Tracy-Widom asymptotics for q-TASEP

Bálint Vető
MTA-BME Stochastics Research Group, Budapest

July 29, 2014

Introduction

joint work with Patrik Ferrari
Outline:

- Introduction
- Macroscopic behaviour
- Tracy-Widom limit under time ${ }^{1 / 3}$ scaling
- Main steps of the proof

q-TASEP

q-TASEP (totally asymmetric simple exclusion process): continuous time interacting particle system on \mathbb{Z} for $q \in[0,1)$

Configurations: $\mathbf{x}=\left(x_{N}: N \in \mathbb{Z}\right.$ or $\left.N \in \mathbb{N}\right)$ where $x_{N}<x_{N-1}$ for all N Dynamics: particle x_{N} jumps to the right by 1 with rate $1-q^{x_{N-1}-x_{N}-1}$, i.e. the infinitesimal generator is

$$
(L f)(\mathbf{x})=\sum_{N}\left(1-q^{x_{N-1}-x_{N}-1}\right)\left(f\left(\mathbf{x}^{N}\right)-f(\mathbf{x})\right)
$$

where x^{N} is the configuration where x_{N} is increased by one

q-TASEP

$$
1-q^{\mathrm{gap}}
$$

Infinitesimal generator

$$
(L f)(\mathbf{x})=\sum_{N}\left(1-q^{x_{N-1}-x_{N}-1}\right)\left(f\left(\mathbf{x}^{N}\right)-f(\mathbf{x})\right)
$$

where x^{N} is the configuration where x_{N} is increased by one Observation: $x_{N}<x_{N-1}$ is preserved by the dynamics $q=0$ is TASEP

Configuration at time $\tau: \mathbf{X}(\tau)=\left(X_{N}(\tau): N \in \mathbb{Z}\right.$ or $\left.N \in \mathbb{N}\right)$
Step initial condition: $X_{N}(0)=-N$ for $N=1,2, \ldots$

Macroscopic behaviour

Macroscopic evolution of the vector

$$
\left(X_{N}(\tau)+N, N\right)
$$

initially
after normalizing by τ, i.e.

Macroscopic behaviour

Proposition (LLN)

Let $\kappa>1 /(1-q)$ be fixed. Then

$$
\frac{X_{N}(\tau=\kappa N)}{N} \rightarrow f-1
$$

as $N \rightarrow \infty$ where f depends on κ implicitly. Equivalently

$$
\left(\frac{X_{N}(\tau)+N}{\tau}, \frac{N}{\tau}\right) \rightarrow\left(\frac{f}{\kappa}, \frac{1}{\kappa}\right) .
$$

There are explicit parametric
 formulas $\kappa(\theta), f(\theta)$.
The figure shows the parametric plot of $(f / \kappa, 1 / \kappa)$.
The touching point on the vertical axis is at $1-q$.

Tracy-Widom asymptotics for q-TASEP

Results

Let us write

$$
X_{N}(\kappa N)=(f-1) N+\frac{\chi^{1 / 3}}{\log q} \xi_{N} N^{1 / 3}
$$

where ξ_{N} is the rescaled particle position and $\chi>0$ is a constant which depends on κ.

Theorem (P. Ferrari, B. V., 2013)

(1) If $\kappa \in\left(1 /(1-q), \kappa_{0}\right)$ for some $\kappa_{0}=\kappa_{0}(q)$, then

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left(\xi_{N}<x\right)=F_{\mathrm{GUE}}(x)
$$

where F_{GUE} is the GUE Tracy-Widom distribution function.
(2) This confirms the KPZ scaling theory conjecture on the variance of the particle current.

History

q-TASEP

- Borodin, Corwin, 2011: first introduction of q-TASEP
- Borodin, Corwin, Ferrari, 2012: Fredholm determinant formula for the q-Laplace transform of the particle position in q-TASEP (suitable for asymptotics)
q-Boson particle system
- Sasamoto, Wadati, 1998: introduction of q-Boson particle system
- Borodin, Corwin, Sasamoto, 2012: duality of q-Boson particle system and q-TASEP, joint moment formulas for multiple particle positions (not Fredholm determinant)
- Borodin, Corwin, Petrov, Sasamoto, 2013 and Korhonen, Lee, 2013: analysis of q-Boson particle system with Bethe ansatz
Asymptotics
- Ferrari, V, 2013: asymptotics for q-TASEP
- Barraquand, 2014: upper bound on κ removed

Stationary q-TASEP

Stationary q-TASEP: i.i.d. q-geometrically distributed gaps between particles with paramter $\alpha \in[0,1)$, that is,

$$
\mathbf{P}(\operatorname{gap}=k)=(\alpha ; q)_{\infty} \frac{\alpha^{k}}{(q ; q)_{k}} \quad \text { for } k=0,1,2, \ldots
$$

where $(a ; q)_{k}=(1-a)(1-a q) \ldots\left(1-a q^{k-1}\right)$ is the q-Pochhammer symbol

Proposition

For stationary q-TASEP with paramter α, the particle density ρ and the corresponding particle current $j(\rho)$ are explicit:

$$
\rho=\frac{\log q}{\log q+\log (1-q)+\Psi_{q}\left(\log _{q} \alpha\right)}, \quad j(\rho)=\alpha \rho
$$

where Ψ_{q} is the q-digamma function.

Hydrodynamic limit

Proposition

(1) The function

$$
\rho\left(t, \frac{f(\theta)-1}{\kappa(\theta)} t\right)=\frac{\log q}{\log q+\log (1-q)+\Psi_{q}(\theta)}
$$

where the right-hand side is the stationary particle density with parameter $\alpha=q^{\theta}$ solves the mass conservation PDE

$$
\frac{\partial}{\partial t} \rho(t, x)+\frac{\partial}{\partial x} j(\rho(t, x))=0
$$

with initial condition $\rho(0, x)=\mathbb{1}(x<0)$ where $j(\rho)$ is the particle current at density ρ.
(2) Under the assumption of local stationary, the hydrodynamic limit exists and the density profile is as above. Further, the law of large numbers $X_{N}(\tau=\kappa N) / N \rightarrow f-1$ holds.

KPZ scaling theory conjecture

Height function corresponding to the particle system

$$
\eta_{j}=h_{j+1}-h_{j} \text { height difference }
$$

Generator

$$
L f(\eta)=\sum_{j \in \mathbb{Z}} c_{j, j+1}(\eta)\left(f\left(\eta^{j, j+1}\right)-f(\eta)\right)
$$

Stationary measure μ_{ρ} indexed by $\rho=\lim _{a \rightarrow \infty} \frac{1}{2 a+1} \sum_{|j| \leq a} \eta_{j}$
Steady state current: $j(\rho)=\mu_{\rho}\left(c_{0,1}(\eta)\left(\eta_{0}-\eta_{1}\right)\right)$ and $\lambda(\rho)=-j^{\prime \prime}(\rho)$ Integrated covariance: $A(\rho)=\sum_{j \in \mathbb{Z}}\left(\mu_{\rho}\left(\eta_{0} \eta_{j}\right)-\mu_{\rho}\left(\eta_{0}\right)^{2}\right)$

Conjecture (KPZ scaling, Spohn, 2012)
If $\phi(y)=\sup _{|\rho| \leq 1}(y \rho-j(\rho))$ and we set $\rho=\phi^{\prime}(y)$, then

$$
\lim _{t \rightarrow \infty} \mathbf{P}\left(h(y t, t)-t \phi(y) \geq-\left(-\frac{1}{2} \lambda A^{2}\right)^{1 / 3} s t^{1 / 3}\right)=F_{\mathrm{GUE}}(s)
$$

Finite time formula

Theorem (Borodin, Corwin, Ferrari, 2012)

Let $\zeta \in \mathbb{C} \backslash \mathbb{R}_{+}$. Then

$$
E\left(\frac{1}{\left(\zeta q^{X_{N}(\tau)+N} ; q\right)_{\infty}}\right)=\operatorname{det}\left(\mathbb{1}-K_{\zeta}\right)_{L^{2}(C)}
$$

where K_{ζ} is an explicit trace class operator given by its integral kernel and C is a contour in the complex plane.

Formula comes from the q-Whittaker 2d growth model (introduced in the study of Macdonald processes by Borodin, Corwin, 2011)
q-Whittaker 2d growth model: Markov process on the space of Gelfand-Tsetlin patterns

$$
\left\{x_{k}^{(m)}: 1 \leq k \leq m \leq N: x_{k+1}^{(m+1)}<x_{k}^{(m)} \leq x_{k}^{(m+1)}\right\}
$$

Particles $\left\{x_{k}^{(k)}, k=1,2, \ldots\right\}$ follow q-TASEP

Convergence of the q-Laplace transform

$$
X_{N}(\tau=\kappa N)=(f-1) N+\frac{\chi^{1 / 3}}{\log q} \xi_{N} N^{1 / 3}
$$

and with $\zeta=-q^{-f N-\frac{\chi^{1 / 3}}{\log q} \times N^{1 / 3}}$ for some $x \in \mathbb{R}$, the left-hand side of the finite time formula can be written as

$$
\begin{aligned}
\mathbf{E}\left(\frac{1}{\left(\zeta q^{X_{N}(\tau=\kappa N)+N} ; q\right)_{\infty}}\right) & =\mathbf{E}\left(\frac{1}{\left(-q^{\frac{x^{1 / 3}}{\log q}\left(\xi_{N}-x\right) N^{1 / 3}} ; q\right)_{\infty}}\right) \\
& =\mathbf{E}\left(\frac{1}{\prod_{k=0}^{\infty}\left(1+q^{\frac{\chi^{1 / 3}}{\log q}\left(\xi_{N}-x\right) N^{1 / 3}+k}\right)}\right) \\
& \rightarrow \mathbf{P}\left(\xi_{N}<x\right)
\end{aligned}
$$

Asymptotic analysis

Proposition

For $\zeta=-q^{-f N-\frac{x^{1 / 3}}{\log q} \times N^{1 / 3}}$ with some $x \in \mathbb{R}$, the Fredholm determinant converges

$$
\operatorname{det}\left(\mathbb{1}-K_{\zeta}\right)_{L^{2}(C)} \rightarrow \operatorname{det}\left(\mathbb{1}-K_{\mathrm{Ai}, x}\right)_{L^{2}\left(\mathbb{R}_{+}\right)}=F_{\mathrm{GUE}}(x)
$$

where

$$
K_{\mathrm{Ai}, x}(u, v)=\int_{0}^{\infty} \mathrm{d} \lambda \operatorname{Ai}(u+x+\lambda) \operatorname{Ai}(v+x+\lambda)
$$

is the shifted Airy kernel.

The proposition relies on the steep descent property of the black curve C for the function indicated with the colors.

The end

Thank you for your attention!

