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Myopic (or ‘true’) self-avoiding walk (TSAW)

D. Amit, G. Parisi, L. Peliti, 1983

in continuous time:
X (t) nearest neighbour random walk on Z

d

local time (occupation time measure) with initialization:
l(t, x) := l(0, x) + |{s ∈ [0, t] : X (s) = x}|
Jump rates:

P
(
X (t + dt) = y

∣∣ past, X (t) = x
)

= 11{|y−x |=1}r(l(t, x) − l(t, y)) dt + o(dt)

where r : R → (0,∞) increasing.

The walker is pushed by the discrete negative gradient of its
own local time to less visited areas.
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Self-repelling Brownian polymer model (SRBP)
J. Norris, C. Rogers, D. Williams, 1987
R. Durrett, C. Rogers, 1992

X (t) diffusion process in R
d

occupation time measure with initialization:
l(t, A) := l(0, A) + |{s ∈ [0, t] : X (s) ∈ A}|
V : R

d → R
+ approximate identity, e.g. V (x) = e−|x |2

F : R
d → R

d , F (x) = − grad V (x)

Evolution:

X (t) = B(t) +

∫ t

0

∫ s

0

F (X (s) − X (u)) du ds

or

dX (t) = dB(t) +

(∫ t

0

F (X (t) − X (u)) du

)
dt

or

dX (t) = dB(t) − grad(V ∗ l(t, ·))(X (t)) dt.
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Earlier results, conjectures

dimension-dependent behaviour for both models

d = 1 X (t) ∼ t2/3 with difficult non-Gaussian scaling limit

◮ limit theorem for a version of 1d TSAW (B. Tóth, 1995)
◮ construction of the limit process (B. Tóth, W. Werner,

1998)
◮ another version of TSAW in 1d (B. Tóth, B. V., 2009)

d = 2 X (t) ∼ t1/2(log t)ξ with Gaussian limit, ξ =?
◮ partial results (B. Valkó, 2009)

d ≥ 3 X (t) ∼ t1/2 with Gaussian limit
◮ CLT for the SRBP (I. Horváth, B. Tóth, B. V., 2009)
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Environment seen by the walker

ξ(t) : R
d → R, ξ(t) := ξ(0) + (V ∗ l)(t) environment

process (smeared out local time with initialization)

ξ(t, x) = ξ(0, x) +

∫ t

0

V (x − X (s)) ds.
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Environment seen by the walker

ξ(t) : R
d → R, ξ(t) := ξ(0) + (V ∗ l)(t) environment

process (smeared out local time with initialization)

ξ(t, x) = ξ(0, x) +

∫ t

0

V (x − X (s)) ds.

η(t) : R
d → R, η(t, x) := ξ(t, X (t) + x) environment as

seen by the walker

η(t, x) = η(0, x) +

∫ t

0

V (X (t) + x − X (s)) ds.

η(t) is a Markov process in some state space Ω (function
space)

Stationary distribution exists (P. Tarrès, B. Tóth, B. Valkó,
2009 in 1d)
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Stationary measure: massless free Gaussian field

Condition on V : positive type, i.e.

V̂ (p) := (2π)−d/2

∫

Rd

e ip·xV (x) dx ≥ 0.

Ω := {ω : R
d → R smooth with slow increase at ∞},

A random element ω ∈ Ω is a Gaussian field, if (ω(x))x∈Rd

are jointly Gaussian random variables.

Choose the distribution π(dω) in such a way that

Eπ (ω(x)) = 0, Eπ (ω(x)ω(y)) = C (y − x)

with

C = (−∆)−1V , more precisely Ĉ (p) = |p|−2V̂ (p).

This is the massless free Gaussian field smeared out by V .
Note that it exists in 3 or more dimensions.
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Main results

Theorem
η(t) is a stationary and ergodic Markov process on (Ω, π).

Corollary
X (t)/t → 0 a.s.
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Main results

Theorem
η(t) is a stationary and ergodic Markov process on (Ω, π).

Corollary
X (t)/t → 0 a.s.

Theorem (I. Horváth, B. Tóth, B. V., 2009)

◮ σ := limt→∞ t−1E
(
|X (t)|2

)
exists,

◮ d ≤ σ2 ≤ d +
∫

Rd |p|−2V̂ (p) dp < ∞,

◮ X (Nt)

σ
√

N
=⇒ W (t)

in the sense of finite dimensional marginals.

Basic idea: CLT for additive functionals of Markov processes
ϕ : Ω → R

d , ϕ(ω) := − grad ω(0)

X (t) = B(t) +

∫ t

0

ϕ(η(s)) ds.



Central limit
theorem for the

Brownian
polymer model

Bálint Vető

Motivation

Introduction,
result,
conjectures

Environment
process,
stationary
measure

Gaussian Hilbert
space, operators,
generator

Kipnis –
Varadhan
technology,
sector condition

Gaussian Hilbert space, an example
The space of interest is L2(Ω, π).

Example

Instead of (Ω, π), consider Ωex := R with
πex(dx) := 1√

2π
e−x2/2dx.

There is an orthogonal decomposition

L2(Ωex , πex) = ⊕∞
n=0Hex

n

where Hex
n contains polynomials of degree n.
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Gaussian Hilbert space, an example
The space of interest is L2(Ω, π).

Example

Instead of (Ω, π), consider Ωex := R with
πex(dx) := 1√

2π
e−x2/2dx.

There is an orthogonal decomposition

L2(Ωex , πex) = ⊕∞
n=0Hex

n

where Hex
n contains polynomials of degree n.These are the

Hermite polynomials, which can be constructed with the
Gramm– Schmidt orthogonalization.

Similarly with infinitely many variables, the same procedure
gives

L2(Ω, π) = ⊕∞
n=0Hn

where Hn is generated by the Wick polynomials of form
: ω(x1) . . . ω(xn) : with x1, . . . , xn ∈ R

d , i.e. polynomials
ω(x1) . . . ω(xn) orthogonalized.
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Other representations
K = ⊕∞

n=0Kn with Kn being the closure of all symmetric
functions u(x1, . . . , xn) with x1, . . . , xn ∈ R

d endowed with
the scalar product

(u, v) :=

∫

Rdn

∫

Rdn

u(x)Cn(y − x)v(y) dx dy

where Cn(y − x) =
∏n

m=1 C (ym − xm).

Gaussian embedding:
u 7→ 1√

n!

∫
Rdn u(x) : ω(x1) . . . ω(xn) : dx.
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Other representations
K = ⊕∞

n=0Kn with Kn being the closure of all symmetric
functions u(x1, . . . , xn) with x1, . . . , xn ∈ R

d endowed with
the scalar product

(u, v) :=

∫

Rdn

∫

Rdn

u(x)Cn(y − x)v(y) dx dy

where Cn(y − x) =
∏n

m=1 C (ym − xm).

Gaussian embedding:
u 7→ 1√

n!

∫
Rdn u(x) : ω(x1) . . . ω(xn) : dx.

Fourier space: K̂ = ⊕∞
n=0K̂n where K̂n contains the

symmetric functions û(p1, . . . , pn) with the scalar product

(û, v̂) :=

∫

Rdn

û(p)Ĉn(p)v̂(p) dp

where Ĉn(p) =
∏n

m=1 Ĉ (pm).

The spaces Hn, Kn and K̂n are unitary equivalent.
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Operators
Differentiation in the lth direction:
∇l û(p) = i (

∑n
m=1 pml ) û(p)

Laplacian: ∆ =
∑d

l=1 ∇2
l

∆û(p) = − |∑n
m=1 pm|2 û(p)

Creation: a∗l û(p1, . . . , pn+1) =
1√
n+1

∑n+1
m=1 û(p1, . . . , pm−1, pm+1, . . . , pn+1)ipml

Annihilation:
al û(p1, . . . , pn−1) =

√
n

∫
Rd û(p1, . . . , pn−1, q)iql Ĉ (q) dq



Central limit
theorem for the

Brownian
polymer model

Bálint Vető

Motivation

Introduction,
result,
conjectures

Environment
process,
stationary
measure

Gaussian Hilbert
space, operators,
generator

Kipnis –
Varadhan
technology,
sector condition

Operators
Differentiation in the lth direction:
∇l û(p) = i (

∑n
m=1 pml ) û(p)

Laplacian: ∆ =
∑d

l=1 ∇2
l

∆û(p) = − |∑n
m=1 pm|2 û(p)

Creation: a∗l û(p1, . . . , pn+1) =
1√
n+1

∑n+1
m=1 û(p1, . . . , pm−1, pm+1, . . . , pn+1)ipml

Annihilation:
al û(p1, . . . , pn−1) =

√
n

∫
Rd û(p1, . . . , pn−1, q)iql Ĉ (q) dq

Infinitesimal generator of η(t) – i.e. an operator G acting on
L2(Ω, π) defined by

(Gf )(ω) = lim
dt→0

E
(
f (η(t + dt)) − f (η(t))

∣∣ η(t) = ω
)

dt

for all f ∈ L2(Ω, π):

G =
1

2
∆ +

d∑

l=1

(a∗l ∇l + ∇lal )
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Kipnis – Varadhan theory

General setup: η(t) is a stationary and ergodic Markov
process on the state space (Ω, π).

G is the infinitesimal generator of η(t) acting on L2(Ω, π).
Notation: S := −1

2
(G + G ∗) and A := 1

2
(G − G ∗).

ϕ ∈ L2(Ω, π) with
∫
Ω

ϕ dπ = 0.

Question: sufficient condition for the martingale
approximation and central limit theorem for

YN(t) :=
1√
N

∫ Nt

0

ϕ(η(s)) ds.
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Sufficient conditions

◮ C. Kipnis, S. R. S. Varadhan, 1986 (reversible)

◮ B. Tóth, 1986 (non-reversible, discrete time)

◮ S. V. S. Varadhan, 1996: (strong) sector condition

‖S−1/2AS−1/2‖ < ∞.

◮ S. Sethuraman, S. R. S. Varadhan, H-T. Yau, 2000:
graded/weak sector condition L2(Ω, π) = ⊕∞

n=0Hn and
◮ S =

∑
n
Sn with Sn : Hn → Hn and

◮ A =
∑

n
An+ + An− with A± : Hn → Hn±1∥∥∥S

−1/2
n+1 An+S

−1/2
n

∥∥∥ ≤ Cnγ with γ < 1.
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CLT for the SRBP

G =
1

2
∆

︸︷︷︸
−S

+
d∑

l=1

(a∗l ∇l + ∇lal )

︸ ︷︷ ︸
A

For the graded sector condition:

S
−1/2
n+1 An+S

−1/2
n =

∑d
l=1

∣∣1
2
∆

∣∣−1/2
a∗l ∇l

∣∣1
2
∆

∣∣−1/2
.

Since ∆ =
∑d

l=1 ∇2
l ,

∥∥∥∇l |∆|−1/2
∥∥∥ ≤ 1.

Computations yield that in at least 3 dimensions:

∥∥∥|∇|−1/2a∗l ↾Hn

∥∥∥ ≤ C
√

n.
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The end

Thank you for your attention!
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