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Abstract

We consider the continuous time version of the ‘true’ or ‘myopic’ self-avoiding
random walk with site repulsion in 1d. The Ray – Knight-type method which was
applied in [14] to the discrete time and edge repulsion case is applicable to this
model with some modifications. We present a limit theorem for the local time of
the walk and a local limit theorem for the displacement.

1 Introduction

1.1 Historical background

Let X(t), t ∈ Z+ := {0, 1, 2, . . . } be a nearest neighbour walk on the integer lattice Z

starting from X(0) = 0 and denote by ℓ(t, x), (t, x) ∈ Z+ × Z, its local time (that is: its
occupation time measure) on sites:

ℓ(t, x) := #{0 ≤ s ≤ t : X(s) = x}

where #{. . . } denotes cardinality of the set. The true self-avoiding random walk with
site repulsion (STSAW) was introduced in [1] as an example for a non-trivial random
walk with long memory which behaves qualitatively differently from the usual diffusive
behaviour of random walks. It is governed by the evolution rules

P
(
X(t + 1) = x ± 1

∣∣ Ft, X(t) = x
)

=
e−βℓ(t,x±1)

e−βℓ(t,x+1) + e−βℓ(t,x−1)

=
e−β(ℓ(t,x±1)−ℓ(t,x))

e−β(ℓ(t,x+1)−ℓ(t,x)) + e−β(ℓ(t,x−1)−ℓ(t,x))
, (1)

ℓ(t + 1, x) = ℓ(t, x) + 11{X(t+1)=x}.

The extension of this definition to arbitrary dimensions is straightforward. In [1], ac-
tually, the multidimensional version of the walk was defined. Non-rigorous – nevertheless
rather convincing – scaling and renormalization group arguments suggested that:
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1. In three and more dimensions, the walk behaves diffusively with a Gaussian scaling
limit of t−1/2X(t) as t → ∞. See e.g. [1], [10] and [6].

2. In one dimension (that is: the case formally defined above), the walk is superdif-
fusive with a non-degenerate scaling limit of t−2/3X(t) as t → ∞, but with no hint
about the limiting distribution. See [11] and [18].

3. The critical dimension is d = 2 where the Gaussian scaling limit is obtained with
logarithmic multiplicative corrections added to the diffusive scaling. See [1] and
[10].

These questions are still open. However, the scaling limit in one dimension of a closely
related object was clarified in [14]. The true self-avoiding walk with self-repulsion defined
in terms of the local times on edges rather then sites is defined as follows:

Let X̃(t), t ∈ Z+ := {0, 1, 2, . . . } be yet again a nearest neighbour walk on the integer

lattice Z starting from X̃(0) = 0 and denote now by ℓ̃±(t, x), (t, x) ∈ Z+ × Z, its local
time (that is: occupation time measure) on edges:

ℓ̃+(t, x) := #{0 ≤ s < t : {X̃(s), X̃(s + 1)} = {x, x + 1}},
ℓ̃−(t, x) := #{0 ≤ s < t : {X̃(s), X̃(s + 1)} = {x, x − 1}}.

Note that ℓ̃+(t, x) = ℓ̃−(t, x+1). The true self-avoiding random walk with edge repulsion
(ETSAW) is governed by the evolution rules

P
(
X̃(t + 1) = x ± 1

∣∣ Ft, X̃(t) = x
)

=
e−2βeℓ±(t,x)

e−2βeℓ+(t,x) + e−2βeℓ−(t,x)

=
e−β(eℓ±(t,x)−eℓ∓(t,x))

e−β(eℓ+(t,x)−eℓ−(t,x)) + e−β(eℓ−(t,x)−eℓ+(t,x))

ℓ̃±(t + 1, x) = ℓ̃±(t, x) + 11{{ eX(t), eX(t+1)}={x,x±1}}.

In [14], a limit theorem was proved for t−2/3X̃(t), as t → ∞. Later, in [19], a
space-time continuous process R+ ∋ t 7→ X (t) ∈ R was constructed – called the true self-
repelling motion (TSRM) – which possessed all the analytic and stochastic properties of

an assumed scaling limit of R+ ∋ t 7→ X (A)(t) := A−2/3X̃([At]) ∈ R. The invariance
principle for this model has been clarified in [9].

A key point in the proof of [14] is a kind of Ray – Knight-type argument which works
for the ETSAW but not for the STSAW. (For the original idea of Ray – Knight theory,
see [7] and [12].) Let

T̃±,x,h := min{t ≥ 0 : ℓ̃±(t, x) ≥ h}, x ∈ Z, h ∈ Z+

be the so called inverse local times and

Λ̃±,x,h(y) := ℓ̃±(T̃±,x,h, y), x, y ∈ Z, h ∈ Z+
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the local time sequence of the walk stopped at the inverse local times. It turns out that,
in the ETSAW case, for any fixed (x, h) ∈ Z × Z+, the process Z ∋ y 7→ Λ̃±,x,h(y) ∈ Z+

is Markovian and it can be thoroughly analyzed.
It is a fact that the similar reduction does not hold for the STSAW. Here, the natural

objects are actually slightly simpler to define:

Tx,h := min{t ≥ 0 : ℓ(t, x) ≥ h}, x ∈ Z, h ∈ Z+,

Λx,h(y) := ℓ(Tx,h, y), x, y ∈ Z, h ∈ Z+.

The process Z ∋ y 7→ Λx,h(y) ∈ Z+ (with fixed (x, h) ∈ Z × Z+) is not Markovian and
thus the Ray – Knight-type of approach fails. Nevertheless, this method works also for
the model treated in the present paper.

The reader can find further connected results about self-interacting random walk
models in the following papers. Self-repellent models are analyzed in [3], [13] and [6],
reinforced random walks in [4], [15] and [16]. Results about the self-avoiding walk can
be found in [8], and a survey of self-interacting random motions in [17].

The main ideas of this paper are similar to those of [14], but there are essential
differences, too. Those parts of the proofs which are the same as in [14] will not be
spelled out explicitly. E.g. the full proof of Theorem 3 is omitted altogether. We put the
emphasis on those arguments which differ genuinely from [14]. In particular, we present
some new coupling arguments.

This paper is organised as follows. First, we describe the model which we will study
and present our theorems. In Section 2, we give the proof of Theorem 1 in three steps:
we introduce the main technical tools, i.e. some auxiliary Markov processes. Then we
state technical lemmas which are all devoted to check the conditions of Theorem 3 cited
from [14]. Finally, we complete the proof using the lemmas. The proof of these lemmas
are postponed until Section 4. The proof of Theorem 2 is in Section 3.

1.2 The random walk considered and the main results

Now, we define a version of true self-avoiding random walk in continuous time, for which
the Ray – Knight-type method sketched in the previous section is applicable. Let X(t),
t ∈ R+ be a continuous time random walk on Z starting from X(0) = 0 and having
right continuous paths. Denote by ℓ(t, x), (t, x) ∈ R+ ×Z its local time (occupation time
measure) on sites:

ℓ(t, x) := |{s ∈ [0, t) : X(s) = x}|
where |{. . . }| now denotes Lebesgue measure of the set indicated. Let w : R → (0,∞) be
an almost arbitrary rate function. We assume that it is non-decreasing and not constant.

The law of the random walk is governed by the following jump rates and differential
equations (for the local time increase):

P
(
X(t + dt) = x ± 1

∣∣ Ft, X(t) = x
)

= w(ℓ(t, x) − ℓ(t, x ± 1)) dt + o(dt), (2)

ℓ̇(t, x) = 11{X(t)=x} (3)
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with initial conditions
X(0) = 0, ℓ(0, x) = 0.

The dot in (3) denotes time derivative. Note that for the the choice of exponential weight
function w(u) = exp{βu}. This means exactly that conditionally on a jump accuring
at the instant t, the random walker jumps to right or left from its actual position with
probabilities e−βℓ(t,x±1)/(e−βℓ(t,x+1) + e−βℓ(t,x−1)), just like in (1). It will turn out that in
the long run the holding times remain of order one.

Fix j ∈ Z and r ∈ R+. We consider the random walk X(t) running from t = 0 up to
the stopping time

Tj,r = inf{t ≥ 0 : ℓ(t, j) ≥ r}, (4)

which is the inverse local time for our model. Define

Λj,r(k) := ℓ(Tj,r, k) k ∈ Z (5)

the local time process of X stopped at the inverse local time.
Let

λj,r := inf{k ∈ Z : Λj,r(k) > 0},
ρj,r := sup{k ∈ Z : Λj,r(k) > 0}.

Fix x ∈ R and h ∈ R+. Consider the two-sided reflected Brownian motion |Wy|,
y ∈ R with starting point |Wx| = h. Define the times of the first hitting of 0 outside the
interval [0, x] or [x, 0] with

λx := sup{y < 0 ∧ x : |Wy| = 0},
ρx := inf{y > 0 ∨ x : |Wy| = 0}

where a ∧ b = min(a, b), a ∨ b = max(a, b), and let

Tx,h :=

∫ ρx

λx

|Wy| dy. (6)

The main result of this paper is

Theorem 1. Let x ∈ R and h ∈ R+ be fixed. Then

A−1λ⌊Ax⌋,⌊
√

Aσh⌋ =⇒ λ0∧x, (7)

A−1ρ⌊Ax⌋,⌊
√

Aσh⌋ =⇒ ρ0∨x, (8)

and
(

Λ⌊Ax⌋,⌊
√

Aσh⌋(⌊Ay⌋)
σ
√

A
,
λ⌊Ax⌋,⌊

√
Aσh⌋

A
≤ y ≤

ρ⌊Ax⌋,⌊
√

Aσh⌋
A

)

=⇒
(
|Wy|, λ0∧x ≤ y ≤ ρ0∨x

∣∣ |Wx| = h
)

(9)

as A → ∞ where σ2 =
∫ ∞
−∞ u2ρ(du) ∈ (0,∞) with ρ defined by (26) and (22) later.

4



Corollary 1. For any x ∈ R and h ≥ 0,

T⌊Ax⌋,⌊
√

Aσh⌋
σA3/2

=⇒
(
Tx,h

∣∣ |Wx| = h
)
. (10)

For stating Theorem 2, we need some more definitions. It follows from (6) that Tx,h

has an absolutely continuous distribution. Let

ω(t, x, h) := lim
dt→0

P
(
Tx,h ∈ (t, t + dt)

∣∣ |Wx| = h
)

dt
(11)

be the density of Tx,h. Define

ϕ(t, x) :=

∫ ∞

0

ω(t, x, h) dh.

Theorem 2 of [14] gives that, for fixed t > 0, ϕ(t, ·) is a density function, i.e.

∫ ∞

−∞
ϕ(t, x) dx = 1. (12)

One could expect that ϕ(t, ·) is the density of the limit distribution of X(At)/A2/3 as
A → ∞, but we prove a similar statement for their Laplace transform. We denote by ϕ̂
the Laplace transforms of ϕ:

ϕ̂(s, x) := s

∫ ∞

0

e−stϕ(t, x) dt. (13)

Theorem 2. Let s ∈ R+ be fixed and θs/A a random variable of exponential distribution

with mean A/s which is independent of the random walk X(t). Then, for almost all

x ∈ R,

A2/3P
(
X(θs/A) = ⌊A2/3x⌋

)
→ ϕ̂(s, x) (14)

as A → ∞.

From this local limit theorem, the integral limit theorem follows immediately:

lim
A→∞

P
(
A−2/3X(θs/A) < x

)
=

∫ x

−∞
ϕ̂(s, y) dy.

2 Ray –Knight construction

The aim of this section is to give a random walk representation of the local time sequence
Λj,r. Therefore, we introduce auxiliary Markov processes corresponding to each edge of
Z, which enable us to express the local time at a certain site with that of its neighbour.
By induction, the sequence of local times can be given as partial sums of independent
auxiliary Markov processes. The proof of Theorem 1 relies exactly on this observation.
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2.1 The basic construction

Let
τ(t, k) := ℓ(t, k) + ℓ(t, k + 1) (15)

be the local time spent on (the endpoints of) the edge 〈k, k + 1〉, k ∈ Z, and

θ(s, k) := inf{t ≥ 0 : τ(t, k) > s} (16)

its inverse. Further on, define

ξk(s) := ℓ(θ(s, k), k + 1) − ℓ(θ(s, k), k), (17)

αk(s) := 11{X(θ(s,k))=k+1} − 11{X(θ(s,k))=k}. (18)

Note that, for each k ∈ Z, t 7→ (αk(t), ξk(t)) is a Markov process on the state space
{−1, +1} × R. The transition rules are

P
(
αk(t + dt) = −αk(t)

∣∣ Ft

)
= w(αk(t)ξk(t)) dt + o(dt), (19)

ξ̇k(t) = αk(t), (20)

with some initial state (αk(0), ξk(0)). In plain words:

1. ξk(t) is the difference of time spent by αk in the states +1 and −1, alternatively,
the difference of time spent by the walker on the sites k + 1 and k;

2. αk(t) changes sign with rate w(αk(t)ξk(t)) since the walker jumps between k and
k + 1 with these rates.

The common infinitesimal generator of these processes is

(Gf)(±1, u) = ±f ′(±1, u) + w(±u)
(
f(∓1, u) − f(±1, u)

)

where f ′(±1, u) is the derivative with respect to the second variable. It is an easy
computation to check that these Markov processes are ergodic and their common unique
stationary measure is

µ(±1, du) =
1

2Z
e−W (u) du (21)

where

W (u) :=

∫ u

0

(w(v) − w(−v)) dv and Z :=

∫ ∞

−∞
e−W (v) dv. (22)

Mind that, due to the condition imposed on w (non-decreasing and non-constant),

lim
|u|→∞

W (u)

|u| = lim
v→∞

(w(v) − w(−v)) > 0, (23)

and thus Z < ∞ and µ(±1, du) is indeed a probability measure on {−1, +1} × R.
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Let

β±(t, k) := inf

{
s ≥ 0 :

∫ s

0

11{αk(u)=±1} du ≥ t

}
(24)

be the inverse local times of (αk(t), ξk(t)). With the use of them, we can define the
processes

ηk,−(t) := ξk(β−(t, k)), ηk,+(t) := −ξk(β+(t, k)). (25)

which are also Markovian. By symmetry, the processes with different sign have the same
law. The infinitesimal generator of ηk,± is

(Hf)(u) = −f ′(u) + w(u)

∫ ∞

u

e−
R v

u w(s) dsw(v)(f(v) − f(u)) dv.

It is easy to see that the Markov processes ηk,± are ergodic and their common unique
stationary distribution is

ρ(du) :=
1

Z
e−W (u) du (26)

with the notations (22). The stationarity of µ is not surprising after (21), but a straight-
forward calculation yields it also.

The main point is the following

Proposition. 1. The processes s 7→ (αk(s), ξk(s)), k ∈ Z are independent Markov

process with the same law given in (19)–(20). They start from the initial states

ξk(0) = 0 and

αk(0) =

{
+1 if k < 0,
−1 if k ≥ 0.

2. The processes s 7→ ηk,±(s), k ∈ Z are independent Markov processes if we consider

exactly one of ηk,+ and ηk,− for each k. The initial distributions are

P (ηk,+(0) ∈ A) =

{
Q(0, A) if k ≥ 0,
11{0∈A} if k < 0,

(27)

P (ηk,−(0) ∈ A) =

{
11{0∈A} if k ≥ 0,
Q(0, A) if k < 0.

(28)

2.2 Technical lemmas

The lemmas of this subsection descibe the behaviour of the auxiliary Markov processes
ηk,±. Since they all have the same law, we denote them by η to keep the notation simple,
and it means that the statement is true for all ηk,±.

Fix b ∈ R. Define the stopping times

θ+ := inf{t > 0 : η(t) ≥ b}, (29)

θ− := inf{t > 0 : η(t) ≤ b}. (30)
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In our lemmas, γ will always be a positive constant, which is considered as being a
small exponent, and C will be a finite constant considered as being large. To simplify
the notation, we will use the same letter for constants at different points of our proof.
The notation does not emphasizes, but their value depend on b.

First, we estimate the exponential moments of θ− and θ+.

Lemma 1. There are γ > 0 and C < ∞ such that, for all y ≥ b,

E
(
exp(γθ−)

∣∣ η(0) = y
)
≤ exp(C(y − b)). (31)

Lemma 2. There exists γ > 0 such that

E
(
exp(γθ+)

∣∣ η(0) = b
)

< ∞. (32)

Denote by P t = etH the transition kernel of η. For any x ∈ R, define the probability
measure

Q(x, dy) :=

{
exp(−

∫ y

x
w(u) du)w(y) dy if y ≥ x,

0 if y < x,

which is the conditional distribution of the endpoint of a jump of η provided that η jumps
from x. We show that the Markov process η converges exponentially fast to its stationary
distribution ρ defined by (26) if the initial distribution is 0 with probability 1 or Q(0, ·).

Lemma 3. There are C < ∞ and γ > 0 such that

∥∥P t(0, ·) − ρ
∥∥ < C exp(−γt) (33)

and ∥∥Q(0, ·)P t − ρ
∥∥ < C exp(−γt). (34)

We give a bound on the decay of the tails of P t(0, ·) and Q(0, ·)P t uniformly in t.

Lemma 4. There are constants C < ∞ and γ > 0 such that

P t(0, (x,∞)) ≤ Ce−γx (35)

and

Q(0, ·)P t(0, (x,∞)) ≤ Ce−γx (36)

for all x ≥ 0 and for any t > 0 uniformly, i.e. the value of C and γ does not depend on

x and t.

We introduce some notation from [14] and cite a theorem, which will be the main
ingredient of our proof. Let A > 0 be the scaling parameter, and let

SA(l) = SA(0) +
l∑

j=1

ξA(j) l ∈ N
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be a discrete time random walk on R+ with the law

P
(
ξA(l) ∈ dx

∣∣ SA(l − 1) = y
)

= πA(dx, y, l)

for each l ∈ N with ∫ ∞

−y

πA(dx, y, l) = 1.

Define the following stopping time of the random walk SA(·):
ω[Ar] = inf{l ≥ [Ar] : SA(l) = 0}.

We give the following theorem without proof, because this is the continuous analog
of Theorem 4 in [14] and its proof is essentially identical to that of the corresponding
statement in [14].

Theorem 3. Suppose that the following conditions hold:

1. The step distributions πA(·, y, l) converge exponentially fast as y → ∞ to a common

asymptotic distribution π. That is, for each l ∈ Z,∫

R

|πA(dx, y, l) − π(dx)| < Ce−γy.

2. The asymptotic distribution is symmetric: π(−dx) = π(dx), and its moments are

finite, in particular, denote

σ2 :=

∫

R

x2π(dx). (37)

3. Uniform decay of the step distributions: for each l ∈ Z,

πA((x,∞), y, l) ≤ Ce−γx.

4. Uniform non-trapping condition: The random walk is not trapped in a bounded

domain or in a domain away from the origin. That is, there is δ > 0 such that
∫ ∞

δ

πA(dx, y, l) > δ or

∫ ∞

x=δ

∫ ∞

z=−∞
πA(dx− z, y + z, l + 1)πA(dz, y, l) > δ (38)

and ∫ −(δ∧y)

−∞
πA(dx, y, l) > δ.

Under these conditions, if
SA(0)

σ
√

A
→ h,

then(
ω[Ar]

A
,
SA([Ay])

σ
√

A
: 0 ≤ y ≤ ω[Ar]

A

)
=⇒

(
ωW

r , |Wy| : 0 ≤ y ≤ ωW
r

∣∣ |W0| = h
)

(39)

in R+ × D[0,∞) as A → ∞ where

ωW
r = inf{s > 0 : Ws = 0}

with a standard Brownian motion W and σ is given by (37).
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2.3 Proof of Theorem 1

Using the auxiliary Markov processes introduced in Subsection 2.1, we can build up the
local time sequence as a random walk. This Ray – Knight-type construction is the main
idea of the following proof.

Proof of Theorem 1. Fix j ∈ Z and r ∈ R+. Using the definition (5) and the construction
of ηk,± (15)–(25), we can formulate the following recursion for Λj,r:

Λj,r(j) = r,

Λj,r(k + 1) = Λj,r(k) + ηk,−(Λj,r(k)) if k ≥ j,

Λj,r(k − 1) = Λj,r(k) + ηk−1,+(Λj,r(k)) if k ≤ j.

(40)

It means that the processes (Λj,r(j − k))∞k=0 and (Λj,r(j + k))∞k=0 are random walks on
R+, they start from Λj,r(j) = r, and the distribution of the following step always depends
on the actual position of the walker. In order to apply Theorem 3, we rewrite (40):

Λj,r(j + k) = h +
k−1∑

i=0

ηj+i,−(Λj,r(j + i)) k = 0, 1, 2, . . . ,

Λj,r(j − k) = h +
k−1∑

i=0

ηj−i−1,+(Λj,r(j − i)) k = 0, 1, 2, . . . .

The step distributions of this random walks are

πA(dx, y, l) =

{
P y(0, dx)

Q(0, ·)P y(dx)

according to (27)–(28).
The exponential closeness of the step distribution to the stationary distribution is

shown by Lemma 3. One can see from (26) and (22) that the distribution ρ is symmetric
and it has a non-zero finite variance. Lemma 4 gives a uniform exponential bound on
the tail of the distributions P t(0, ·) and Q(0, ·)P t.

Since we only consider [λj,r, ρj,r], that is, the time interval until Λj,r hits 0, we can
force the walk to jump to 1 in the next step after hitting 0, which does not influence
our investigations. It means that πA({1}, 0, l) = 1 for l ∈ Z, and with this, the non-
trapping condition (38) fulfils. Therefore, Theorem 3 is applicable for the forward and
the backward walks, and Theorem 1 is proved.

3 The position of the random walker

We turn to the proof of Theorem 2. First, we introduce the rescaled distribution

ϕA(t, x) := A2/3P
(
X(t) = ⌊A2/3x⌋

)
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where t, x ∈ R+. We define the Laplace transform of ϕA with

ϕ̂A(s, x) = s

∫ ∞

0

e−stϕA(t, x) dt, (41)

which is the position of the random walker at an independent random time of exponential
distribution with mean A/s.

We denote by ω̂ the Laplace transforms of ω defined in (11) and rewrite (13):

ω̂(s, x, h) := s

∫ ∞

0

e−stω(t, x, h) dt = sE
(
e−sTx,h

∣∣ |Wx| = h
)
,

ϕ̂(s, x) = s

∫ ∞

0

e−stϕ(t, x) dt =

∫ ∞

0

ω̂(s, x, h) dh.

Note that the scaling relations

αω(αt, α2/3x, α1/3h) = ω(t, x, h),

α2/3ϕ̂(α−1s, α2/3x) = ϕ̂(s, x) (42)

hold because of the scaling property of the Brownian motion.

Proof of Theorem 2. The first observation for the proof is the identity

P (X(t) = k) =

∫ ∞

h=0

P (Tk,h ∈ (t, t + dh)) , (43)

which follows from (4). If we insert it to the definition of ϕ̂A (41), then we get

ϕ̂A(s, x) = sA−1/3

∫ ∞

0

e−st/AP
(
X(t) = ⌊A2/3x⌋

)
dt

= sA−1/3

∫ ∞

0

e−st/A

∫ ∞

h=0

P
(
T⌊A2/3x⌋,h ∈ (t, t + dh)

)
dt

= sA−1/3

∫ ∞

0

E
(
e
−sT

⌊A2/3x⌋,h
/A

)
dh

(44)

using (43). Defining

ω̂A(s, x, h) = sE
(
exp(−sT⌊A2/3x⌋,⌊A1/3σh⌋/(σA))

)

gives us

ϕ̂A(s, x) =

∫ ∞

0

ω̂A(σs, x, h) dh (45)

from (44). From Corollary 1, it follows that, for any s > 0, x ≥ 0 and h > 0,

ω̂A(s, x, h) → ω̂(s, x, h).
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Applying Fatou’s lemma in (45), one gets

lim inf
A→∞

ϕ̂A(s, x) ≥
∫ ∞

0

ω̂(σs, x, h) dh = σ2/3ϕ̂(s, σ2/3x), (46)

where we used (42) in the last equation. A consequence of (12), (46) integrated and a
second application of Fatou’s lemma yield

1 =

∫ ∞

−∞
ϕ̂(s, x) dx ≤

∫ ∞

−∞
lim inf
A→∞

ϕ̂A(s, x) dx ≤ lim inf
A→∞

∫ ∞

−∞
ϕ̂A(s, x) dx = 1,

which gives that, for fixed s ∈ R+, ϕ̂A(s, x) → ϕ̂(s, x) holds for almost all x ∈ R,
indeed.

4 Proof of lemmas

4.1 Exponential moments of the return times

Proof of Lemma 1. Consider the Markov process ζ(t) which decreases with constant
speed 1, it has upwards jumps with homogeneous rate w(−b), and the distribution of
the size of a jump is the same as that of η, provided that the jump starts from b. In
other words, the infinitesimal generator of ζ is

(Zf)(u) = −f ′(u) + w(−b)

∫ ∞

0

e−
R v
0 w(b+s) dsw(b + v)(f(u + v) − f(u)) dv.

Note that, by the monotonicity of w, η and ζ can be coupled in such a way that they
start from the same position and, as long as η ≥ b holds, ζ ≥ η is true almost surely. It
means that it suffices to prove (31) with

θ′− := inf{t > 0 : ζ(t) ≤ b} (47)

instead of θ−. But the transitions of ζ are homogeneous in space, which yields that (31)
follows from the finiteness of

E
(
exp(γθ′−)

∣∣ ζ(0) = b + 1
)
. (48)

In addition to this, ζ is a supermartingale with stationary increments, which gives us

E (ζ(t)) = b + 1 − ct

with some c > 0, if the initial condition is ζ(0) = b + 1. For α ∈
(
−∞, limu→∞

W (u)
u

)

(c.f. (23)), the expectation
log E

(
eα(ζ(t)−ζ(0))

)

is finite, and negative for some α > 0. Hence, the martingale

M(t) = exp
(
α(ζ(t) − ζ(0)) − t log E

(
eα(ζ(1)−ζ(0))

))
(49)

stopped at θ′− gives that the expectation in (48) is finite with γ = − log E
(
eα(ζ(1)−ζ(0))

)
.
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Proof of Lemma 2. First, we prove for negative b, more precisely, for which w(−b) >
w(b). In this case, define the homogeneous process κ with κ(0) = b and generator

Kf(u) = −f ′(u) + w(−b)

∫ ∞

0

e−w(b)sw(b)(f(u + s) − f(u)) ds.

It is easy to see that there is a coupling of η and κ, for which η ≥ κ as long as η ≤ b.
Therefore, it is enough to show (32) with

θ′+ := inf{t > 0 : κ(t) ≥ b}

instead of θ+.
But κ is a submartingale with stationary increments, for which

log E
(
eα(κ(t)−κ(0))

)

is finite if α ∈ (−∞, w(b)), and negative for some α < 0. The statement follows from the
same idea as in the proof of Lemma 1.

Now, we prove the lemma for the remaining case. Fix b, for which we already know
(32), and chose b1 > b arbitrarily. We start η from η(0) = b1, and we decompose its
trajectory into independent excursions above and below b, alternatingly. Let

Y0 := inf{t ≥ 0 : η(t) ≤ b}, (50)

and by induction, define

Xk := inf

{
t > 0 : η

(
k−1∑

j=1

Xj +
k−1∑

j=0

Yj + t

)
≥ b

}
, (51)

Yk := inf

{
t ≥ 0 : η

(
k∑

j=1

Xj +
k−1∑

j=0

Yj + t

)
≤ b

}
(52)

if k = 1, 2, . . . . Note that (Xk, Yk)k=1,2,... is an i.i.d. sequence of pairs of random variables.
Finally, let

Zk := Xk + Yk k = 1, 2, . . . . (53)

With this definition, the Zk’s are the lengths of the epochs in a renewal process.
Lemma 1 tells us that Y0 has finite exponential moment. The same holds for X1, X2, . . .
because of the first part of this proof for the case of small b. Note that the distribution
of the upper endpoint of a jump of η conditionally given that η jumps above b is exactly
Q(b, ·). Since Q(b, ·) decays exponentially fast, we can use Lemma 1 again to conclude
that E (exp(γYk)) < ∞ for γ > 0 small enough. Define

νt := max

{
n ≥ 0 :

n∑

k=1

Zk ≤ t

}
(54)
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in the usual way. The following decomposition is true:

P

(∑νt+1
k=1 Yk

t
< ε

)

≤ P

(
νt + 1

t
<

1

2

1

E (Z1)

)
+ P

(∑νt+1
k=1 Yk

t
< ε,

νt + 1

t
≥ 1

2

1

E (Z1)

)
.

(55)

Lemma 4.1 of [2] gives a large deviation principle for the renewal process νt, hence

P

(
νt + 1

t
<

1

2

1

E (Z1)

)
≤ P

(
νt

t
<

1

2

1

E (Z1)

)
< e−γt (56)

with some γ > 0. For the second term on the right-hand side in (55),

P

(∑νt+1
k=1 Yk

t
< ε,

νt + 1

t
≥ 1

2

1

E (Z1)

)

= P

(∑νt+1
k=1 Yk

νt + 1
< ε

t

νt + 1
,
νt + 1

t
≥ 1

2

1

E (Z1)

)

≤ P

(∑νt+1
k=1 Yk

νt + 1
< 2εE (Z1) ,

νt + 1

t
≥ 1

2

1

E (Z1)

)

≤ max
n≥ 1

2
1

E(Z1)
t
P

(∑n
k=1 Yk

n
< 2εE (Z1)

)
,

(57)

which is exponentially small for some ε > 0 by standard large deviation theory, and the
same holds for the probability estimated is (55), which means that η spends at least εt
time above b with overwhelming probability.

The inequality

P
(
θ+ > t

∣∣ η(0) = b1

)
≤ P

(
νt+1∑

k=1

Yk < εt

)
+ P

(
θ+ > t

∣∣∣∣ η(0) = b1,
νt+1∑

k=1

Yk > εt

)

is obvious. The first term on the right-hand side is exponentially small by (55)–(57). In
order to bound the second term, denote by J(t) the number of jumps when η(s) ≥ b.
The condition

∑νt+1
k=1 Yk > εt means that this is the case in an at least ε portion of [0, t].

The rate of these jumps are at least w(−b) by the monotonicity of w. Note that J(t)
dominates stochastically a Poisson random variable L(t) with mean w(−b)t. Hence,

P

(
J(t) <

1

2
w(−b)t

)
≤ P

(
L(t) <

1

2
w(−b)t

)
< e−γt (58)

for t large enough with some γ > 0 by a standard large deviation estimate.
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Note that Q is also monotone in the sense that

∫ ∞

b1

Q(x1, dy) <

∫ ∞

b1

Q(x2, dy)

if x1 < x2. Therefore, a jump of η, which starts above b, exits (−∞, b1] with probability
at least

r =

∫ ∞

b1

Q(b, dy) > 0.

Finally,

P

(
θ+ > t

∣∣∣∣ η(0) = b1,

νt+1∑

k=1

Yk > εt

)

≤ P

(
J(t) <

1

2
w(−b)εt

)
+ P

(
θ+ > t

∣∣∣∣ J(t) ≥ 1

2
w(−b)εt, η(0) = b1,

νt+1∑

k=1

Yk > εt

)

≤ e−γt + (1 − r)
1
2
w(−b)εt

by (58), which is an exponential decay, as required.

4.2 Exponential convergence to the stationarity

Proof of Lemma 3. First, we prove (33). We couple two copies of η, say η1 and η2.
Suppose that

η1(0) = 0 and P (η2(0) ∈ A) = ρ(A).

Their distribution after time t are obviously P t(0, ·) and ρ, respectively. We use the
standard coupling lemma to estimate their variation distance:

∥∥P t(0, ·) − ρ
∥∥ ≤ P (T > t)

where T is the random time when the two processes merge.
Assume that η1 = x1 and η2 = x2 with fixed numbers x1, x2 ∈ R. Then there is a

coupling where the rate of merge is

c(x1, x2) := w(−x1 ∨ x2) exp

(
−

∫ x1∨x2

x1∧x2

w(z) dz

)
.

Consider the interval Ib = (−b, b) where b will be chosen later appropriately. If η1 = x1

and η2 = x2 where x1, x2 ∈ Ib, then for the rate of merge

c(x1, x2) ≥ w(−b) exp

(
−

∫ b

−b

w(z) dz

)
=: β(b) > 0 (59)

holds if w(x) > 0 for all x ∈ R.
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Let ϑ be the time spent in Ib, more precisely,

ϑi(t) := |{0 ≤ s ≤ t : ηi(s) ∈ Ib}| i = 1, 2,

ϑ12(t) := |{0 ≤ s ≤ t : η1(s) ∈ Ib, η2(s) ∈ Ib}|.

The estimate

P (T > t) ≤ P

(
ϑ12(t) <

t

2

)
+ P

(
T > t

∣∣ ϑ12(t) ≥
t

2

)

is clearly true. Note that

P

(
T > t

∣∣∣∣ ϑ12(t) ≥
t

2

)
≤ exp

(
−1

2
β(b)t

)

follows from (59).
By the inclusion relation

{
ϑ12(t) <

t

2

}
⊂

{
ϑ1(t) <

3

4
t

}
∪

{
ϑ2 <

3

4
t

}
, (60)

it suffices to prove that the tails of P
(
ϑi(t) < 3

4
t
)

decay exponentially i = 1, 2, if b is
large enough.

We will show that

P

( |{0 ≤ s ≤ t : η(s) < b}|
t

<
7

8

)
≤ e−γt. (61)

A similar statement can be proved for the time spent above −b, therefore another inclu-
sion relation like (60) gives the lemma.

First, we verify that the first hitting of level b

inf{s > 0 : ηi(s) = b}

has finite exponential moment, hence, it is negligible with overwhelming probability and
we can suppose that ηi(0) = b. Indeed, for any fixed ε > 0, the measures ρ and Q(b, ·)
assign exponentially small weight to the complement of the interval [−εt, εt] as t → ∞.
From now on, we suppress the subscript of ηi, we forget about the initial values, and
assume only that η(0) ∈ [−εt, εt].

If η(0) ∈ [b, εt], then recall the proof Lemma 1. There, we could majorate η with a
homogeneous process ζ. If we define

a := E
(
θ′−

∣∣ ζ(0) = b + 1
)

with the notation (47), which is finite by Lemma 1, then from a large deviation principle,

P
(
θ−(t) > 2aεt

∣∣ η(0) ∈ [b, εt]
)
≤ P

(
θ′−(t) > 2aεt

∣∣ η(0) ∈ [b, εt]
)

< e−γt (62)

16



with some γ > 0.
If η(0) ∈ [−εt, b], then we can neglect that piece of the trajectory of η which falls into

the interval [0, θ+], because without this, ϑ(t) decreases and the bound on (61) becomes
stronger. Since η jumps at θ+ a.s. and the distribution of η(θ+) is Q(b, ·), we can use the
previous observations concerning the case η(0) ∈ [b, εt].

Using (62), it is enough to prove that

P

( |{0 ≤ s ≤ t : η(s) < b}|
t

<
7

8
+ 2aε

)
≤ e−γt

with the initial condition η(0) = b where the value of b is not specified yet. We introduce
Xk, Yk, Zk and νt as in (51)–(54) with Y0 ≡ 0. The only difference is that here we want to
ensure a given portion of time spent below b with high probability with the appropriate
choice of b. With the same idea as in the proof of Lemma 2 in (55)–(57), we can show
that

P

(∑νt+1
k=1 Xk

t
≤ 7

8
+ 2aε

)

is exponentially small by large deviation theory if we choose b large enough to set
E (X1) /E (Z1) (the expected portion of time spent below b) sufficiently close to 1. With
this, the proof of (33) is complete, that of (34) is similar.

4.3 Decay of the transition kernel

Proof of Lemma 4. We return to the idea that the partial sums of Zk’s form a renewal
process. Remember the definitions (51)–(54). This proof relies on the estimate

|η(t)| ≤ Zνt+1,

which is true, because the process η can decrease with speed at most 1. Therefore, it
suffices to prove the exponential decay of the tail of Zνt+1.

Define the renewal measure with

U(A) :=
∞∑

n=0

P

(
n∑

k=1

Zk ∈ A

)

for any A ⊂ R. We consider the age and the residual waiting time

At := t −
νt∑

k=1

Zk,

Rt :=
νt+1∑

k=1

Zk − t

separately. For the distribution of the former H(t, x) := P (At > x), the renewal equation

H(t, x) = (1 − F (t))11{t>x} +

∫ t

0

H(t − s, x) dF (s) (63)
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holds where F (x) = P (Z1 < x). (63) can be deduced by conditioning on the time of the
first renewal, Z1. From Theorem (4.8) in [5], it follows that

H(t, x) =

∫ t

0

(1 − F (t − s))11{t−s>x}U(ds). (64)

As explained after (53), Lemma 1 and Lemma 2 with b = 0 together imply that
1 − F (x) ≤ Ce−γx with some C < ∞ and γ > 0. On the other hand,

U([k, k + 1]) ≤ U([0, 1])

is true, because, in the worst case, there is a renewal at time k. Otherwise, the distribution
of renewals in [k, k + 1] can be obtained by shifting the renewals in [0, 1] with Rk. We
can see from (64) by splitting the integral into segments with unit length that

H(t, x) ≤ U([0, 1])
∞∑

k=⌊x⌋
Ce−γk,

which is uniform in t > 0.
With the equation

{Rt > x} = {At+x ≥ x} = {no renewal in (t, t + x]},

a similar uniform exponential bound can be deduced for the tail P (Rt > x). Since
Zνt+1 = At + Rt, the proof is complete.
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