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1 Introduction

The focus of this paper is to establish and offer a comprehensive proof for the
scaling limit of the distribution of the geometric q-PushTASEP with particle cre-
ation model. Before delving into the intricacies, it’s important to shed light on
the Kardar-Parisi-Zhang (KZP) equation, which holds significance in the realm of
random polymer models and interacting particle systems. These systems play a
crucial role in understanding the behavior of various physical phenomena, aiding
in the exploration of complex dynamics in diverse fields.

In the subsequent section, we introduce the q-PushTASEP, a form of stochas-
tic interacting particle system, and its half-space variant, unraveling their connec-
tions to the random polymer models. Additionally, we delve into the Baik-Rains
crossover distribution and present the central theorem. This theorem asserts that,
under specific conditions, the scaling limit of the geometric q-PushTASEP with
particle creation model converges to this distribution.

The fourth section of this paper entails a detailed exposition of the main
theorem. Here, we employ the use of saddle point analysis techniques to achieve
the convergence of Pfaffian formulas. This analysis serves as a crucial stepping
stone in establishing the validity of the proposed scaling limit.

2 Kardar-Parisi-Zhang equation

The Kardar-Parisi-Zhang (KPZ) equation is a stochastic partial differential equa-
tion that has gained significant attention in the study of nonequilibrium statistical
physics and the dynamics of fluctuating interfaces. It was introduced by Kardar,
Parisi, and Zhang in 1986 as a model for the growth of interfaces in a random
medium. It is given by

∂tH =
1

2
∂2
xH +

1

2
(∂xH)2 + Ẇ , (1)

where H = H(x, t), x ∈ R, t > 0 is the height function and Ẇ is the space-time
gaussian white noise with covariance E[Ẇ (x, t)Ẇ (y, s)] = δx−yδt−s.

The KPZ equation is intimately related to the study of interacting particle
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systems and random polymers. In the context of interacting particle systems, the
KPZ equation describes the scaling limit of various stochastic lattice models, such
as the asymmetric simple exclusion process (ASEP) and the totally asymmetric
simple exclusion process (TASEP). These models represent the dynamics of inter-
acting particles on a lattice, where the KPZ equation emerges as the continuum
limit of the corresponding height function.

Moreover, in the study of random polymers, the KPZ equation arises as a
key tool for analyzing the statistical properties of polymers in disordered media.
By considering the growth of a polymer chain or the movement of a directed
random walk in a random environment, the KPZ equation provides insights into
the fluctuations and roughening behavior of the polymer interface.

3 q-PushTASEP and its half-space variant

The q-PushTASEP, introduced in [MP16], is an extension of the totally asymmet-
ric exclusion process (TASEP), incorporates an additional parameter q to capture
more complex interactions between particles in a one-dimensional lattice. This
model has gained prominence in nonequilibrium statistical physics, offering a
more nuanced understanding of particle dynamics and collective phenomena.
The introduction of the q parameter allows for a deeper exploration of the in-
terplay between particle interactions, making it a valuable tool in studying the
scaling limits and universal properties of interacting particle systems. Addition-
ally, it provides insights into the behavior of polymers in disordered environments,
enriching the theoretical framework for analyzing polymer-related phenomena.

For the description of the models in this section we first need the definition
of the q-Geometric distribution, which is defined via the limit of the q-deformed
beta binomial distribution.

Definition 3.1. The q-deformed beta binomial distribution with parameters q ∈
(0, 1), ξ ∈ (0, 1), η ∈ (0, ξ) is the probability distribution on {0, · · · ,m} for m ∈ N
given by the weight function

φq,ξ,η(s|m) = ξs
(η/ξ; q)s(ξ; q)m−s

(η; q)m

(q; q)m
(q; q)s(q; q)m−s
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where (x; q)s =
∏s

i=0(1−xqi) and (x; q)∞ =
∏∞

i=0(1−xqi) are the q-Pochhammer
symbols.

Definition 3.2. The q-Geometric distribution with parameters q, ξ is a proba-
bility distribution on N given by the weight function

φgeoq,ξ (s) = φq,ξ,0(s|∞) = ξs
(ξ; q)∞
(q; q)∞

which we denote by q −Geo(ξ)

Definition 3.3. Geometric q-PushTASEP with parametersN ,q,(ai)i∈{1,··· ,N},(bi)i∈N.
In this system N particles are placed on the sites of the lattice Z at time 0, their
position at any time T ∈ N is recorded in the array Y (T ) = (y1(T ) < · · · <
yN(T )). During the discrete time step from T to T + 1, Y (T ) is updated sequen-
tially from left to right by the following rules:

yk(T + 1) = yk(T ) + Vk,T +Wk,T , for k = 1, . . . , N (2)

where Vk,T and Wk,T are independent random variables defined as

Vk,T ∼ q −Geo(akbT+1),

Wk,T ∼ φq−1,qgapk(T ),0(·, yk−1(T + 1)− yk−1(T )),

gapk(T ) = yk(T )− yk−1(T )− 1,

and by convention we set y0(T ) = −∞.

In this model every particle’s jump consists of a q − Geometric independent
jump Vk,T and a random push from the previous particle’s jump Wk,T . A jump
occurs if and only if an empty space is available for the jump while preserving
the original ordering of the particles.
This model is frequently viewed as a random particle system with infinitely many
particles. Since the behaviour of a particle is independent of the behaviour of
later particles, it is easy to extend the definition to incorporate countable many
particles.

The Log Gamma Polymer model is a random polymer model on the planar
lattice. On each site we place an inverse gamma random variable and for a site
we consider the weighted sum of all possible upright paths from the origin. This
defines the partition function of the model. The Log Gamma Polymer model
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arises as a scaled limit of the geometric q-PushTASEP.

The geometric q-PushTASEP with particle creation was introduced in [BBC20]
as a new exactly solvable particle system. In scaled limit it corresponds to the
half-space version of the Log Gamma Polymer model, where we restrict the planar
lattice below the identity function.

Definition 3.4. The geometric q-PushTASEP with particle creation with pa-
rameters γ > 0, (ai)i∈N is a discrete-time Markov process on configurations of
particles

0 = x0(T ) < x1(T ) < · · · < xT (T ) <∞,

At any time T ∈ Z≥0 there are T + 1 particles in the system located on the
nonnegative integers. The position of the i’th particle at time T are denoted by
the above xi(T ), i ∈ {0, . . . , T}.
Let x(T ) = (x0(T ), x1(T ), · · · , xT (T )). In the discrete time step from T to T + 1,
the configuration gets updated from the particle with index 1 to the right by the
q-PushTASEP rules:

xk(T + 1) = xk(T ) + Vk,T +Wk,T , for k = 1, . . . , T (3)

where Vk,T and Wk,T are independent random variables defined as

Vk,T ∼ q −Geo(γaT+1),

Wk,T ∼ φq−1,qgapk(T ),0(·, xk−1(T + 1)− xk−1(T )),

gapk(T ) = xk(T )− xk−1(T )− 1,

As in the q-PushTASEP a jump can occur if and only if an empty space is
available for the jump while preserving the original ordering of the particles.
After completion of this sequence a new particle is added to the right of the
already present particles following the rule xT+1(T + 1) = xT (T + 1) + 1 + ṼT+1,
where ṼT+1 ∼ q−Geo(γaT+1) is an independent increment. Here we assume that
aiaj, γai < 1 for every 1 ≤ i < j.

In [IMS22] they state that in a special setting the geometric q-PushTASEP
with particle creation converges to the Baik-Rains crossover distribution. This
distribution appears as a continuous transition between the Tracy-Widom dis-
tributions corresponding to the symplectic and orthogonal gaussian ensembles
(GSE, GOE) [TW96]. Our main result is the detailed proof of this theorem,
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which will be presented in section 4. In order to state the theorem, we first need
to define the Pfaffian of a matrix kernel and the Baik-Rains crossover distribution.

Definition 3.5. Let L(x, y) be 2× 2 matrix kernel of the form

L(x, y) =

[
k1,1(x, y) k1,2(x, y)

−k1,2(x, y) k2,2(x, y)

]
.

where ki,j ∈ L(Ω × Ω, ν ⊗ ν) and ki,i(x, y) = −ki,i(x, y) for all x, y ∈ Ω and
i = 1, 2.. Then the Fredholm Pfaffian of L is defined as

Pf(J − L)L2(Ω) = 1 +
∞∑
l=1

(−1)l

l!

∫
Ωl
Pf [L(xi, xj)]

l
i,j=1ν(dx1) · · · ν(dxl) (4)

Definition 3.6. The Baik-Rains crossover distribution with parameter ξ > 0 is
given by

Fcross(s; ξ) = Pf
(
J −K(ξ)

cross

)
L2(s,∞)

, s ∈ R (5)

where K(ξ)
cross is the 2× 2 matrix kernel

K(ξ)
cross(u, v) =

[
k(ξ)(x, y) −∂vk(ξ)(x, y)

−∂uk(ξ)(x, y) ∂u∂vk
(ξ)(x, y)

]
. (6)

k(x(u), y(v)) =

∫
C
π/3
δ

dα

2πi

∫
C
π/3
δ

dβ

2πi

(ξ + α)(ξ + β)

(ξ − α)(ξ − β)

α− β
4αβ(α + β)

e
α3

3
−αue

β3

3
−αv (7)

where Cθ
p = {p + |r|esign(r)iθ : r ∈ R} is a V-shaped contour symmetric with

respect to the real line, where the angle between the two semi-infinite rays ex-
tending away from the origin is 2θ, and its apex is located at point p. Here we
choose 0 < δ < ξ.

Now we are able state the main theorem of the paper.

Theorem 3.7. Let x(T ) be the geometric q-PushTASEP with particle creation
and assume that the parameters are a1 = a2 = · · · a ∈ (0, 1) and γ ∈ (0, 1]. Then
the following limit holds:
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rescaling γ = 1− ξ
σN1/3 we have:

lim
N→∞

P
[
xN(N)− (p+ 1)N

σN1/3
≤ s′

]
= Fcross(s

′; ξ) (8)

where p = 2
log q

[
log(1− q) + ψq(logq a)

]
and σ = 1

log q
3

√
ψ

(2)
q (logq(a)).

4 Asymptotic behaviour of geometric q-PushTASEP

with particle creation

As mentioned in the previous section, in [IMS22] they give the limiting distri-
bution of the geometric q-PushTASEP with particle creation in a special setting
and provide a sketch for the proof. In this section we prove this theorem in
more detail following the argument outlined in the mentioned article with some
modification and correction.

In [IMS22] they give and prove the following Pfaffian representation of the
distribution function of xN(N) convoluted with specific independent random vari-
ables.

Proposition 4.1. Let x(T ) be the geometric q-PushTASEP with particle creation
with parameters γ, a1, a2, · · · ∈ (0, 1) and empty initial conditions. Let also χ ∼
q − Geo(q) and S ∼ Theta(ζ2, q2) be independent random variables. Then we
have

P (xN(N)−N + χ+ 2S < s) = Pf(J − Lpush)l2(Z′>s), (9)

where Lpush is the 2× 2 matrix kernel given by

Lpush(x, y) =

[
k(x, y) −∇yk(x, y)

−∇xk(x, y) ∇x∇yk(x, y)

]
. (10)
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In the next equations we define all necessary components of Lpush:

k(x, y) =
1

(2πi)2

∮
|z|=r

dz

zx+3/2

∮
|w|=r′

dw

wy+5/2
F (z)F (w)khs(z, w)

F (z) =
(γ/z; q)∞
(γz; q)∞

N∏
i=1

(ai/z; q)∞
(aiz; q)∞

khs(z, w) =
(q, q, w/z, qz/w; q)∞

(1/z2, 1/w2, 1/zw, qwz; q)∞

ϑ3(ζ2z2w2; q)

ϑ3(ζ2; q2)

ϑ3(ζ; q) = (q,−√qζ,−
√
z/ζ; q)∞

(x1, x2, . . . , xn; q)∞ = (x1; q)∞(x2; q)∞ · · · (xn; q)∞

∇xf(x) =
1

2
[f(x+ 1)− f(x− 1)]

(11)

Proof of Theorem 3.7. The starting point is Fredholm Pfaffian representation
given in Proposition 4.1. We use the following scaling:

s = (p− 1)N + σN1/3s′, x = (p− 1)N + σN1/3u, y = (p− 1)N + σN1/3v, (12)

where we assume that u, v > s′.
Then k(x, y) from 11 can be written as

k(x(u), y(v)) =

∮
|z|=r

dz

2πiz3/2

∮
|w|=r′

dw

2πiw5/2

(γ/z, γ/w; q)∞
(γz, γw; q)∞

κ(z, w)×

eNh(z)−σN1/3(u) log zeNh(w)−σN1/3(v) logw

(13)

Where u, v > s′ and h in the exponents is defined as:

h(z) = log(a/z; q)∞ − log(az; q)∞ − p log z (14)

The main contribution to the value of the integral comes from the term eNh(Z)+Nh(w)

when N is large.
Step 1: Saddle point analysis of h.

h can be rewritten as an infinite sum:

h(z) = −p log z +
∞∑
k=0

log(1− a

z
qk)− log(1− azqk) (15)

Using this we can find its derivatives up to the third order and show that at z = 1
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it has a double critical point.

h(1) = 0

h′(z) =

ψq

(
log(az )
log(q)

)
+ ψq

(
log(az)
log(q)

)
− p log(q) + 2 log(1− q)

z log(q)

h′(1) =
2
(
ψq

(
log(a)
log(q)

)
+ log(1− q)

)
log(q)

− p = 0

h′′(z) =
1

z2 log2(q)

(
− log(q)

(
ψ(0)
q

(
log
(
a
z

)
log(q)

)
+ ψ(0)

q

(
log(az)

log(q)

))

−ψ(1)
q

(
log
(
a
z

)
log(q)

)
+ ψ(1)

q

(
log(az)

log(q)

)
+ log(q)(p log(q)− 2 log(1− q))

)

h′′(1) = p−
2
(
ψ

(0)
q

(
log(a)
log(q)

)
+ log(1− q)

)
log(q)

= 0

h′′′(1) =
2ψ

(2)
q

(
log(a)
log(q)

)
log3(q)

= 2(σ)3

(16)
These calculations show that the function h has a double critical point at 1 and
h′′′(1) = 2(σ)3 > 0

Now we will show that the contour |z| = r is steep descent for the function h.
We substitute z = reθi and compute the derivate with respect to θ.:

h(reθi) = −p log(reθi) +
∞∑
k=0

log(1− a

r
e−θiqk)− log(1− areθiqk)

<h(reθi) = −p1

2
log(r2) +

∞∑
k=0

1

2
log

(
a2q2k − 2aqkr cos(θ) + r2

r2

)
− 1

2
log
(
a2q2kr2 − 2aqkr cos(θ) + 1

)
∂

∂θ
<h(reθi) =

∞∑
k=0

aqkr sin(θ)
(
a2q2kr2 − a2q2k − r2 + 1

)
(a2q2k − 2aqkr cos(θ) + r2) (a2q2kr2 − 2aqkr cos(θ) + 1)

(17)

From this it is easy to see that for θ ∈ (0, π) ∂
∂θ
<h(reθi) < 0 and for

θ ∈ (π, 2π) ∂
∂θ
<h(reθi) > 0, which proves that the integration contour |z| = r

steep descent for the function h. Figure 1 shows the real part of h and deformed
integration contour which will be defined in the next step.
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Step 2: Deformation of the integration contours.

Figure 1: Real part of the function h.

By the Cauchy theorem we can deform the integration contours |z| = r, |w| = r′

to be
Cπ/3

(
1 +

δ

σN1/3
; r

)
∪D(θ̄, r) (18)

where

Cϕ(a; r) = (z = a+ρesign(ρ)iϕ : |z| < r), D(ϕ, r) = {reiϕ : θ ∈ (ϕ, 2π−ϕ)} (19)

and θ̄ > 0 solves the equation 1 + δ
σN1/3 + ρei

π
3 = reiθ̄ for some ρ > 0; see fig 2,

which ensures that the two parts of the contour are connected. We choose δ so
that the pole γ−1 remains outside of the contour. By simple derivation it can be
also shown that for δ small enough this modified contour is also steep descent for
the function h, where <h(z) attains its maximum at z = 1 + δ

σN1/3

When N → ∞ such integrals are dominated by the contribution over the curve
Cπ/3

(
1 + δ

σN1/3 ; r
)
∩ {z : |1− z| < d} for any d > 0 small enough.
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Figure 2: Deformation of the contour.

Step 3: Localization of the integral and change of variables.
Now we can localize our integral in both variables to the curve C := Cπ/3

(
1 + δ

σN1/3 ; r
)
∩

{z : |1 − z| < d} where we can approximate the functions h and log by their
Taylor-expansion around the critical point z = 1:

h(z) = (σ)3 (z − 1)3

3
+O((z − 1)4)

log(z) = (z − 1) +O((z − 1)2)

(20)

Now let z = 1 + α
σN1/3 and w = 1 + β

σN1/3 . Then in the exponent we get that

Nh(z)− σN1/3u log z =
α3

3
− αu+O

(
N−1/3

(
α4 + α2

))
Nh(w)− σN1/3v log z =

β3

3
− αv +O

(
N−1/3

(
β4 + β2

))
as N →∞.

(21)
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We also need to calculate the limit and asymptotic behaviour of the remaining
term of the integrand. First let us consider only (γ/z;q)∞

(γz;q)∞
:

(γ/z; q)∞
(γz; q)∞

=
1− γ/z
1− γz

∏∞
k=1(1− γ/zqk)∏∞
k=1(1− γzqk)

=
1−

1− ξ
3√
Nσ

α
3√
Nσ

+1

1−
(

α
3√Nσ

+ 1
)(

1− ξ
3√Nσ

)
∏∞

k=1(1−
qk

(
1− ξ

3√
Nσ

)
α

3√
Nσ

+1
)∏∞

k=1(1− qk
(

α
3√Nσ

+ 1
)(

1− ξ
3√Nσ

)
)

(22)

where the second fraction goes to 1 as N → ∞ and for the first fraction we get
the following limit and asymptotic

1−
1− ξ

3√
Nσ

α
3√
Nσ

+1

1−
(

α
3√Nσ

+ 1
)(

1− ξ
3√Nσ

) =
ξ + α

ξ − α
+

α(α + ξ)
(
αξ − 3

√
Nσ(α− 2ξ)

)
(α− ξ)

(
α + 3
√
Nσ
)(

αξ + 3
√
Nσ(ξ − α)

) =

=
ξ + α

ξ − α
+

Θ(N1/3)

Θ(N2/3)

=
ξ + α

ξ − α
+O

(
1

N1/3

)
(23)

Considering this for all the q-Pochhammer symbols in the remaining term of the
integrand we get

1

z3/2w5/2

(γ/z, γ/w; q)∞
(γz, γw; q)∞

κ(z, w) =

=
(ξ + α)(ξ + β)

(ξ − α)(ξ − β)

α− β
4αβ(α + β)

+O
(

1

N1/3

)
as N →∞.

(24)

Putting everything together we get that:

k(x(u), y(v)) =

∫
CN

dα

2πi

∫
CN

dβ

2πi

(
(ξ + α)(ξ + β)

(ξ − α)(ξ − β)

α− β
4αβ(α + β)

+O
(

1

N1/3

))
×

× e
α3

3
−αue

β3

3
−αveO(N−1/3(α4+β4+α2+β2)) +O

(
e−εN

)
(25)

Where the integration contour CN is given by CN = Cπ/3
(
1 + δ

σN1/3 ;σN1/3r
)
∩

{z : |1− z| < σN1/3d}.
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Step 4: Limit calculations.
Now we can divide the above integral into two parts by expanding in the multi-
plication. Then the first term is the following:∫

CN

dα

2πi

∫
CN

dβ

2πi
f(α, β, ξ)e

α3

3
−αue

β3

3
−αveO(N−1/3(α4+β4+α2+β2)) =

=

∫
CN

dα

2πi

∫
CN

dβ

2πi
f(α, β, ξ)e

α3

3
−αue

β3

3
−αv+

+

∫
CN

dα

2πi

∫
CN

dβ

2πi
f(α, β, ξ)e

α3

3
−αue

β3

3
−αv
(
eO(N−1/3(α4+β4+α2+β2)) − 1

) (26)

where f(α, β, ξ) = (ξ+α)(ξ+β)
(ξ−α)(ξ−β)

α−β
4αβ(α+β)

.
The second term in the sum is the error term which goes to 0 as N →∞, since we
can upper bound its absolute value in the following way using |ex − 1| ≤ |x|e|x|:∣∣∣∣∣
∫
CN

dα

2πi

∫
CN

dβ

2πi
f(α, β, ξ)e

α3

3
−αue

β3

3
−αv
(
eO(N−1/3(α4+β4+α2+β2)) − 1

) ∣∣∣∣∣ ≤∫
CN

dα

2π

∫
CN

dβ

2π
|f(α, β, ξ)|

∣∣∣∣eα3

3
−αue

β3

3
−αv
∣∣∣∣∣∣∣∣O (N−1/3

(
α4 + β4 + α2 + β2

)) ∣∣∣∣×
×
∣∣∣∣eO(N−1/3(α4+β4+α2+β2))

∣∣∣∣ ≤∫
CN

dα

2π

∫
CN

dβ

2π
|f(α, β, ξ)|e

<
(
α3

3
+d
|α3|
(σ)3
−αu(1− 1

σ
)

)
e
<
(
β3

3
+d
|β3|
(σ)3
−βv(1− 1

σ
)

)
×

×
∣∣∣∣O (N−1/3

(
α4 + β4 + α2 + β2

)) ∣∣∣∣
(27)

Where we used that |α| ≤ dσN1/3. d can be chosen to be small enough in order
to <

(
α3

3
+ d |α

3|
(σ)3

)
< 0, which ensures that the integral remains finite. By the

dominated convergence theorem this integral converges to 0, which proves that
the error term vanishes as N →∞.
The same argument can be applied to the other term as well:∫

CN

dα

2πi

∫
CN

dβ

2πi
O
(

1

N1/3

)
×

× e
α3

3
−αue

β3

3
−αveO(N−1/3(α4+β4+α2+β2)) → 0, as N →∞

(28)

12



These together show that

lim
N→∞

k(x(u), y(v)) = k(ξ)(u, v) pointwise. (29)

Step 5: Exponential decay of k(x(u), y(v))

For this, we will follow the arguments presented in Lemma 4.1. of [FV12].
Now we show an that the function k(x(u), y(v)) has exponential decay in both
variables. This results in uniform convergence.
For this consider u = N2/3

σ
U and v = N2/3

σ
V . With this scaling the term in the

exponential in the integrand of k(x(u), y(v)) becomes the following

Nh(z)− σN1/3u log z = Nh(z)−NU log z = Nh̃(z) (30)

where h̃(z) = log(a/z; q)∞ − log(az; q)∞ − (p + U) log z. This h̃ function has a
critical point near 1 +

√
U
σ3 , since

h̃′(z) = h′(z)− U

z
≈ σ3(z − 1)3 − U

z

which equals zero if z ≈ 1 +

√
U

σ3

(31)

We can use the same saddle point analysis methods that were employed for h to
calculate the limit of the integral k(x(u), y(v)).
Let ε > 0 which will be determined later and let ε̄ = min( U

σ3 ,
ε
σ3 ). Consider the

integral contour Γε̄ = Cπ/3 (1 + e; r) ∪D(θ̄, r) as in 18. We modify both integral
contours in k to be Γe, but then as N → ∞ the pole γ−1 will enter, so we need
to subtract the corresponding residues to get equality.

k(x(u), y(v)) =

∮
Γε̄

dz

2πiz3/2

∮
Γε̄

dw

2πiw5/2

(γ/z, γ/w; q)∞
(γz, γw; q)∞

κ(z, w)eNh̃(z)+Nh̃(w)−

−A(u)B(v) + A(v)B(u)

(32)
where

A(u) = eNh̃(1/γ)

B(v) =
√
γ

∮
|w|=r′

dw

2πiw5/2

(γ2, γ/w; q)∞
(γw; q)∞(q; q)∞

khs(1/γ, w)eNh̃(w)
(33)

For the double integral term it can be shown that the integral Γe is steep descent
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for ε small enough, so after substituting z = 1 + α
σN1/3 and w = 1 + β

σN1/3 and
using that h̃(z) = σ3

3
U3/2 − U log(z) +O ((z − 1)2) we get that

h̃

(
1 +

√
U

σ3

)
= −2

3

U3/2

σ3/2
+O(U),

and for some positive constants M,m,m′∣∣∣∣∣
∮

Γε̄

dz

2πiz3/2

∮
Γε̄

dw

2πiw5/2

(γ/z, γ/w; q)∞
(γz, γw; q)∞

κ(z, w)eNh̃(z)+Nh̃(w)

∣∣∣∣∣ ≤
≤Me

m(− 2
3

(U
3/2

σ3/2
+V 3/2

σ3/2
)) ≤

≤Me−m
′(u3/2+v3/2)

(34)

It is easy to see for the function A that it has an exponential decay in u, and
for the exponential decay of B we can use the argument presented here, but only
in one variable. These together show that k(x(u), y(v)) has exponential decay in
both variables.

|k(x(u), y(v))| ≤ Ke−k
′(u+v), for some K, k′positive constants. (35)

The same arguments can be applied for −∇yk,−∇xk,∇x∇yk which proves
by the dominated convergence theorem

Pf [J − Lpush]l2(Z>s) −→ Pf [J −K(ξ)cross ]L2(s′,∞). (36)

This concludes the proof of the theorem.

5 Summary

In conclusion, this paper delved into the scaling limit of the distribution of the
geometric q-PushTASEP with particle creation model. We began by exploring
the Kardar-Parisi-Zhang equation and its connection to random polymer models
and interacting particle systems.

We then introduced the q-PushTASEP and its half-space variant, discussing
their connections to random polymer models and the Baik-Rains crossover dis-
tribution. The main theorem stated that the scaling limit of the geometric q-

14



PushTASEP with particle creation model aligns with this distribution.

In the third section, we used saddle point analysis methods to confirm the
convergence of Pfaffian formulas, providing solid evidence for the main theorem.
Overall, this paper contributes to our understanding of stochastic interacting
particle systems and their role in elucidating complex physical phenomena.
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