onvergen
e of the kernels is needed, then we

arrive to the statement of the proposition by Lebesgue's dominated 
onvergen
e

theorem.

STEP 1

K
(σ)
σb,σβ(x, y) → KBP,b,β(x+ r, y + r), as σ → 0 (3.3.7)

Proof of STEP 1:

K
(σ)
σb,σβ(x, y) =

1

(2πi)2

∫

dw

∫

dz
σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew3/3−wx

Γ(σ(β − z))

Γ(σ(z − b))

Γ(σ(w − b))

Γ(σ(β − w))

Convergen
e of the �rst fa
tor of the integrand:

σπSσ(z−w)

σπ(z − w) + o(σ2)
=

e−
r(z−w)σ

σ

z − w + o(σ)
→ e−r(z−w)

z − w
, as σ → 0
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Convergen
e of the Gamma fun
tions:

Γ(σ(z − b))

Γ(σ(w − b))
→ w − b

z − b

Thus

lim
σ→0

K
(σ)
σb,σβ(x, y) =

=
1

(2πi)2

∫

dw

∫

dz
e−r(z−w)

z − w

ez
3/3−zy

ew3/3−wx

β − w

β − z

z − b

w − b
= KBP,b,β(x+ r, y + r),

by De�nition 2.8, and this was our 
laim.

Re
all the de�nition of a Fredholm-determinant, and 
onsider only the n-dimensional

integral part without the summation. Our next step is to show that this integral

with the s
aling limit kernel 
onverges to the integral with the Borodin-Pé
hé

kernel.

STEP 2

lim
σ→0

∫

R+

· · ·
∫

R+

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1

n
∏

i=1

dxi =

=

∫ ∞

r

· · ·
∫ ∞

r

det [KBP,b,β(xi, xj)]
n
i,j=1

n
∏

i=1

dxi (3.3.8)

Proof of STEP 2:

The determinant fun
tion is 
ontinuous, therefore

lim
σ→0

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1
= det [KBP,b,β(xi, xj)]

n
i,j=1 (3.3.9)

holds by (3.3.7). To inter
hange the limit in σ and the integral, we need to �nd

an integrable upper bound for the determinant on the LHS.

We have an upper bound for ea
h entry of

[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1
by Lemma 3.10.

Indeed, our parameters σb and σβ are 
lose, σ tending to zero, hen
e the lemma

applies. Thus the upper bound is

∣

∣

∣
K

(σ)
σb,σβ(x, y)

∣

∣

∣
≤ C exp (−βy + bx) , (3.3.10)
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with the 
onditions of Lemma 3.10. The entrywise upper bound leads to an

upper bound for the determinant by Hadamard's inequality (Lemma 3.11). Let

us multiply the ith row in the LHS by

1
C
exp(−bxi) ∀i = 1, . . . , n, and the jth


olumn by

1
C
exp(βxj) ∀j = 1, . . . , n and 
all this matrix A, with elements Aij ,

i, j = 1, . . . , n. Using the upper bound in (3.3.10) it follows that

|Aij| =
eβxj−bxi

C

∣

∣

∣
K

(σ)
σb,σβ(xi, xj)

∣

∣

∣
≤ eβxj−bxi

C
Cebxi−βxj = 1 (3.3.11)

Note furthermore that the 
onstru
tion of A gives

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1
= C2n exp

(

n
∑

j=1

xj (b− β)

)

det(A) (3.3.12)

So Lemma 3.11 and the estimation (3.3.11) give |det(A)| ≤ nn/2
, and together

with (3.3.12) this means

∣

∣

∣

∣

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1

∣

∣

∣

∣

≤ C2n exp

(

n
∑

j=1

xj (b− β)

)

nn/2
(3.3.13)

Now the RHS is integrable, be
ause β > b, hen
e (3.3.8) holds and STEP 2 is

done.

STEP 3

lim
σ→∞

∞
∑

n=1

1

n!

∫

R+

· · ·
∫

R+

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1

n
∏

i=1

dµ(xi) =

=

∞
∑

n=1

1

n!

∫ ∞

r

· · ·
∫ ∞

r

det [KBP,b,β(xi, xj)]
n
i,j=1

n
∏

i=1

dxi (3.3.14)

Proof of STEP 3:

It is enough to show that after dividing by n! and integrating the upper bound,

given in STEP 2 (in (3.3.13)), the result will be summable. The summability

would imply that the sum and the limit 
an be inter
hanged.

fn(σ) :=
1

n!

∫

R+

· · ·
∫

R+

det
[

K
(σ)
σb,σβ(xi, xj)

]n

i,j=1

n
∏

i=1

dxi ≤
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≤ nn/2

n!
C2n

∫

R+

· · ·
∫

R+

exp

(

−(β − b)
n
∑

j=1

xj

)

n
∏

i=1

dxi =

=
nn/2

n!
C2n 1

(β − b)n
,

and this is summable due to D'Alambert's ratio test:

lim sup
n→∞

(n+ 1)
n+1
2 C2n+2n!(β − b)n

(n+ 1)!(β − b)n+1nn/2C2n−2
=

= lim sup
n→∞

(

n+ 1

n

)n/2 √
n + 1

n+ 1

C4

β − b
= 0 (3.3.15)

Hen
e, altogether we know that the sum

∑∞
n=1 fn(σ) 
onverges uniformly, and

that fn(σ) tends to the RHS of (3.3.12). Therefore the sum and the limit 
an be

inter
hanged and STEP 3 is done, implying Proposition 3.12 is proved.



Chapter 4

General 
ase

4.1 Large time limit

Let us return to the typi
al semi-dis
rete dire
ted polymers with log-gamma

boundary sour
es. So given M 
olumns and N rows of independent log-gamma

variables, ω−i,j ∼ − ln Γ(αi − aj) and N independent Brownian motions Bi with

drifts ai. The setting is su
h that ai < αj for all i = 1, 2, . . . , N and j = 1, 2, . . . ,M .

It is also assumed now that there arem ≤ N Brownian motions with nonzero drifts

and (a1, a2, . . . , aN ) = (a1, a2, . . . , am, 0, . . . , 0). Re
all that the energy of an up-

right path in this setting was given by (2.1.1). Furthermore, the partition fun
tion

Z
a,α

and free energy F
a,α

of su
h a polymer were de�ned in De�nition 2.1 and Def-

inition 2.2. It was mentioned that Zb,β
, the solution to the SHE and the partition

fun
tion for the CDRP (De�nition 2.5), is going to be the s
aling limit of Z
a,α

.

We also gave the 
orresponding initial data to the SHE in De�nition 2.7. This


laim is stated pre
isely in Theorem 4.2 is used in our dis
ussion.

The purpose of this 
hapter is to prove Theorem 2.9, that is to prove that the large

time limit of the CDRP free energy is the Borodin-Pé
hé distribution. It is the

generalization of Theorem 3.9 and its proof is pretty similar. This is the reason

for being a little bit sket
hy, but, 
onsidering the previously proved statements,


orre
t. The 
orresponding statements for the m = M = 1 
ase are indi
ated

29



General 
ase 30

in bra
kets at ea
h main step. So the proof gives an outline of the proof from

Chapter 3, too.

Proof of Theorem 2.9. � Summary

1. E

[

exp
(

−Se
T
24Zb,β(T, 0)

)]

= det
(

1−K
(σ)
b,β

)

L2(R+)
(Theorem 3.4)

Proof of Step 1.:

(a)

Z
a,α(

√
TN+X,N)

C(N,m,T,X)
⇒ Zb,β(T,X) (Theorem 3.6) The pre
ise statement 
an

be found in Theorem 4.2 below.

(b) E
[

e−uZa,α(τ,N)
]

→ E

[

exp
(

−Se
X2

2T
+ T

24Zb,β(T,X)
)]

, as N → ∞

with an appropriate u. (Corollary 3.7)

Indeed, 
onsider the statement of Corollary 3.7 with

u =
S

C(N,m, T,X)
exp

(

X2

2T
+

T

24

)

=

S exp

(

−N − 1

2
(N −m) ln

(

T

N

)

− 1

2

(√
TN +X

)

−X

√

N

T
+

X2

2T
+

T

24

)

.

With S having positive real part and Za,α(τ, N) > 0 for positive τ and

N one 
an tell the same proof as for Corollary 3.7.

(
) E
[

e−uZa,α(τ,N)
]

= det (1+Ku)L2(Ca;α;ϕ)
(Theorem 2.3)

This is a general statement. It was not spe
i�ed for m = M = 1.

(d) lim
N→∞

det(1+Ku)L2(Ca+;α;π/4) = det(1−K
(σ)
b,β )L2(R+), (Theorem 3.8)

Theorem 3.8 was 
ited from [2℄, where it was stated for β and b being real

numbers and not ve
tors. However, with minor te
hni
al modi�
ations

the proof 
an be performed for the general 
ase as well. Thus one 
an

state Theorem 3.8 also for a, α, b and β ve
tors used in this 
hapter.

Statement (b) is a 
orollary of (a). Then Putting together (b), (
) and (d),

Step 1. is done by the same argument as the one for Theorem 3.4. Thus
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we gained a Fredholm determinant formula for the Lapla
e transform of the


ontinuous partition fun
tion.

2. det
(

1−K
(σ)
σb,σβ

)

L2(R+)
→ det (1−KBP,b,β)L2(r,∞) , as σ → 0 (Proposition 3.12)

Proof of Step 2.:

(a) K
(σ)
σb,σβ(x, y) → KBP,b,β(x+ r, y + r), as σ → 0 (Eq. 3.3.7)

We have totally the same limit as in (3.3.7) with more fa
tors.

(b) |K(σ)
b,β (x, y)| ≤ C exp

(

−β1

σ
y + bm

σ
x
)

, (Lemma 3.10)

Assume here that b1 ≤ b2 ≤ · · · ≤ bm < β1 ≤ β2 · · · ≤ βM . Again,

Lemma 3.10 was 
ited from [2, Lemma B.4℄, where it was stated for

β and b being real numbers and not ve
tors. Now b1, . . . , bm−1 and

β2, . . . , βM are on the appropriate sides of bm and β1 thus one 
an give

basi
ally the same reasoning as in [2℄. The pre
ise statement for this


ase 
an be found below in Lemma 4.1.

(
) Hadamard bound (Lemma 3.11) and Lebesgue

Having the same upper bound for the kernel, one 
an apply the Hadamard

bound and Lebesgue's dominated 
onvergen
e theorem, and get a summable

sequen
e in the same way as in the proof of Proposition 3.12.

Hen
e the proof of Step 2, that is the proof of the Fredholm determinants'


onvergen
e, is done.

3. lim
T→∞

P

(Fσb,σβ(T, 0) + T/24

(T/2)1/3
≤ r

)

= FBP,b,β(r) (Theorem 3.9)

Proof of Step 3, i.e. of Theorem 2.9:

With S = e−r/σ
, σ = (2/T )1/3 and ΘT (x) = exp(e−r/σ), Step 1. and Step 2.

imply

E

[

ΘT

(Fσb,σβ(T, 0) + T/24

σ−1
− r

)]

= E

[

exp(−SeF
σb,σβ(T,0)+T/24)

]

=

= det
(

1−K
(σ)
σb,σβ

)

L2(R+)
→ det (1−KBP,b,β)L2(r,∞) = FBP,b,β(r) as σ → 0.

Then by Lemma 3.13 Step 3. immediately follows with the same reasoning

as in Theorem 3.9.
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Now let us state the lemma we referred to in Step 2.(b).

Lemma 4.1. [2, Lemma B.4℄ Fix b1 ≤ b2 ≤ · · · ≤ bm < β1 ≤ β2 · · · ≤ βM so that

βi − bj < 1 for any 1 ≤ i ≤ M and 1 ≤ j ≤ m. Then there is a �nite 
onstant C

su
h that for any x, y ∈ R+

|K(σ)
b,β (x, y)| ≤ C exp

(

−β1

σ
y +

bm
σ
x

)

, (4.1.1)

see K
(σ)
b,β in De�nition 3.3 and σ is given by (3.2.1).

4.2 S
aling limit

The only statement that is still needed to make 
omplete the proof of Theorem 2.9

is the one that determines the s
aling limit of the semi-dis
rete partition fun
tion

Z
a,α

. First we make 
lear the s
aling of the semi-dis
rete polymer's parameters

similarly to the m = M = 1 
ase.

Fix T > 0, X ∈ R and real ve
tors b = (b1, . . . , bm, 0, . . . , 0) ∈ R
N
and

β = (β1, . . . βM) ∈ RM
+ . Re
all the de�nition of θκ from De�nition 3.5. Now let a

and α be s
aled in the following way:

aj = ϑ+ bj , j = 1, 2, . . . , N

αi = ϑ+ βi, i = 1, 2, . . . ,M
(4.2.1)

where ϑ = θ√
T/N

≃
√

N/T + 1
2
. Now before de�ning the s
aling fa
tor and stat-

ing the theorem, we give a heuristi
 explanation for the order of magnitude of the

s
aling fa
tor. It shows that the s
aling fa
tor indi
ates the relation between Z
a,α

and (the also semi-dis
rete) Z
b,β
.

Let B1, . . . , BN be independent Brownian motions with drifts a1, . . . , aN respe
-

tively and let B(1), . . . , B(N)
be independent standard Brownian motions. Let
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ω−i,j ∼ − ln Γ(αi − aj), and let τ =
√
NT +X . Then by (2.1.1)

E(a,α)(φ) =
∑

(−i,j)∈φd

j≤m

ω−i,j +
∑

(−i,j)∈φd

j>m

ω−i,j +Bn(sn)

+
(

Bn+1(sn+1)− Bn+1(sn)
)

+ . . .+
(

BN(τ)−BN (sN−1)
)

=

=
∑

(−i,j)∈φd

j≤m

ω−i,j +
∑

(−i,j)∈φd

j>m

ω−i,j +B(n)(sn)

+
(

B(n+1)(sn+1)− B(n+1)(sn)
)

+ . . .+
(

B(N)(τ)−BN (sN−1)
)

+bnsn + bn+1(sn+1 − sn) + . . . bm(sm − sm−1)

+ϑ (sn + sn+1 − sn + . . .+ τ − sN−1) .

Now for j ≤ m it is true that ω−i,j ∼ − ln Γ(βi − bj), be
ause βi − bj = αi − aj .

We also know ω−i,j ∼ − ln Γ(αi) for j > m, be
ause aj = 0 for j > m. But

then ω−i,j ≃ − ln
√

N
T
, if N is large, be
ause of the de�nition of α. Furthermore,

the standard Brownian motion terms, and the terms with 
oe�
ients bk (k =

n, . . . , m) give together the sum of the in
rements of Brownian motions with drifts

b1, . . . bm, 0 . . . 0. Finally the last term is just ϑτ = ϑ(
√
TN + X) whi
h 
an be

fa
tored out of the integral and sums de�ning the semi-dis
rete partition fun
tion.

Let us denote informally by

d≃ that the order of magnitude of the LHS and of the

RHS is the same in distribution. Then by the argument above, we have

Z
a,α
(√

TN +X,N
)

d≃

exp

(

(N −m)

(

− ln

(

√

N

T

))

+ ϑ
(√

TN +X
)

)

Z
b,β
(√

TN +X,N
)

and thus the s
aling 
onstant should be

C(N,m, T,X) = exp

(

(N −m)

(

− ln

(

√

N

T

))

+ ϑ
(√

TN +X
)

)

=

exp

(

1

2
(N −m) ln

(

T

N

)

+N +
1

2

(√
TN +X

)

+X

√

N

T

)

. (4.2.2)
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Now we state the theorem whi
h was needed to prove Step 1 in the proof of

Theorem 2.9. The initial 
ondition is the one given in De�nition 2.7, so here 
an

be seen the importan
e of that pretty spe
ial 
onstru
tion.

Theorem 4.2. [19℄ Fix T > 0, X ∈ R and real ve
tors

b = (b1, . . . , bm) ∈ Rm
and β = (β1, . . . βM) ∈ RM

+ su
h that bj < βi for all

1 ≤ j ≤ m and 1 ≤ i ≤ M . Consider the semi-dis
rete dire
ted random polymer

with parameters a and α de�ned in (4.2.1) (let bm+1 = · · · = bN = 0 at this point)

and with partition fun
tion Z
a,α(τ, N) form De�nition 2.1. The s
aling fa
tor

C(N,m, T,X) is given by (4.2.2). Then, as N goes to in�nity,

Z
a,α(

√
TN +X,N)

C(N,m, T,X)
⇒ Zb,β(T,X).

The 
onvergen
e is in distribution and Zb,β(T,X) is the solution to the SHE with

initial data Zb,β
0 (X), see De�nition 2.7.

4.3 Con
lusion

Semi-dis
rete and 
ontinuum dire
ted random polymer models were investigated.

We summarized many important known results in the 
ourse of our dis
ussion. A

spe
ial initial 
ondition was made 
lear whi
h was needed to the s
aling limit of the

semi-dis
rete partition fun
tion. We gave a Fredholm determinant formula for the

Lapla
e transform of the 
ontinuous partition fun
tion (whi
h is also a Fredholm

determinant formula for a double exponential expression of the KPZ solution free

energy). With the help of this formula, we found the limiting distribution of the

free energy �u
tuations at large s
ale. In other words, we determined the large

time limit behavior of the Hopf-Cole solution of the KPZ equation for a parti
ular

initial data. The limiting distribution was the Borodin-Pé
hé distribution, whi
h

was given by a generalized Airy kernel and whi
h was derived as a s
aling limit

of a last passage per
olation model. Sin
e the s
aling fa
tor was T 1/3
and due

to the above properties of the Borodin-Pé
hé distribution, our statement was in

a

ordan
e with the KPZ universality 
onje
ture.
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