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Introduction

joint work with Bálint Tóth

‘true’ self-avoiding walk = true (nearest neighbour) random walk
with self-repulsion (driven by the negative gradient of its own local
time in a certain way)
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Introduction

joint work with Bálint Tóth

‘true’ self-avoiding walk = true (nearest neighbour) random walk
with self-repulsion (driven by the negative gradient of its own local
time in a certain way)

Original problem (discrete time, site repulsion):
D. Amit, G. Parisi, L. Peliti: Asymptotic behaviour of the ‘true’
self-avoiding walk, 1983.
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Original problem

X (n) nearest neighbour random walk with X (0) = 0.
Local times on sites:

ℓ(n, k) := #{0 ≤ j < n : X (j) = k} if n ∈ Z+, k ∈ Z
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Original problem

X (n) nearest neighbour random walk with X (0) = 0.
Local times on sites:

ℓ(n, k) := #{0 ≤ j < n : X (j) = k} if n ∈ Z+, k ∈ Z

Transition probabilities:
w : Z → R+ almost arbitrary weight function, non-decreasing, e.g.
w(k) = eβk with β > 0.

P
(

X (n + 1) = X (n) ± 1
∣

∣ Fn

)

=
w(−(ℓ(n, X (n) ± 1) − ℓ(n, X (n)))

w(...) + w(...)
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Original problem

X (n) nearest neighbour random walk with X (0) = 0.
Local times on sites:

ℓ(n, k) := #{0 ≤ j < n : X (j) = k} if n ∈ Z+, k ∈ Z

Transition probabilities:
w : Z → R+ almost arbitrary weight function, non-decreasing, e.g.
w(k) = eβk with β > 0.

P
(

X (n + 1) = X (n) ± 1
∣

∣ Fn

)

=
w(−(ℓ(n, X (n) ± 1) − ℓ(n, X (n)))

w(...) + w(...)

W(-1)

W(2)+W(-1)

W(2)

W(2)+W(-1)
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Questions: asymptotic behaviour

Scaling limit of the local time

Ti ,m := min{n ≥ 0 : ℓ(n, i) ≥ m}
Λi ,m(k) := ℓ(Ti ,m, k)
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Questions: asymptotic behaviour

Scaling limit of the local time

Ti ,m := min{n ≥ 0 : ℓ(n, i) ≥ m}
Λi ,m(k) := ℓ(Ti ,m, k)

A−1Λ[Ax],[A1/ν−1h]([Ay ]) ⇒ λx ,h(y)
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Questions: asymptotic behaviour

Scaling limit of the local time

Ti ,m := min{n ≥ 0 : ℓ(n, i) ≥ m}
Λi ,m(k) := ℓ(Ti ,m, k)

A−1Λ[Ax],[A1/ν−1h]([Ay ]) ⇒ λx ,h(y)

Limit theorem for the position of the random walker

A−νX ([At]) ⇒ X (t)
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Overview of related models

1 Discrete time, site repulsion (original problem)
D. Amit, G. Parisi, L. Peliti. Asymptotic behaviour of the
‘true’ self-avoiding walk. Phys. Rev. B, 1983.
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Overview of related models

1 Discrete time, site repulsion (original problem)
D. Amit, G. Parisi, L. Peliti. Asymptotic behaviour of the
‘true’ self-avoiding walk. Phys. Rev. B, 1983.

2 Discrete time, edge repulsion
B. Tóth. The ‘true’ self-avoiding walk with bond repulsion on
Z: limit theorems. Ann. Probab., 1995.
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Overview of related models

1 Discrete time, site repulsion (original problem)
D. Amit, G. Parisi, L. Peliti. Asymptotic behaviour of the
‘true’ self-avoiding walk. Phys. Rev. B, 1983.

2 Discrete time, edge repulsion
B. Tóth. The ‘true’ self-avoiding walk with bond repulsion on
Z: limit theorems. Ann. Probab., 1995.

3 Discrete time, oriented edge repulsion
B. Tóth, B. V. Self-repelling random walk with directed edges
on Z, submitted to Electron. J. Probab., 2008.
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Overview of related models

1 Discrete time, site repulsion (original problem)
D. Amit, G. Parisi, L. Peliti. Asymptotic behaviour of the
‘true’ self-avoiding walk. Phys. Rev. B, 1983.

2 Discrete time, edge repulsion
B. Tóth. The ‘true’ self-avoiding walk with bond repulsion on
Z: limit theorems. Ann. Probab., 1995.

3 Discrete time, oriented edge repulsion
B. Tóth, B. V. Self-repelling random walk with directed edges
on Z, submitted to Electron. J. Probab., 2008.

4 Continuous time, site repulsion
B. Tóth, B. V. Continuous time ‘true’ self-avoiding random
walk on Z, preprint, 2008.
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Results

1 Discrete time, site repulsion (original problem)

2 Discrete time, edge repulsion

3 Discrete time, oriented edge repulsion

4 Continuous time, site repulsion

Models 1, 2, 4:

ν = 2

3
(proper scaling: X (t)

t2/3 )
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Results

1 Discrete time, site repulsion (original problem)

2 Discrete time, edge repulsion

3 Discrete time, oriented edge repulsion

4 Continuous time, site repulsion

Models 1, 2, 4:

ν = 2

3
(proper scaling: X (t)

t2/3 )

λ (local time):
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Results

1 Discrete time, site repulsion (original problem)

2 Discrete time, edge repulsion

3 Discrete time, oriented edge repulsion

4 Continuous time, site repulsion

Models 1, 2, 4:

ν = 2

3
(proper scaling: X (t)

t2/3 )

λ (local time):

X (t) (scaling limit): true self-repelling motion
(Tóth – Werner, 1998)
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Results

Model 3 (discrete time, oriented edge repulsion):

ν = 1

2
(time-space scaling exponent);
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Results

Model 3 (discrete time, oriented edge repulsion):

ν = 1

2
(time-space scaling exponent);

λ (local time):
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Results

Model 3 (discrete time, oriented edge repulsion):

ν = 1

2
(time-space scaling exponent);

λ (local time):

X (t): uniform on
[

−
√

t,
√

t
]

(

X (At)√
A

⇒ X (t)
)

no continuous limit process
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Discrete time, oriented edge repulsion

ℓ±(n, k) := #{0 ≤ j < n : X (j) = k, X (j + 1) = k ± 1}
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Discrete time, oriented edge repulsion

ℓ±(n, k) := #{0 ≤ j < n : X (j) = k, X (j + 1) = k ± 1}

P
(

X (n + 1) = X (n) ± 1
∣

∣ Fn

)

=
w(∓(ℓ+(n, X (n)) − ℓ−(n, X (n))))

w(...) + w(...)
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Discrete time, oriented edge repulsion

ℓ±(n, k) := #{0 ≤ j < n : X (j) = k, X (j + 1) = k ± 1}

P
(

X (n + 1) = X (n) ± 1
∣

∣ Fn

)

=
w(∓(ℓ+(n, X (n)) − ℓ−(n, X (n))))

w(...) + w(...)

W(-2)

W(2)+W(-2)

W(2)

W(2)+W(-2)
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Auxiliary Markov-chains

ηk,±(n) = ∓(ℓ+(t(n), k) − ℓ−(t(n), k))

where t(n) = min{s ≥ 0 : ℓ±(s, k) = n}
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Auxiliary Markov-chains

ηk,±(n) = ∓(ℓ+(t(n), k) − ℓ−(t(n), k))

where t(n) = min{s ≥ 0 : ℓ±(s, k) = n}

k

t(4) = 10 ηk,−(4) = 2

t(3) = 8 ηk,−(3) = 2

t(2) = 4 ηk,−(2) = 0

t(1) = 1 ηk,−(1) = −1

Bálint Vető Models of the ‘true’ self-avoiding walk on Z



Auxiliary Markov-chains

ηk,±(n) = ∓(ℓ+(t(n), k) − ℓ−(t(n), k))

where t(n) = min{s ≥ 0 : ℓ±(s, k) = n}

k

t(4) = 10 ηk,−(4) = 2

t(3) = 8 ηk,−(3) = 2

t(2) = 4 ηk,−(2) = 0

t(1) = 1 ηk,−(1) = −1

ηk,± are i.i.d. Markov-chains (if we choose either + or − for each
k ∈ Z)
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Recursion on Λi ,m

Ti ,m := min{n ≥ 0 : ℓ+(n, i) ≥ m}
Λi ,m(k) := ℓ+(Ti ,m, k)
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Recursion on Λi ,m

Ti ,m := min{n ≥ 0 : ℓ+(n, i) ≥ m}
Λi ,m(k) := ℓ+(Ti ,m, k)

Λi ,m(i) = m
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Recursion on Λi ,m

Ti ,m := min{n ≥ 0 : ℓ+(n, i) ≥ m}
Λi ,m(k) := ℓ+(Ti ,m, k)

Λi ,m(i) = m

Λi ,m(k + 1) = Λi ,m(k) + ηk+1,−(Λi ,m(k)) if k ≥ i

Λi ,m(k − 1) = Λi ,m(k) + ηk,+(Λi ,m(k) − 1) + 1 if 0 < k ≤ i

Λi ,m(k − 1) = Λi ,m(k) + ηk,+(Λi ,m(k)) if k ≤ 0
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Recursion on Λi ,m

Ti ,m := min{n ≥ 0 : ℓ+(n, i) ≥ m}
Λi ,m(k) := ℓ+(Ti ,m, k)

Λi ,m(i) = m

Λi ,m(k + 1) = Λi ,m(k) + ηk+1,−(Λi ,m(k)) if k ≥ i

Λi ,m(k − 1) = Λi ,m(k) + ηk,+(Λi ,m(k) − 1) + 1 if 0 < k ≤ i

Λi ,m(k − 1) = Λi ,m(k) + ηk,+(Λi ,m(k)) if k ≤ 0

Λi ,m is a random walk.
The step distribution depends on the position.
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Stationary distribution of ηk,±

Lemma

The unique stationary distribution of the Markov-chains ηk,± is

defined by

ρ(k) = ρ(−k −1) = Z−1

k
∏

l=1

w(−l)

w(l)
where Z = 2

∞
∑

r=0

r
∏

l=1

w(−l)

w(l)

if k ≥ 0.
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Stationary distribution of ηk,±

Lemma

The unique stationary distribution of the Markov-chains ηk,± is

defined by

ρ(k) = ρ(−k −1) = Z−1

k
∏

l=1

w(−l)

w(l)
where Z = 2

∞
∑

r=0

r
∏

l=1

w(−l)

w(l)

if k ≥ 0.

There are constants c1 < ∞ and c2 > 0 such that

∑

y∈Z

|Pn(0, y) − ρ(y)| < c1e
−c2n

where Pn(x , y) = P
(

ηk,±(n) = y
∣

∣ ηk,±(0) = x
)

.

Bálint Vető Models of the ‘true’ self-avoiding walk on Z



Limit theorem for the local time process

Theorem (B. Tóth, B. V., 2008)

Let x ∈ R and h ∈ R+ fixed. Then

A−1Λ⌊Ax⌋,⌊Ah⌋(⌊Ay⌋) ⇒

in supremum-norm in probability as A → ∞.
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Limit theorem for the local time process

Theorem (B. Tóth, B. V., 2008)

Let x ∈ R and h ∈ R+ fixed. Then

A−1Λ⌊Ax⌋,⌊Ah⌋(⌊Ay⌋) ⇒

in supremum-norm in probability as A → ∞.

Proof: Λ⌊Ax⌋,⌊Ah⌋ can be coupled with a walk Λ̃⌊Ax⌋,⌊Ah⌋ with step

distribution ρ is such a way that as long as they are above
√

A,
then they coincide with high probability.
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Limit theorem for the local time process

Theorem (B. Tóth, B. V., 2008)

Let x ∈ R and h ∈ R+ fixed. Then

A−1Λ⌊Ax⌋,⌊Ah⌋(⌊Ay⌋) ⇒

in supremum-norm in probability as A → ∞.

Proof: Λ⌊Ax⌋,⌊Ah⌋ can be coupled with a walk Λ̃⌊Ax⌋,⌊Ah⌋ with step

distribution ρ is such a way that as long as they are above
√

A,
then they coincide with high probability.

It can be shown that if Λ⌊Ax⌋,⌊Ah⌋ is at most
√

A, then it reaches 0
in o(A) time with large probability.
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Limit theorem for the position of the random walker

Conjecture

X ([At])√
A

⇒ UNI[−
√

t,
√

t]

as A → ∞.
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Limit theorem for the position of the random walker

Conjecture

X ([At])√
A

⇒ UNI[−
√

t,
√

t]

as A → ∞.

Theorem (B. Tóth, B. V., 2008)

Let θs/A be independent of the walk X with geometric distribution

P
(

θs/A = n
)

=
(

1 − e−s/A
) (

e−s/A
)n

.

Then
X (θs/A)√

A
⇒ Y

where the density of Y is x 7→ s
∫ ∞
0

e−st 1

2
√

t
11(|x | ≤

√
t) dt.
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Simulation results

Figure: Local time process Λ100,800 with w(k) = 2k and w(k) = 10k
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Simulation results

Figure: Local time process Λ100,800 with w(k) = 2k and w(k) = 10k

Figure: Trajectories of X (n) with w(k) = 2k and w(k) = 10k
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Continuous time, site repulsion

ℓ(t, j) := |{0 ≤ s < t : X (s) = j}|
P (X (t + dt) = j ± 1 | past, X (t) = j) = w(ℓ(t, j) − ℓ(t, j ± 1)) dt
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Continuous time, site repulsion

ℓ(t, j) := |{0 ≤ s < t : X (s) = j}|
P (X (t + dt) = j ± 1 | past, X (t) = j) = w(ℓ(t, j) − ℓ(t, j ± 1)) dt

Infinitesimal generator of the auxiliary Markov-processes ηk,±:

(Kf )(x) = −f ′(x) +

∫

R

r(u, v)(f (v) − f (u)) dv

where r(u, v) = 11(v > u)w(−u) exp
(

−
∫ v

u
w(s) ds

)

w(v)
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Continuous time, site repulsion

ℓ(t, j) := |{0 ≤ s < t : X (s) = j}|
P (X (t + dt) = j ± 1 | past, X (t) = j) = w(ℓ(t, j) − ℓ(t, j ± 1)) dt

Infinitesimal generator of the auxiliary Markov-processes ηk,±:

(Kf )(x) = −f ′(x) +

∫

R

r(u, v)(f (v) − f (u)) dv

where r(u, v) = 11(v > u)w(−u) exp
(

−
∫ v

u
w(s) ds

)

w(v)

0
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Continuous time, site repulsion

ℓ(t, j) := |{0 ≤ s < t : X (s) = j}|
P (X (t + dt) = j ± 1 | past, X (t) = j) = w(ℓ(t, j) − ℓ(t, j ± 1)) dt

Infinitesimal generator of the auxiliary Markov-processes ηk,±:

(Kf )(x) = −f ′(x) +

∫

R

r(u, v)(f (v) − f (u)) dv

where r(u, v) = 11(v > u)w(−u) exp
(

−
∫ v

u
w(s) ds

)

w(v)

0
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Lemma

The unique stationary distribution for the auxiliary

Markov-processes is defined by

ρ(du) =
1

Z
e−W (u)

du

where W (u) =
∫ u

0
(w(v) − w(−v)) dv and Z =

∫

R
e−W (v)

dv.
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Lemma

The unique stationary distribution for the auxiliary

Markov-processes is defined by

ρ(du) =
1

Z
e−W (u)

du

where W (u) =
∫ u

0
(w(v) − w(−v)) dv and Z =

∫

R
e−W (v)

dv.

There are c1 < ∞ and c2 > 0 such that

∣

∣

∣

∣Pt(0, ·) − ρ
∣

∣

∣

∣ < c1e
−c2t

where Pt(x , dy) = P
(

ηk,±(t) ∈ dy
∣

∣ ηk,±(0) = x
)

.

Bálint Vető Models of the ‘true’ self-avoiding walk on Z



Idea of the proof: coupling

η1(0) = 0 and P(η2(0) ∈ A) = ρ(A)
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Idea of the proof: coupling

η1(0) = 0 and P(η2(0) ∈ A) = ρ(A)

∣

∣

∣

∣Pt(0, ·) − ρ
∣

∣

∣

∣ ≤ P (T > t)

where T is the time of merge in any coupling.
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Idea of the proof: coupling

η1(0) = 0 and P(η2(0) ∈ A) = ρ(A)

∣

∣

∣

∣Pt(0, ·) − ρ
∣

∣

∣

∣ ≤ P (T > t)

where T is the time of merge in any coupling.
The rate of merge provided that η1 = x1 and η2 = x2:

w(−x1∨x2) exp

(

−
∫ x1∨x2

x1∧x2

w(z) dz

)

≥ w(−b) exp

(

−
∫ b

−∞
w(z) dz

)

if x1 ∨ x2 < b.
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Idea of the proof: coupling

η1(0) = 0 and P(η2(0) ∈ A) = ρ(A)

∣

∣

∣

∣Pt(0, ·) − ρ
∣

∣

∣

∣ ≤ P (T > t)

where T is the time of merge in any coupling.
The rate of merge provided that η1 = x1 and η2 = x2:

w(−x1∨x2) exp

(

−
∫ x1∨x2

x1∧x2

w(z) dz

)

≥ w(−b) exp

(

−
∫ b

−∞
w(z) dz

)

if x1 ∨ x2 < b.

P(T > t) ≤ P

(

ϑt <
t

2

)

+ P

(

T > t | ϑt ≥
t

2

)

where ϑt = |{0 ≤ s ≤ t : η1(s) ∨ η2(s) < b}|.
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Open questions

rigorous proof for the original model (discrete time, site
repulsion)
How to do: show that the discrete and the continuous models
do not differ too much in the long run (not so easy)
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Open questions

rigorous proof for the original model (discrete time, site
repulsion)
How to do: show that the discrete and the continuous models
do not differ too much in the long run (not so easy)

‘true’ self-avoiding random walk in higher dimensions
diffusive behaviour with Gaussian scaling limit
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Open questions

rigorous proof for the original model (discrete time, site
repulsion)
How to do: show that the discrete and the continuous models
do not differ too much in the long run (not so easy)

‘true’ self-avoiding random walk in higher dimensions
diffusive behaviour with Gaussian scaling limit
generalization of Kipnis – Varadhan-theorem for the
non-revesible case (central limit theorem for additive
functionals of Markov-processes)
Markov-process: environment seen from the position of the
walker
joint work with I. Horváth and B. Tóth
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Thank you for the attention!
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