Models of the 'true' self-avoiding walk on \mathbb{Z}^d

Bálint Vető

Budapest University of Technology and Economics http://www.math.bme.hu/~vetob

July 22, 2009

Outline of the talk

Introduction

- Introduction of the model
- Overview of results

Investigations in high dimensions

- Stationary distribution
- Martingale technique
- Diffusive bound on the variance
- The way towards the central limit theorem

Introduction of the model Overview of results

Introduction of the model

joint work with Illés Horváth and Bálint Tóth

X(n) 'true' or 'myopic' self-avoiding walk = true (nearest neighbour) random walk with self-repulsion on \mathbb{Z}^d $\ell(n,x) := \#\{1 \le m \le n : X(m) = x\}$

Transition probabilities:

$$P(X(n+1) = y | \mathcal{F}_n, X(n) = x)$$

$$= \mathbb{1}_{\{|x-y|=1\}} \frac{\exp\{-\beta(\ell(n, y) - \ell(n, x))\}}{\sum_{z:|z-x|=1} \exp\{-\beta(\ell(n, z) - \ell(n, x))\}}$$

$$= \mathbb{1}_{\{|x-y|=1\}} \frac{r(\ell(n, x) - \ell(n, y))}{\sum_{z:|z-x|=1} r(\ell(n, x) - \ell(n, z))}$$

where $r: \mathbb{Z} \to \mathbb{R}_+$ non-decreasing and non-constant

Introduction of the model Overview of results

Overview of results

First introduction of the 'true' self-avoiding walk: D. Amit, G. Parisi and L. Peliti in 1983

Conjectured behaviour: $E(X(n)^2) \sim n^{2\nu}$ i.e. $X(n) \sim n^{\nu}$

- d = 1: $\nu = \frac{2}{3}$ and exotic scaling limit (details at the end of the talk)
- **2** d = 2: critical dimension, $\nu = \frac{1}{2}$ with logaritmic corrections (conjectured)
- Ø ≥ 3: ν = ¹/₂ with Gaussian scaling limit, invariance principle (main subject of the talk)

• □ ▶ • 4 🖓 ▶ • 3 3 ▶ • 3 3

The high dimensional model

No mathematical results in $d \ge 3$ dimensions until now lace expansion and rigorous renormalisation group arguments failed

A slightly different model in continuous time: X(t) nearest neigbour jump walk on \mathbb{Z}^d $\ell(t,x) := \ell(0,x) + |\{0 \le s \le t : X(s) = x\}|$

Jump rates:

$$\mathsf{P}\left(X(t+\mathrm{d}t)=y\mid \mathcal{F}_t, X(t)=x\right)=r(\ell(t,x)-\ell(t,y))\,\mathrm{d}t+o(\mathrm{d}t)$$

if |y - x| = 1 where $r : \mathbb{R} \to \mathbb{R}_+$ non-decreasing and non-constant rate function Our particular choice: $r(u) = u_+ + \alpha$ with $\alpha > 0$

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

Environment as seen by the walker

Theorem (I. Horváth, B. Tóth, B. V., 2009)

$$\limsup_{t\to\infty}\frac{\mathsf{E}\left(X(t)^2\right)}{t}<\infty$$

'true' self-avoiding walk = random walk in a dynamically changing random environment

Consider the environment as seen from the position of the random walker

State space:
$$\Omega:=\{\underline{\omega}=(\omega(x):x\in\mathbb{Z}^d)\}=\mathbb{R}^{\mathbb{Z}^d}$$

The process $\eta(t)$ of the environment as seen by the random walker is a Markov process on Ω .

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

Stationary distribution

Let π be the massless free Gaussian field on Ω , i.e. $\omega(x), x \in \mathbb{Z}^d$ are jointly Gaussian with

$$\begin{aligned} \mathbf{\mathsf{E}}_{\pi}\left(\omega(x)\right) &= 0\\ \mathbf{\mathsf{E}}_{\pi}\left(\omega(x)\omega(y)\right) &= \frac{1}{(2\pi)^d}\int_{(-\pi,\pi]^d}\frac{e^{i\theta(y-x)}}{D(\theta)}\mathrm{d}\theta \end{aligned}$$

where $D(\theta) = \frac{1}{d} \sum_{j=1}^{d} (1 - \cos \theta_j)$. The integral exists in dimension $d \ge 3$. π is a stationary distribution of the Markov process $\eta(t)$.

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

Gradient space of the massless free Gaussian field

 $\widetilde{\omega}_k(x) := \omega(x + e_k) - \omega(x)$. With this notation:

$${\sf E}_{\pi}\left(\widetilde{\omega}(x)
ight)=0$$

 ${\sf E}_{\pi}\left(\widetilde{\omega}(x)\widetilde{\omega}(y)
ight)=C_{k,l}(y-x)$

where

$$C_{k,l}(z) = \frac{1}{(2\pi)^d} \int_{(-\pi,\pi]^d} \frac{(1-e^{i\theta e_k})(1-e^{-i\theta e_l})}{D(\theta)} e^{i\theta z} \mathrm{d}\theta.$$

The integral exists in any dimension.

......

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

Natural derivation of the gradient field

$$R(u) := \int_0^u (r(v) - r(-v)) \, \mathrm{d}v = R(-u)$$

Consider the probability measure

$$\mu(\mathrm{d} u) = \frac{1}{Z} \exp(-R(u)) \,\mathrm{d} u$$

where Z is a normailising constant. With $r(u) = u_+ + \alpha$, μ is Gaussian.

The distribution of $\{\widetilde{\omega}_k(x) : x \in \mathbb{Z}^d, k = 1, \dots, d\}$ is the product of copies of μ conditioned to be gradient.

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

 $(\tau_k \underline{\omega})(x) := \omega(x + e_k)$ $(\tau_k f)(\underline{\omega}) := f(\tau_k \underline{\omega})$

Infinitesimal generator

Space of functions: $L^2(\Omega, \pi)$.

$$au_k: \Omega \to \Omega,$$

 $T_k: L^2(\Omega, \pi) \to L^2(\Omega, \pi),$

$$\pi$$
 is invariant under translations.

Infinitesimal generator of $\eta(t)$:

$$(Gf)(\underline{\omega}) = \frac{\partial f}{\partial \omega(0)}(\underline{\omega}) + \sum_{k=1}^{d} [r(\omega(0) - \omega(e_k))(T_k - I) + r(\omega(0) - \omega(-e_k))(T_k^* - I)] f(\underline{\omega})$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

Adjoint operator

$$(G^*f)(\underline{\omega}) = -\frac{\partial f}{\partial \omega(0)}(\underline{\omega}) + \sum_{k=1}^d [r(\omega(e_k) - \omega(0))(T_k - I) + r(\omega(-e_k) - \omega(0))(T_k^* - I)] f(\underline{\omega})$$

Consequences:

• π is indeed a stationary distribution (ergodic)

Yaglom reversibility

$$(Jf)(\underline{\omega}) := f(-\underline{\omega}), \quad J = J^* = J^{-1}$$

 $G^* = JGJ$
 $\eta(-t) \stackrel{\mathrm{d}}{=} -\eta(t)$

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

Conditional speed of the random walker

 $\varphi:\Omega \to \mathbb{R}^d$

$$\varphi_k(\underline{\omega}) := r(\omega(0) - \omega(e_k)) - r(\omega(0) - \omega(-e_k))$$

With

$$s(u) := rac{r(u) + r(-u)}{2}$$
 and $a(u) := rac{r(u) - r(-u)}{2}$

let

$$\overline{\varphi}_k(\underline{\omega}) := s(\omega(0) - \omega(e_k)) - s(\omega(0) - \omega(-e_k))$$

$$\widetilde{\varphi}_k(\underline{\omega}) := a(\omega(0) - \omega(e_k)) - a(\omega(0) - \omega(-e_k))$$

which gives $\varphi(\underline{\omega}) = \overline{\varphi}(\underline{\omega}) + \widetilde{\varphi}(\underline{\omega})$. If $r(u) = u_+ + \alpha$, then $s(u) = \frac{|u|}{2}$ and $a(u) = \frac{u}{2}$.

8 2

The displacement

$$M(t) := X(t) - X(0) - \int_0^t \varphi(\eta(u)) \,\mathrm{d} u$$

is a martingale with stationary and ergodic increments

$$\mathsf{E}\left((M_k(t) - M_k(s))^2\right) = 2(t-s)\int_{\Omega} r(\omega(0) - \omega(e_k))\pi(\mathrm{d}\underline{\omega})$$

Lemma

$$\limsup_{t\to\infty}\frac{1}{t}\mathsf{E}\left(\left(\int_0^t\varphi(\eta(u))\,\mathrm{d} u\right)^2\right)<\infty.$$

It is the key step of the central limit theorem for the displacement

$$X(t) - X(s) = M(t) - M(s) + \int_{s}^{t} \varphi(\eta(u)) \,\mathrm{d}u.$$

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

Abstract upper bound

 (Ω, π) probability space $\eta(t)$ stationary and ergodic Markov process on it G generator of η defined on $L^2(\Omega, \pi)$ $S := -\frac{1}{2}(G + G^*)$ symmetric part $\xi(t)$ stationary, ergodic and reversible Markov process on the same space with infinitesimal generator -S $\psi \in L^2(\Omega, \pi)$ with $\mathbf{E}_{\pi}(\psi) = 0$

Lemma (S. Sethuraman, S. R. S. Varadhan, H.-T. Yau, 2000)

$$\limsup_{t\to\infty} \frac{1}{t} \mathsf{E}\left(\left(\int_0^t \psi(\eta(u)) \,\mathrm{d}u\right)^2\right) \le \lim_{t\to\infty} \frac{1}{t} \mathsf{E}\left(\left(\int_0^t \psi(\xi(u)) \,\mathrm{d}u\right)^2\right)$$

Image: A matrix A

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

The reversible Markov process

$$(-Sf)(\underline{\omega}) = \sum_{k=1}^{d} s(\omega(0) - \omega(e_k))(T_k - I)f(\underline{\omega}) + \sum_{k=1}^{d} s(\omega(0) - \omega(-e_k))(T_k^* - I)f(\underline{\omega})$$

In our case, $\xi(t)$ is a symmetric random walk in random environment.

One has to verify

$$\lim_{t \to \infty} \frac{1}{t} \mathsf{E} \left(\left(\int_0^t \overline{\varphi}(\xi(u)) \, \mathrm{d}u \right)^2 \right) < \infty$$
$$\lim_{t \to \infty} \frac{1}{t} \mathsf{E} \left(\left(\int_0^t \widetilde{\varphi}(\xi(u)) \, \mathrm{d}u \right)^2 \right) < \infty$$

where $\overline{\varphi}$ is the symmetric part and $\widetilde{\varphi}$ is the antisymmetric part of φ

Bálint Vető

Models of the 'true' self-avoiding walk on \mathbb{Z}^d

Abstract time reversal symmetry trick

 $\xi(t)$ stationary, ergodic and reversible Markov process on (Ω, π) $\xi^*(t) := \xi(-t)$ the time-revered process $Y(s, t) := \mathcal{Y}(\xi([s, t]))$ an additive functional of the trajectory of ξ $Y^*(s, t) := \mathcal{Y}(\xi^*([s, t]))$ the functional observed along the backward trajectory $N(t) - N(s) = Y(s, t) - \int_s^t \psi(\xi(u)) du$ is a martingale with stationary increments with the compensator $\psi \in L^2(\Omega, \pi)$

Lemma (A. De Masi, P. A. Ferrari, S. Goldstein, D. Wick, 1989)

If Y is odd with respect to time reversal of trajectories, i.e. $Y^*(-t, -s) = -Y(s, t)$, then

$$\mathsf{E}\left((\mathsf{N}(t)-\mathsf{N}(s))^2\right)=\mathsf{E}\left(\mathsf{Y}(s,t)^2\right)+\mathsf{E}\left(\left(\int_s^t\psi(\xi(u))\,\mathrm{d} u\right)^2\right)$$

Bounds on the asymptotic variance of \overline{arphi} and \widetilde{arphi}

- For φ, let Y(s, t) be the displacement of the random walk in random environment in [s, t], which can be written an additive functional of ξ([s, t]).
- 2 For $\widetilde{\varphi}$, let

$$Y(s,t) := \sum_{s \le u \le t} \frac{-\xi(u-0)(e_k)}{s(\xi(u-0)(0) - \xi(u-0)(e_k))} 1_{\{\xi(u+0) = \tau_k \xi(u-0)\}} \\ + \sum_{s \le u \le t} \frac{\xi(u-0)(0)}{s(\xi(u-0)(0) - \xi(u-0)(-e_k))} 1_{\{\xi(u+0) = \tau_k^{-1} \xi(u-0)\}}$$

i.e. the asymptotic variance of $\psi(\underline{\omega}) = \omega(0) - \omega(e_k)$ is finite.

Remark: bound on $\overline{\varphi}$ is valid in any dimension estimate of $\widetilde{\varphi}$, if the massless Gaussian field exists

Stationary distribution Martingale technique Diffusive bound on the variance The way towards the central limit theorem

Functional analytic condition

$$R_{\lambda} := (\lambda I - G)^{-1}$$
 resolvent operator
 $\psi_{\lambda} := R_{\lambda}\varphi$, or the solution of $\lambda\psi_{\lambda} - G\psi_{\lambda} = \varphi$

Lemma

Suppose that
$$||S^{-1/2}\varphi|| < \infty$$
. If $\lim_{\lambda \to 0} \sqrt{\lambda} ||\psi_{\lambda}|| = 0$ and
 $\lim_{\lambda,\mu \to 0} (S(\psi_{\lambda} - \psi_{\mu}), \psi_{\lambda} - \psi_{\mu}) = 0$, then central limit theorem
holds, i.e.
 $\frac{\int_{0}^{t} \varphi(\eta(s)) \, \mathrm{d}s}{\sqrt{t}} \Longrightarrow N(0, \sigma)$

with $\sigma \in (0,\infty)$.

$$\begin{split} M_{\lambda}(t) &:= \psi_{\lambda}(\eta(t)) - \psi_{\lambda}(\eta(0)) - \int_{0}^{t} (G\psi_{\lambda})(\eta(s)) \, \mathrm{d}s \text{ martingales} \\ \text{Conditions imply that } \exists M_{0}(t) \text{ limit martingale.} \\ M_{0}(t) \text{ approximates } \int_{0}^{t} \varphi(\eta(s)) \, \mathrm{d}s. \end{split}$$

.....

Introduction Investigations in high dimensions Results in one dimension Results in one dimension

Resolvent analysis

$$R_{\lambda} = (\lambda - G)^{-1} = (\lambda + S - A)^{-1} = (\lambda + S)^{-1/2} M_{\lambda} (\lambda + S)^{-1/2}$$

where

$$M_{\lambda} = \left(I - (\lambda + S)^{-1/2}A(\lambda + S)^{-1/2}\right)^{-1}$$

Note that $||M_{\lambda}|| \leq 1$.

$$\sqrt{\lambda}\psi_{\lambda} = \sqrt{\lambda}(\lambda+S)^{-1/2}M_{\lambda}(\lambda+S)^{-1/2}\varphi$$

 $(\lambda + S)^{-1/2}\varphi \rightarrow S^{-1/2}\varphi \in L^2(\Omega, \pi)$ because of our first condition. Suppose that $S^{-1/2}AS^{-1/2}$ exists as closed and densely defined unbounded operator. If

$$M_{\lambda} \stackrel{\text{st. op.}}{\longrightarrow} M_{0} := (I - S^{-1/2} A S^{-1/2})^{-1},$$

$$\lim_{M \text{ U E G Y E T E M 1782}} \lim_{M \text{ U E G Y E E M 1782}} \lim_{M \text{ U E G Y E M 1782}} \lim_{M \text{ U E G Y E E M 1782}} \lim_{M \text{ U E G Y E M 1782}} \lim_{M \text{ U E G Y E M 1782}}$$

One dimensional continuous time model

the same model with d=1 and $\ell(0,x)=0$ for all $x\in\mathbb{Z}$

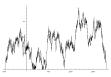
Based on the behaviour of the one dimensional discrete time self-avoiding model with edge repulsion (B. Tóth, 1995):

Theorem (B. Tóth, B. V., 2008)

$$\frac{X(At)}{A^{2/3}} \Longrightarrow \mathcal{X}(t)$$

in terms of the finite dimensional marginals where $\mathcal{X}(t)$ is the true self-repelling motion (B. Tóth, W. Werner, 1998).

Local times:



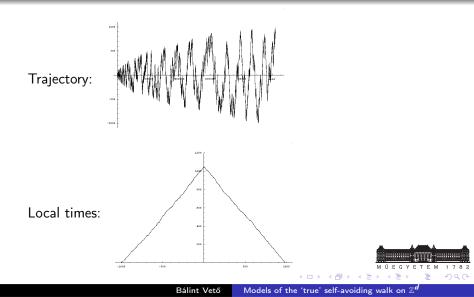
One dimensional discrete time walk with oriented edges

 $\widetilde{X}(n)$ discrete time nearest neigbour random walk on \mathbb{Z} $\ell^{\pm}(n,k) := \#\{0 \le j \le n-1 : \widetilde{X}(j) = k, \widetilde{X}(j+1) = k \pm 1\}$ $w : \mathbb{Z} \to \mathbb{R}_+$ non-increasing and non-constant weight function

$$\mathsf{P}\left(\widetilde{X}(n+1) = x \pm 1 \mid \mathcal{F}_{n}, \widetilde{X}(n) = x\right) \\ = \frac{w(\mp(\ell^{+}(n, x) - \ell^{-}(n, x)))}{w(\ell^{+}(n, x) - \ell^{-}(n, x)) + w(\ell^{-}(n, x) - \ell^{+}(n, x))}$$

Theorem (B. Tóth, B. V., 2008) $\frac{\widetilde{X}([At])}{A^{1/2}} \Longrightarrow \text{UNI}(-\sqrt{t}, \sqrt{t})$ without continuous limit process.

Simulation results



The end

Thank you for your attention!

