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Introduction of the model

joint work with Illés Horváth and Bálint Tóth

X (n) ’true’ or ’myopic’ self-avoiding walk = true (nearest
neighbour) random walk with self-repulsion on Z

d

ℓ(n, x) := #{1 ≤ m ≤ n : X (m) = x}

Transition probabilities:

P
(
X (n + 1) = y

∣∣ Fn,X (n) = x
)

= 11{|x−y |=1}
exp{−β(ℓ(n, y) − ℓ(n, x))}∑

z:|z−x |=1 exp{−β(ℓ(n, z) − ℓ(n, x))}

= 11{|x−y |=1}
r(ℓ(n, x) − ℓ(n, y))∑

z:|z−x |=1 r(ℓ(n, x) − ℓ(n, z))

where r : Z → R+ non-decreasing and non-constant
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Overview of results

First introduction of the ’true’ self-avoiding walk:
D. Amit, G. Parisi and L. Peliti in 1983

Conjectured behaviour:
E
(
X (n)2

)
∼ n2ν i.e. X (n) ∼ nν

1 d = 1: ν = 2
3

and exotic scaling limit (details at the end of
the talk)

2 d = 2: critical dimension, ν = 1
2

with logaritmic corrections
(conjectured)

3 d ≥ 3: ν = 1
2

with Gaussian scaling limit, invariance principle
(main subject of the talk)
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The high dimensional model

No mathematical results in d ≥ 3 dimensions until now
lace expansion and rigorous renormalisation group arguments failed

A slightly different model in continuous time:
X (t) nearest neigbour jump walk on Z

d

ℓ(t, x) := ℓ(0, x) + |{0 ≤ s ≤ t : X (s) = x}|

Jump rates:

P
(
X (t + dt) = y

∣∣ Ft ,X (t) = x
)

= r(ℓ(t, x) − ℓ(t, y)) dt + o(dt)

if |y − x | = 1 where r : R → R+ non-decreasing and non-constant
rate function
Our particular choice: r(u) = u+ + α with α > 0
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Environment as seen by the walker

Theorem (I. Horváth, B. Tóth, B. V., 2009)

lim sup
t→∞

E
(
X (t)2

)

t
<∞

’true’ self-avoiding walk = random walk in a dynamically changing
random environment

Consider the environment as seen from the position of the random
walker
State space: Ω := {ω = (ω(x) : x ∈ Z

d )} = R
Z

d

The process η(t) of the environment as seen by the random walker
is a Markov process on Ω.
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Stationary distribution

Let π be the massless free Gaussian field on Ω, i.e. ω(x), x ∈ Z
d

are jointly Gaussian with

Eπ (ω(x)) = 0

Eπ (ω(x)ω(y)) =
1

(2π)d

∫

(−π,π]d

e iθ(y−x)

D(θ)
dθ

where D(θ) = 1
d

∑d
j=1(1 − cos θj).

The integral exists in dimension d ≥ 3.
π is a stationary distribution of the Markov process η(t).
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Gradient space of the massless free Gaussian field

ω̃k(x) := ω(x + ek) − ω(x). With this notation:

Eπ (ω̃(x)) = 0

Eπ (ω̃(x)ω̃(y)) = Ck,l (y − x)

where

Ck,l (z) =
1

(2π)d

∫

(−π,π]d

(1 − e iθek )(1 − e−iθel )

D(θ)
e iθz

dθ.

The integral exists in any dimension.
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Natural derivation of the gradient field

R(u) :=

∫ u

0

(r(v) − r(−v)) dv = R(−u)

Consider the probability measure

µ(du) =
1

Z
exp(−R(u)) du

where Z is a normailising constant.
With r(u) = u+ + α, µ is Gaussian.

The distribution of {ω̃k(x) : x ∈ Z
d , k = 1, . . . , d} is the product

of copies of µ conditioned to be gradient.
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Infinitesimal generator

Space of functions: L2(Ω, π).

τk : Ω → Ω, (τkω)(x) := ω(x + ek)

Tk : L2(Ω, π) → L2(Ω, π), (Tk f )(ω) := f (τkω)

π is invariant under translations.

Infinitesimal generator of η(t):

(Gf )(ω) =
∂f

∂ω(0)
(ω)

+
d∑

k=1

[r(ω(0) − ω(ek))(Tk − I ) + r(ω(0) − ω(−ek))(T ∗
k − I )] f (ω)
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Adjoint operator

(G ∗f )(ω) = − ∂f

∂ω(0)
(ω)

+

d∑

k=1

[r(ω(ek) − ω(0))(Tk − I ) + r(ω(−ek) − ω(0))(T ∗
k − I )] f (ω)

Consequences:

1 π is indeed a stationary distribution (ergodic)
2 Yaglom reversibility

(Jf )(ω) := f (−ω), J = J∗ = J−1

G ∗ = JGJ

η(−t)
d
= −η(t)
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Conditional speed of the random walker

ϕ : Ω → R
d

ϕk(ω) := r(ω(0) − ω(ek)) − r(ω(0) − ω(−ek))

With

s(u) :=
r(u) + r(−u)

2
and a(u) :=

r(u) − r(−u)

2

let

ϕk(ω) := s(ω(0) − ω(ek)) − s(ω(0) − ω(−ek))

ϕ̃k(ω) := a(ω(0) − ω(ek)) − a(ω(0) − ω(−ek))

which gives ϕ(ω) = ϕ(ω) + ϕ̃(ω).

If r(u) = u+ + α, then s(u) = |u|
2

and a(u) = u
2
.
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The displacement

M(t) := X (t) − X (0) −
∫ t

0

ϕ(η(u)) du

is a martingale with stationary and ergodic increments

E
(
(Mk(t) − Mk(s))2

)
= 2(t − s)

∫

Ω
r(ω(0) − ω(ek))π(dω)

Lemma

lim sup
t→∞

1

t
E

((∫ t

0

ϕ(η(u)) du

)2
)
<∞.

It is the key step of the central limit theorem for the displacement

X (t) − X (s) = M(t) − M(s) +

∫ t

s

ϕ(η(u)) du.
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Abstract upper bound

(Ω, π) probability space
η(t) stationary and ergodic Markov process on it
G generator of η defined on L2(Ω, π)
S := −1

2
(G + G ∗) symmetric part

ξ(t) stationary, ergodic and reversible Markov process on the same
space with infinitesimal generator −S
ψ ∈ L2(Ω, π) with Eπ (ψ) = 0

Lemma (S. Sethuraman, S. R. S. Varadhan, H.-T. Yau, 2000)

lim sup
t→∞

1

t
E

((∫ t

0

ψ(η(u)) du

)2
)

≤ lim
t→∞

1

t
E

((∫ t

0

ψ(ξ(u)) du

)2
)
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The reversible Markov process

(−Sf )(ω) =
d∑

k=1

s(ω(0) − ω(ek))(Tk − I )f (ω)

+
d∑

k=1

s(ω(0) − ω(−ek))(T ∗
k − I )f (ω)

In our case, ξ(t) is a symmetric random walk in random
environment.
One has to verify

lim
t→∞

1

t
E

((∫ t

0

ϕ(ξ(u)) du

)2
)
<∞

lim
t→∞

1

t
E

((∫ t

0

ϕ̃(ξ(u)) du

)2
)
<∞

where ϕ is the symmetric part
and ϕ̃ is the antisymmetric part of ϕ
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Abstract time reversal symmetry trick

ξ(t) stationary, ergodic and reversible Markov process on (Ω, π)
ξ∗(t) := ξ(−t) the time-revered process
Y (s, t) := Y(ξ([s, t])) an additive functional of the trajectory of ξ
Y ∗(s, t) := Y(ξ∗([s, t])) the functional observed along the
backward trajectory
N(t) − N(s) = Y (s, t) −

∫ t

s
ψ(ξ(u)) du is a martingale with

stationary increments with the compensator ψ ∈ L2(Ω, π)

Lemma (A. De Masi, P. A. Ferrari, S. Goldstein, D. Wick, 1989)

If Y is odd with respect to time reversal of trajectories, i.e.
Y ∗(−t,−s) = −Y (s, t), then

E
(
(N(t) − N(s))2

)
= E

(
Y (s, t)2

)
+ E

((∫ t

s

ψ(ξ(u)) du

)2
)
.
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Bounds on the asymptotic variance of ϕ and ϕ̃

1 For ϕ, let Y (s, t) be the displacement of the random walk in
random environment in [s, t], which can be written an additive
functional of ξ([s, t]).

2 For ϕ̃, let

Y (s, t) : =
∑

s≤u≤t

−ξ(u − 0)(ek)

s(ξ(u − 0)(0) − ξ(u − 0)(ek))
11{ξ(u+0)=τkξ(u−0)}

+
∑

s≤u≤t

ξ(u − 0)(0)

s(ξ(u − 0)(0) − ξ(u − 0)(−ek))
11{ξ(u+0)=τ−1

k
ξ(u−0)}

i.e. the asymptotic variance of ψ(ω) = ω(0) − ω(ek) is finite.

Remark: bound on ϕ is valid in any dimension
estimate of ϕ̃, if the massless Gaussian field exists
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Functional analytic condition

Rλ := (λI − G )−1 resolvent operator
ψλ := Rλϕ, or the solution of λψλ − Gψλ = ϕ

Lemma

Suppose that ‖S−1/2ϕ‖ <∞. If limλ→0

√
λ‖ψλ‖ = 0 and

limλ,µ→0(S(ψλ − ψµ), ψλ − ψµ) = 0, then central limit theorem
holds, i.e. ∫ t

0
ϕ(η(s)) ds√

t
=⇒ N(0, σ)

with σ ∈ (0,∞).

Mλ(t) := ψλ(η(t)) − ψλ(η(0)) −
∫ t

0
(Gψλ)(η(s)) ds martingales

Conditions imply that ∃M0(t) limit martingale.
M0(t) approximates

∫ t

0
ϕ(η(s)) ds.

Bálint Vető Models of the ‘true’ self-avoiding walk on Z
d



Introduction
Investigations in high dimensions

Results in one dimension

Stationary distribution
Martingale technique
Diffusive bound on the variance
The way towards the central limit theorem

Resolvent analysis

Rλ = (λ− G )−1 = (λ+ S − A)−1 = (λ+ S)−1/2Mλ (λ+ S)−1/2

where

Mλ =
(
I − (λ+ S)−1/2A (λ+ S)−1/2

)−1

Note that ‖Mλ‖ ≤ 1.

√
λψλ =

√
λ(λ+ S)−1/2Mλ (λ+ S)−1/2ϕ

(λ+ S)−1/2ϕ→ S−1/2ϕ ∈ L2(Ω, π) because of our first condition.
Suppose that S−1/2A S−1/2 exists as closed and densely defined
unbounded operator. If

Mλ
st. op.−→ M0 := (I − S−1/2A S−1/2)−1,

then
√
λ‖ψλ‖ → 0.
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One dimensional continuous time model

the same model with d = 1 and ℓ(0, x) = 0 for all x ∈ Z

Based on the behaviour of the one dimensional discrete time
self-avoiding model with edge repulsion (B. Tóth, 1995):

Theorem (B. Tóth, B. V., 2008)

X (At)

A2/3
=⇒ X (t)

in terms of the finite dimensional marginals where X (t) is the true
self-repelling motion (B. Tóth, W. Werner, 1998).

Local times:
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One dimensional discrete time walk with oriented edges

X̃ (n) discrete time nearest neigbour random walk on Z

ℓ±(n, k) := #{0 ≤ j ≤ n − 1 : X̃ (j) = k, X̃ (j + 1) = k ± 1}
w : Z → R+ non-increasing and non-constant weight function

P
(
X̃ (n + 1) = x ± 1

∣∣ Fn, X̃ (n) = x
)

=
w(∓(ℓ+(n, x) − ℓ−(n, x)))

w(ℓ+(n, x) − ℓ−(n, x)) + w(ℓ−(n, x) − ℓ+(n, x))

Theorem (B. Tóth, B. V., 2008)

X̃ ([At])

A1/2
=⇒ UNI(−

√
t,
√

t)

without continuous limit process.
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Simulation results

Trajectory:

Local times:

Bálint Vető Models of the ‘true’ self-avoiding walk on Z
d



Introduction
Investigations in high dimensions

Results in one dimension

The end

Thank you for your attention!
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