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Abstract. We consider random walks with continuous and symmetric step distribu-
tions. We prove universal asymptotics for the average proportion of the age of the kth
longest lasting record for k = 1, 2, . . . and for the probability that the record of the kth
longest age is broken at step n. Due to the relation to the Chinese restaurant process, the
ranked sequence of proportions of ages converges to the Poisson–Dirichlet distribution.

1. Introduction

Recently there has been an increasing interest in the study of record statistics, since
this field has found several applications in natural sciences, in particular in finance. If
the discrete time series x1, x2, . . . is considered, then we say that a record event happens
at time k, if xk is larger than all the previous values in the series. The record statistics
of a time series can be characterized with several variables, such as the time up to which
a record survives, the number of records that occur up to time n, the age of the longest
lasting record, or the probability that a record event occurs at any given time. Depending
on the exact definition of the model, these variables exhibit interesting behavior.
In this paper we study the record statistics of the random walk where the jumps form an

i.i.d. sequence of random variables drawn from a continuous distribution. A remarkable
feature of the record statistics of this model is their universal behaviour, i.e. they do not
depend on the details of the jump distribution as long as it is continuous and symmetric
[12]. All these results have their roots in the Sparre Andersen theorem [1].
The statistics of the longest lasting record after n steps were first examined in [12] in

the case of random walks with arbitrary symmetric and continuous distribution of the
jumps. The asymptotic expected proportion of the longest lasting record was computed.
Later in [10] apart from the expected value of the age of the longest lasting record another
variable was considered: the probability, that the last record is the longest lasting one.
It was observed that the statistics of the records is sensitive to the exact definition of
the length of the last record event. Three different natural ways were given to define
the length of the last record up to time n, and the universal behaviour of the longest
lasting record was described in each case. Some of the constants characterizing the record
statistics appeared before in the literature. The constant in the first case appeared first
in [20] as the expected first coordinate of the Poisson–Dirichlet distribution and in [12] in
the context of record ages. The constant in the second case appeared first in the context of
the excursion lengths of a standard Brownian motion [22]. These constants also appeared
in the study of fractional Brownian motion later in [9, 7].
The present paper is an extension of the work presented in [10]. We consider the full

sequence of the kth longest lasting records for k = 1, 2, . . . and by introducing new con-
stants, we describe their average asymptotic proportions and the limit of the probability
that the record of the kth longest age is broken at step n for each k as n → ∞. Some
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of these constants appeared before in [22] and in [6] where the probability that the last
excursion is the kth longest lasting one in a standard Brownian motion was computed.
These results were later extended for general renewal processes [11]. The corresponding
observables for random walk excursions were studied in the recent work [8].
The theory of exchangeable partitions was developed in a series of papers by Pitman

and coauthors, see also [18] and references therein. Based on this theory, the partition
generated by the lengths of the record ages in one of the cases studied in the present paper
is equal in law to the Chinese restaurant process at time n. As a consequence, the ranked
sequence of ages of records rescaled by the total length converges to the Poisson–Dirichlet
distribution [14, 15, 19] with parameter α = 1/2. This distribution is also related to
the ranked lengths of excursions in diffusion processes [20] and to renewal processes [2].
The Poisson–Dirichlet distribution with parameter α = 1/2 was proved to be the limiting
distribution of ranked excursion lengths up to time n of the simple symmetric random
walk [3].
The paper is organized as follows. In Section 2, we state our main result on the

asymptotic behaviour of the Laplace transforms of two types of quantities: the average
proportions of the ages of the longest lasting records and the probabilities that the record
of the kth longest age is broken at step n. In two of the three cases, we can turn these
asymptotics into a proof of convergence of the average proportions and in one case to
the convergence of the record breaking probabilities by specific arguments. Then based
on the relation to the Chinese restaurant process, we conclude a limit theorem about the
rescaled ranked sequence of ages. The proof of the asymptotics of Laplace transforms is
postponed to Section 3.

2. Results

Let the sequence ηn for n = 1, 2, . . . consist of i.i.d. random variables from a common
symmetric and absolutely continuous distribution. We consider the random walk X0 = 0
and Xn = Xn−1+ηn for n = 1, 2, . . . . A record event occurs at step n, if the random walk
takes a value at time n which is larger than all the previous values of the random walk,
that is, Xn > max(X0, . . . , Xn−1) with the convention that the first record occurs at time
0.
Let t1 = 0 and recursively define

(1) tk = tk−1 +min{τ > 0 : Xtk−1+τ > Xtk−1
}

for k = 2, 3, . . . which gives the time when the kth record occurs. The age of the kth
record is

(2) τk = tk+1 − tk

for k = 1, 2, . . . which form a sequence of i.i.d. random variables by construction. Let Rn

be the number of records until time n, i.e. define Rn = m if and only if tm ≤ n < tm+1. By
the i.i.d. structure of the ages of records (τk)

∞
k=1, Rn becomes a renewal process. Let An

denote the current age of the renewal process at time n, that is, An = n− tm if Rn = m.
For an illustration, see Figure 1.
There are three different natural choices for the set of ages which one considers. Given

that Rn = m, the sequences of ages after n steps in the different cases are given by

A(1)
n,m = (τ1, τ2, . . . , τm−1, An),(3)

A(2)
n,m = (τ1, τ2, . . . , τm),(4)

A(3)
n,m = (τ1, τ2, . . . , τm−1)(5)
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Figure 1. A random walk trajectory with Rn = 6, the age of the last
record after n steps is An, τ6 or τ5.

where multiple occurrences are considered with multiplicities. Now we define the two

main quantities of interest. Given the sequence A(β)
n,m for β = 1, 2, 3, let L

(β)
k (n) denote

the kth largest element of A(β)
n,m . Further, let p

(β)
k (n) denote the probability that the last

element of A(β)
n,m is the kth longest one of the sequence. In particular,

p
(1)
1 (n) = P(An ≥ max(τ1, τ2, . . . , τm−1)),(6)

p
(2)
1 (n) = P(τm ≥ max(τ1, τ2, . . . , τm−1)),(7)

p
(3)
1 (n) = P(τm−1 ≥ max(τ1, τ2, . . . , τm−2)).(8)

On the example of Figure 1, the sequence of the ages of records in the three cases

are A(1)
16,6 = (3, 2, 5, 1, 3, 2), A(2)

16,6 = (3, 2, 5, 1, 3, 6) and A(3)
16,6 = (3, 2, 5, 1, 3). The corre-

sponding values of L
(β)
k (16) are L

(1)
1 (16) = 5, L

(1)
2 (16) = 3, L

(1)
3 (16) = 3, L

(1)
4 (16) = 2,

L
(1)
5 (16) = 2 and L

(1)
6 (16) = 1 for β = 1.

We introduce the distribution of the ages of records

(9) f(k) = P(τ1 = k) = P(Xk > X0 ≥ max(X1, . . . , Xk−1))

for k = 1, 2, . . . and f(0) = 0, i.e. f(k) is the probability that the random walk crosses
its starting point between steps k − 1 and k. Further, let

(10) q(k) = P(τ1 > k) = P(max(X1, . . . , Xk) < X0)

for k = 0, 1, . . . , in particular q(0) = 1, that is the probability that there is no record until
time k. One clearly has

(11) f(k) = q(k − 1)− q(k)

by definition. The distribution of the ages of records is known by the classical Sparre
Andersen theorem [1] which can also be found in Section XII.7 of [5].

Theorem 1. Suppose that the step distribution of the random walk Xn is continuous and
symmetric. Then the distribution and the generating function of the ages of records are
given by

q(k) =
1

22k

(
2k

k

)
, f(k) =

1

22k−1k

(
2k − 2

k − 1

)
,(12)

q̃(z) =
∑

k≥0

q(k)zk =
1√
1− z

, f̃(z) =
∑

k≥1

f(k)zk = 1−
√
1− z.(13)
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As a consequence, one has the following asymptotics by the Stirling formula:

(14) q(k) ∼ 1√
πk

, f(k) ∼ 1

2
√
πk3/2

where the symbol ∼ means that the ratio of the two sides converges to 1 as k → ∞.

Remark. By Theorem 1, the distribution of the ages of records does not depend on the
step distribution of the random walk as long as the latter is continuous and symmetric.
Therefore, instead of the random walk description, the problem of the record age statistics
can be posed as a question on renewal processes where the holding times are distributed
according to (12).
Furthermore, since only the sizes and not the ordering of the renewal intervals matters

in what follows, it is enough to consider the partition of n generated by the ages of records
in the random walk up to time n. This partition in the first case which corresponds to (3)
equals in law to the Chinese restaurant process at time n, see Subsection 2.2.

One naturally expects also based on numerical evidence that the asymptotic proportions

of the ages of the longest records E(L
(β)
k (n))/n and the probabilities p

(β)
k (n) converge

as n → ∞ for fixed k and β. We can only prove the convergence of E(L
(1)
k (n))/n,

E(L
(2)
k (n))/n and p

(1)
k (n), but we identify the limits in all the cases under the assumption

of convergence.

2.1. Limiting rank of the last interval and limiting proportions of ages of

records. In order to state the main result of the present paper, we define the constants

p
(1)
k =

1

2k−1

∫ ∞

0

x−1/2e−xΓ(−1/2, x)k−1

(x−1/2e−x + γ(1/2, x))k
dx,(15)

p
(2)
k =

1

2k

∫ ∞

0

x−3/2(1− e−x)Γ(−1/2, x)k−1

(x−1/2e−x + γ(1/2, x))k
dx,(16)

C
(1)
k = p

(1)
k ,(17)

C
(2)
k =

1

2k−1

∫ ∞

0

x−1/2Γ(−1/2, x)k−1

(x−1/2e−x + γ(1/2, x))
k
dx,(18)

C
(3)
k =

1

2k

∫ ∞

0

Γ(−1/2, x)k

(x−1/2e−x + γ(1/2, x))
k
dx(19)

where

Γ(ν, x) =

∫ ∞

x

e−ttν−1 dt,(20)

γ(ν, x) =

∫ x

0

e−ttν−1 dt(21)

are the upper and lower incomplete gamma functions.

Theorem 2. For the Laplace transforms of the probabilities p
(β)
k , for β = 1, 2, one has

(22)
∑

n≥0

p
(β)
k (n)e−sn ∼ p

(β)
k

s

and

(23)
∑

n≥0

p
(3)
k (n)e−sn ∼ 1√

s
ln

1√
s
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k p
(1)
k = C

(1)
k p

(2)
k C

(2)
k C

(3)
k

1 0.62651 . . . 0.80031 . . . ∞ 0.24174 . . .
2 0.14301 . . . 0.08125 . . . 0.18685 . . . 0.07999 . . .
3 0.06302 . . . 0.03342 . . . 0.07107 . . . 0.04105 . . .
4 0.03565 . . . 0.01846 . . . 0.03826 . . . 0.02528 . . .
5 0.02300 . . . 0.01178 . . . 0.02412 . . . 0.01724 . . .
6 0.01610 . . . 0.00819 . . . 0.01666 . . . 0.01255 . . .

Table 1. The numerical values of p
(1)
k , p

(2)
k and C

(β)
k for β = 1, 2, 3 for

1 ≤ k ≤ 6

as s → 0. As a consequence, p
(1)
k (n) → p

(1)
k and if p

(2)
k (n) converges as n → ∞, then the

limit is p
(2)
k . If

√
np

(3)
k (n)/ lnn converges, then the limit is 1/(2

√
π), that is

(24) p
(3)
k (n) ∼ lnn

2
√
πn

.

Further, one has the following asymptotics for the Laplace transforms of the expected
ages of the longest lasting records

(25)
∑

n≥0

E(L
(β)
k (n))e−sn ∼ C

(β)
k

s2

as s → 0 with the constants (17)–(19) for k = 1, 2, . . . and β = 1, 2, 3. Consequently

(26)
E(L

(β)
k (n))

n
→ C

(β)
k

as n → ∞ for k = 1, 2, . . . and for β = 1, 2. If the sequence E(L
(3)
k (n))/n converges as

n → ∞, then the limit is C
(3)
k .

Table 1 contains the first few numerical values of p
(β)
k and C

(β)
k . The constants p

(1)
k first

appeared in [20] as the expected kth coordinate of the Poisson–Dirichlet distribution, p
(2)
k

first appeared in [22] as the asymptotic probabilities that the last excursion is the kth

longest lasting one in a standard Brownian motion, see also [6]. The constants C
(2)
k and

C
(3)
k were previously unknown in the literature except for C

(3)
1 which appeared in [10].

C
(2)
1 = ∞ since the expectation of holding times in the corresponding renewal process is

infinite, see (14).

Remark. The following heuristic argument explains why lnn/
√
n is the order of magni-

tude of p
(3)
k (n). Let λ(n) be the random time of the last record until time n. Since the

rescaled spent waiting time converges in distribution to the arcsine law (see e.g. Section
XIV.3 of [5]), one has

(27) P(λ(n) = l) ≍ 1√
ln

for l ≤ n/2 as n → ∞ where ≍ means that the ratio of the two sides are bounded from
below and from above by non-trivial constants. On the other hand, conditionally given
that there was a record at time l, the number of renewal intervals before l equals ≍

√
l,

and these intervals follow each other in a uniform random order. Hence

(28) P
(
the last renewal interval in [0, l] is the kth longest one

∣∣ λ(n) = l
)
≍ 1√

l
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for l large enough. By the law of total probability, if we sum the product of (27) and (28)
for l, then the result is asymptotically lnn/

√
n.

2.2. Relation to the Chinese restaurant process. The Chinese restaurant process
is a two-parameter stochastic process that can be described as a seating arrangement in
a restaurant, see [16] and [18]. Let α ∈ [0, 1] and θ > −α denote the parameters and
consider an initially empty restaurant with an infinite number of circular tables, each with
infinite capacity. The first customer is seated at the first table. Suppose that n1, . . . , nk

people are sitting at the tables where
∑k

i=1 ni = n. Then the new customer chooses table
i for 1 ≤ i ≤ k with probability (ni − α)/(n + θ), or sits to a new table with probability
(θ + kα)/(n+ θ).
Let Ni(n) denote the ith largest element of the random seating arrangement n1, . . . , nk,

that is the size of the ith largest table after the arrival of the nth customer. Then the
size-biased permutation of the limit of the frequencies

(29)

(
N1(n)

n
,
N2(n)

n
, . . .

)

can be represented as (τ1, τ2, . . . ),

(30) τi = (1− Ui)
i−1∏

j=1

Uj i ≥ 1

where the sequence of Ui’s is independent with beta distribution of parameter (θ+ iα, 1−
α). This limit is the Poisson–Dirichlet distribution with parameters (α, θ) described first
in [13] for θ = 0.

Lemma 3. The distribution of the partition generated by the ages of the records in the
first case which corresponds to (3) has the same distribution as the Chinese restaurant
process with parameters (α, θ) = (1/2, 0) at time step n.

Proof. The equality in law can be seen in two steps. According to Lemma 7 of [17], the
Brownian excursion partition up to n has the same distribution as the discrete renewal
process with holding time distribution (12). The Brownian excursion partition is a par-
tition of integers obtained by the random equivalence relation i ∼ j iff Ui and Uj fall in
the same excursion interval of a standard Brownian motion B away from 0 where Ui are
uniformly distributed on [0, 1] independent of each other and of B.
On the other hand, by Section 4.5 of [18] based on [19] and [16], the Brownian excursion

partition has the distribution of the Chinese restaurant process with parameters (α, θ) =
(1/2, 0). This finishes the proof. �

Theorem 4. Let us consider a random walk with arbitrary symmetric and continuous
distribution of the jumps. Let (τ1, τ2, . . . , τm−1, An) be the sequence of the ages of its
records up to time n. Then the relative sizes of the ranked ages of records jointly converge

(31)

(
L
(1)
1 (n)

n
,
L
(1)
2 (n)

n
, . . .

)
d−→ PD(1/2, 0)

in distribution in the vague sense.

Similar results were already shown for Brownian motion [20] and for the simple sym-
metric random walk [3]: the limiting distribution of ranked excursion lengths up to time
n converges in both cases to the Poisson–Dirichlet distribution with parameter α = 1/2.

Remark. It follows from Lemma 3 that the size of the age of the last record up to n is
a size biased sample from the Chinese restaurant process. Since the relative cluster sizes
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in the latter converge to PD(1/2, 0), one can conclude that the probability p
(1)
k (n) that the

last record is the kth longest lasting one also converges. The limit is the expectation of

the kth coordinate in the PD(1/2, 0) distribution which is exactly p
(1)
k , see Proposition 17

in [20]. This also proves (26) for β = 1.

2.3. Convergence of average limiting proportions. The next two propositions imply
that the knowledge on the Laplace transforms in Theorem 2 can be turned into a proof

of convergence of n−1E(L
(β)
k (n)) for β = 1, 2.

Proposition 5. For any fixed n, the following relation holds:

(32) E(L
(1)
k (n+ 1)) = E(L

(1)
k (n)) + p

(1)
k (n),

or equivalently,

(33) E(L
(1)
k (n)) =

n∑

j=0

p
(1)
k (j)

with the convention p
(1)
1 (0) = 1 and p

(1)
k (0) = 0 for k = 2, 3, . . . . As a consequence, the

equality of the constants p
(1)
k = C

(1)
k for k = 1, 2, . . . follows without using Theorem 2.

Furthermore, the asymptotic equivalence (22) implies the convergence (26) for β = 1.

Proposition 6. For any fixed k, the sequence
(∑k

j=1E(L
(2)
j (n))

)
n
is subadditive, that is,

(34)

k∑

j=1

E(L
(2)
j (n+m)) ≤

k∑

j=1

E(L
(2)
j (n)) +

k∑

j=1

E(L
(2)
j (m)).

Consequently, the proportions E(L
(2)
k (n))/n converge as n → ∞.

Proof of Proposition 5. Note that the age of the kth longest record can only increase
from time n to time n + 1, if the last interval is the kth longest one at time n. This
observation means that the difference Lk(n + 1) − Lk(n) is a Bernoulli random variable

with parameter p
(1)
k (n) which proves (32), then (33) follows immediately. To prove (26)

for β = 1, the Hardy–Littlewood Tauberian theorem can be used (see e.g. Theorem 2 in
XIII.5 of [5]). The theorem yields that (22) for β = 1 implies that the right-hand side of

(33) is asymptotically equivalent to np
(1)
k , i.e. (26) holds for β = 1 with C

(1)
k = p

(1)
k . �

Proof of Proposition 6. We define the shifted random walk X̃l = Xn+l −Xn. Note that if
r is the first record time of the random walk Xl after time n, then r − n is also a record
time of the shifted random walk X̃l. Furthermore, all the record times and ages of records

for Xl after time r correspond to those of X̃l after time r − n.

Let A(2)
n denote the list of ages of records in the original random walk which started

not later than n. Similarly, let Ã(2)
m be the list of ages of records in the shifted random

walk which started not later than m. Now we consider the list A(2)
n+m. All the ages of

records which started not later than n are contained in the list A(2)
n . Ages of records

in the original random walk started after time n are contained in Ã(2)
m by the previous

observation on the ages of records after time r. Hence the k largest elements of the list

A(2)
n+m can be found either in A(2)

n or in Ã(2)
m . Since A(2)

m and Ã(2)
m are equal in distribution,

for the expectations, the subadditivity relation (34) follows. By the subadditive lemma,

the sequence
∑k

j=1E(L
(2)
j (n))/n converges for all k as n → ∞ which finishes the proof of

the proposition. �
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2.4. Summation identities.

Proposition 7. The sum of the constants p
(β)
k and C

(β)
k are the following:

∞∑

k=1

p
(1)
k =

∞∑

k=1

p
(2)
k =

∞∑

k=1

C
(1)
k = 1,(35)

∞∑

k=2

C
(2)
k =

1

2
√
π

∫ ∞

0

x−1/2Γ(−1/2, x)

x−1/2 + γ(1/2, x)
dx ≃ 0.43067 . . . ,(36)

∞∑

k=1

C
(3)
k =

1

2
.(37)

The proof of the summation identities (35)–(37) in Proposition 7 are straightforward by
summing the geometric series under the integral sign in (15)–(19) and by the integration
by parts formula

(38)
Γ(−1/2, x) = 2x−1/2e−x − 2Γ(1/2, x)

= 2x−1/2e−x + 2γ(1/2, x)− 2
√
π

where the fact Γ(1/2) =
√
π is used.

Next we explain why it is natural to expect the identities (35) and (37) to hold. Clearly,
for any finite n,

∞∑

k=1

p
(1)
k (n) =

∞∑

k=1

p
(2)
k (n) =

∞∑

k=1

E(L
(1)
k (n))

n
= 1

holds, hence by Fatou’s lemma, the sums in (35) are at most 1. The reason for these
sums not being less than 1 is the following. One expects an invariance principle for the
ages of the records of the random walk Xn to hold, i.e. ages of records of the walk should
converge to the ages of records of Brownian motion. Let us consider the trajectories
of the random walk Xn as continuous functions by linear interpolation. By reflecting a
trajectory ofXn downwards off 0 in the Skorokhod sense (see e.g. Section VI.2 in [21]), the
record ages of the original trajectory correspond to the excursion lengths of the reflected
trajectory (up to an error which is at most 1). Invariance principle for the excursions of
the random walk was proved in [4] for the simple random walk, but it is expected for other
step distributions as well. Provided that such an invariance principle is proved for the
continuous and symmetric step distributions which are considered in the present paper,
then the equality in (35) readily follows.
To explain (37), one should observe that

(39)
∞∑

k=1

E(L
(3)
k (n)) =

n

2

holds for any n since the left-hand side is the expected time of the last record before n
which is the expected time of the maximal value of the random walk Xk for 0 ≤ k ≤ n.

By reverting the trajectory, the time of the maximal value of the random walk X̂k =
Xn−k − Xn for 0 ≤ k ≤ n and that of the original walk add up to n. Since this time
reversal preserves the measure, it explains (39). The same invariance principle for the
ages of records of the random walk Xn which was used in the explanation of (35) could
turn this argument into a proof of (37).
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3. Proof of Laplace transform asymptotics

This section is devoted to the proof of Theorem 2 which is the main result of the paper.

We start with an a priori bound on the constants C
(β)
k .

Lemma 8. For any β = 1, 2, 3 and for k ≥ 2, we have

(40)
L
(β)
k (n)

n
≤ 1

k − 1

almost surely. As a consequence, we have

(41) C
(β)
k ≤ 1

k − 1
.

Proof. The bound (40) is clear, since at least k − 1 of the k longest intervals are in [0, n].
Consequently,

(42)
∑

n≥0

E(L
(β)
k (n))e−sn ≤ 1

k − 1

∑

n≥0

ne−sn =
1

k − 1

e−s

(1− e−s)2
∼ 1

k − 1

1

s2

which proves (41). �

Proof of Theorem 2. To compute L
(β)
k (n) and p

(β)
k (n), first we have to determine the joint

distribution of Rn and the sequence of ages up to time n. Assume that Rn = m and let
l̄(1) = (l1, l2, . . . , lm−1, a), l̄

(2) = (l1, l2, . . . , lm) and l̄(3) = (l1, l2, . . . , lm−1) be the possible
realizations of ages in the three different cases. The probability of a realization is

(43) P(l̄(β), n,m) = P(A(β)
n,m = l̄(β), Rn = m)

which can be expressed with q(k) and f(k) of (12) in the cases β = 1, 2, 3 as

P(l̄(1), n,m) = f(l1)f(l2) . . . f(lm−1)q(a)1

(
m−1∑

k=1

lk + a = n

)
(44)

P(l̄(2), n,m) = f(l1)f(l2) . . . f(lm)1

(
m−1∑

k=1

lk < n ≤
m∑

k=1

lk

)
(45)

P(l̄(3), n,m) = f(l1)f(l2) . . . f(lm−1)
∑

a≥0

q(a)1

(
m−1∑

k=1

lk + a = n

)
(46)

where 1(·) is the indicator function. This explicit expression for the joint distribution in
case β = 1 first appeared in [12].

Case β = 1. Let p
(1)
k (n,m) denote the probability that Rn = m and the last element of

A(1)
n,m is the kst longest one of the sequence. In this case, there are exactly k − 1 longer

intervals than An among τ1, . . . , τm−1. This probability can be expressed as

(47)

p
(1)
k (n,m) = P(An = L

(1)
k (n), Rn = m)

=

(
m− 1

k − 1

)∑

a≥0

∞∑

l1=a+1

· · ·
∞∑

lk−1=a+1

a∑

lk=1

· · ·
a∑

lm−1=1

P(l̄(1), n,m).
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By summing over all m, we get exactly p
(1)
k (n), the probability that the last element of

A(1)
n,m is the kst longest one. For its generating function,

(48)

p̃
(1)
k (z) =

∑

n≥0

p
(1)
k (n)zn

=
∑

n≥0

∑

m≥1

p
(1)
k (n,m)zn

=
∑

m≥1

∑

j≥0

q(j)zj
(
m− 1

k − 1

)( j∑

l=1

f(l)zl

)m−k( ∞∑

l=j+1

f(l)zl

)k−1

.

Next we apply the identity

(49)
∑

m≥1

(
m− k

k − 1

)
xm−k =

1

(1− x)k
.

The expression in (48) for the generating function can be written as

(50) p̃
(1)
k (z) =

∑

j≥0

q(j)zj
(∑∞

l=j+1 f(l)z
l
)k−1

(
1−

∑j
l=1 f(l)z

l
)k .

The following identity can be derived from (11)

(51) 1−
t∑

k=1

f(k)zk = q(t)zt + (1− z)
t−1∑

k=0

q(k)zk.

Using this identity, the denominator can be rewritten as

(52) p̃
(1)
k (z) =

∑

j≥0

q(j)zj
(∑∞

l=j+1 f(l)z
l
)k−1

(
q(j)zj + (1− z)

∑j−1
l=0 q(l)z

l
)k .

To prove (22) for β = 1, one has to show

(53) sp̃
(1)
k (e−s) = s

∑

j≥0

q(j)e−sj
(∑∞

l=j+1 f(l)e
−sl
)k−1

(
q(j)e−sj + (1− e−s)

∑j−1
l=0 q(l)e

−sl
)k → p

(1)
k

for any k fixed as s → 0. Using (14), one can see that there is a C > 0 such that for any
x > 0 large enough, the summand j = x/s in (53) is bounded by Ce−x uniformly in s.
This bound can then be turned into a uniform exponential bound on the tail of the sum
in (53). The uniform exponential bound justifies the exchange of limits and reduces (53)
to

(54) lim
K→∞

lim
s→0

K/s∑

j=0

sq(j)e−sj
(∑∞

l=j+1 f(l)e
−sl
)k−1

(
q(j)e−sj + (1− e−s)

∑j−1
l=0 q(l)e

−sl
)k = p

(1)
k .

where sum on the left-hand side is a Riemann sum for the integral in (15) on [0, K] instead

of [0,∞). This verifies (22) for β = 1. The convergence p
(1)
k (n) → p

(1)
k follows from the

remark after Theorem 4.
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For the proof of (25), one can use Proposition 5 to get the relation

(55) (1− z)
∑

n≥0

E(L
(1)
k (n))zn = z

∑

n≥0

p
(1)
k (n)zn.

By substituting z = e−s, one readily gets (25) for β = 1 with C
(1)
k = p

(1)
k . The convergence

(26) for β = 1 follows as a consequence of Proposition 5 and the Hardy–Littlewood
Tauberian theorem.
Case β = 2. With similar notations as in the previous case, we have the following formula

p
(2)
k (n,m) = P(τm = L

(2)
k (n), Rn = m)

=

(
m− 1

k − 1

)∑

j≥1

∞∑

l1=j+1

· · ·
∞∑

lk−1=j+1

j∑

lk=1

· · ·
j∑

lm−1=1

P(l̄(2), n,m).

Using (45) and (49), the generating function of the sequence p
(2)
k (n) can be expressed as

p̃
(2)
k (z) =

∑

m≥1

∑

j≥0

f(j)
1− zj

1− z

(
m− 1

k − 1

)( j∑

l=1

f(l)zl

)m−k( ∞∑

l=j+1

f(l)zl

)k−1

=
∑

j≥0

1

1− z



f(j)(1− zj)

(∑∞
l=j+1 f(l)z

l
)k−1

(
1−

∑j
l=1 f(l)z

l
)k


 .

Following the method presented in the previous case, we similarly get (22) for β = 2 with

p
(2)
k given in (16).

However in the β = 2 case, there is no simple relation of E(L
(β)
k (n)) and p

(β)
k (n) like

(32) for β = 1, hence we cannot deduce (25) from (22), but we proceed with direct
computations. By (14), the expected total length of the last unfinished interval is infinite,

therefore for β = 2, one has E(L
(2)
1 (n)) = ∞. In order to compute the expected interval

lengths for k > 1, denote the distribution function of L
(2)
k (n) by F

(2)
k (t, n). By the law of

total probability, one can write

(56) F
(2)
k (t, n) = P(L

(2)
k (n) ≤ t) = F

(2)
k−1(t, n) +P(L

(2)
k (n) ≤ t, L

(2)
k−1(n) > t).

We decompose the distribution function depending on the number of renewal intervals
until n as

(57) F
(2)
k (t, n) =

∑

m≥1

F
(2)
k (t, n,m)

where

F
(2)
k (t, n,m) = P(L

(2)
k (n) ≤ t, Rn = m)

= F
(2)
k−1(t, n,m) +P(L

(2)
k (n) ≤ t, L

(2)
k−1(n) > t,Rn = m).

In the last probability above, if the first k− 1 longest lasting time intervals are greater
than t, we can distinguish two different cases: if these intervals are all among τ1, . . . , τm−1,

or if τm is one of these intervals. Based on this observation, F
(2)
k (t, n,m) can be rewritten
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as follows

(58)

F
(2)
k (t, n,m) = F

(2)
k−1(t, n,m)

+

(
m− 1

k − 1

) ∞∑

l1=t+1

· · ·
∞∑

lk−1=t+1

t∑

lk=1

· · ·
t∑

lm−1=1

t∑

lm=0

P(l̄(2), n,m)

+

(
m− 1

k − 2

) ∞∑

l1=t+1

· · ·
∞∑

lk−2=t+1

t∑

lk−1=1

· · ·
t∑

lm−1=1

∞∑

lm=t+1

P(l̄(2), n,m).

The generating function

(59) F̃
(2)
k (t, z) =

∑

n≥0

F
(2)
k (t, n)zn

can be decomposed based on (57), and using the recursion (58) for each term and by
substituting the value of P(l̄(2), n,m) from (45), one obtains

(60)

F̃
(2)
k (t, z) = F̃

(2)
k−1(t, z) +

1

1− z




(∑∞
j=t+1 f(j)z

j
)k−1∑t

j=1 f(j)(1− zj)
(
1−

∑t
j=1 f(j)z

j
)k




+
1

1− z




(∑∞
j=t+1 f(j)z

j
)k−2∑∞

j=t+1 f(j)(1− zj)
(
1−

∑t
j=1 f(j)z

j
)k−1


 .

By computing the expected value using the formula

(61) E(L
(2)
k (n)) =

∑

t≥0

(
1− F

(2)
k (t, n)

)

and by considering the generating functions of the two sides of (61), one can turn the
recursion of generating functions (60) into the asymptotic recursion of Laplace transforms

(62)
∑

n≥0

e−snE(L
(2)
k−1(n)) ∼

∑

n≥0

e−snE(L
(2)
k (n))

+
1

s2

∫ ∞

0

(
1

2k−1

∫∞
x

y−3/2(1− e−y) dy (Γ(−1/2, x))k−2

(x−1/2e−x + γ(1/2, x))
k−1

+
1

2k

∫ x

0
y−3/2(1− e−y) dy (Γ(−1/2, x))k−1

(x−1/2e−x + γ(1/2, x))
k

)
dx

as s → 0 for k ≥ 3 by following the method presented for β = 1. Simplifying the integral
above and using the integration by parts (38), one gets

(63)
∑

n≥0

e−snE(L
(2)
k−1(n)) ∼

∑

n≥0

e−snE(L
(2)
k (n))+

1

s2

√
π

2k−2

∫ ∞

0

x−1/2Γ(−1/2, x)k−2

(x−1/2e−x + γ(1/2, x))k
dx

for k ≥ 3. Having a k → ∞ decay bound on L
(2)
k (n) by Lemma 8, the asymptotic

equivalence (25) follows for some sequence of constants C
(2)
k which satisfies the recursion

(64) C
(2)
k−1 = C

(2)
k +

√
π

2k−2

∫ ∞

0

x−1/2Γ(−1/2, x)k−2

(x−1/2e−x + γ(1/2, x))k
dx
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for k ≥ 3. The solution for this recursion with limk→∞C
(2)
k = 0 is exactly (18). Hence

(25) follows for β = 2. The sequence E(L
(2)
k (n))/n converge as n → ∞ by Proposition 6,

thus (25) together with the Hardy–Littlewood Tauberian theorem implies (26) for β = 2.
Case β = 3. With the same notations as before, we have

p
(3)
k (n,m) = P(τm = L

(3)
k (n), Rn = m)

=

(
m− 1

k − 1

)∑

j≥1

∞∑

l1=j+1

· · ·
∞∑

lk−1=j+1

j∑

lk=1

· · ·
j∑

lm−2=1

∞∑

a=0

P(l̄(3), n,m)

and by using (49) for the generating function,

(65) p̃
(3)
k (z) =

∑

n≥0

p
(3)
k (n)zn = q̃(z)

∑

j≥0

f(j)zj
(∑∞

l=j+1 f(l)z
l
)k−1

(
1−∑j

l=1 f(l)z
l
)k

where q̃(z) is given by (13). Again by (13), we rewrite the denominator of (65) as

(66) 1−
j∑

l=1

f(l)zl =
√
1− z +

∞∑

l=j+1

f(l)zl.

Since q̃(e−s) ∼ 1/
√
s, it is enough for the proof of (23) to show that

(67)
∑

j≥0

f(j)e−sj
(∑∞

l=j+1 f(l)e
−sl
)k−1

(√
1− e−s −∑∞

l=j+1 f(l)e
−sl
)k ∼ ln

1√
s

as s → 0.
To verify (67), we fix an ε > 0 small and we divide the sum into a sum for j ≤ ε/s and

a sum for j > ε/s. For the sum for j > ε/s, we can use the argument which lead to (54)
for the β = 1 case to derive a uniform exponential tail bound. Hence the j > ε/s part of
the sum in (67) can be considered as a Riemann sum for the integral

(68)

∫ ∞

ε

x−3/2Γ(−1/2, x)k−1

(2
√
π + Γ(−1/2, x))k

dx.

Since Γ(−1/2, x) = (1 + O(x))2/
√
x for x → 0, the integrand above is equal to (1 +

O(
√
x))/(2x) for small x. Therefore, the integral in (68) is asymptotically −1

2
ln ε+O(1)

as ε → 0 where the error terms are uniform.
For the j ≤ ε/s part of the sum, we again rewrite the left-hand side of (67) using (66)

and we consider the sum

(69)

ε/s∑

j=0

f(j)e−sj
(
1−

√
1− e−s −

∑j
l=1 f(l)e

−sl
)k−1

(
1−

∑j
l=1 f(l)e

−sl
)k .

Next we compare the two series
∑∞

l=1 f(l) = 1 and
∑∞

l=1 f(l)e
−sl = 1 −

√
1− e−s. Note

that both series have positive entries, and the second one is obtained from the first one
by multiplying the summands by numbers from (0, 1). Since the two sums differ by√
1− e−s = O(

√
s), this remains an upper bound on the difference of their partial sums,

i.e.

(70)

∣∣∣∣∣

j∑

l=1

f(l)e−sl −
j∑

l=1

f(l)

∣∣∣∣∣ ∼
∣∣∣∣∣

j∑

l=1

f(l)e−sl −
(
1− 1√

πj

)∣∣∣∣∣ = O(
√
s).
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Using this bound, the sum (69) can be written as

(71)

ε/s∑

j=0

1
2
√
πj3/2

(1 +O(ε))
(

1√
πj

+O(
√
s)
)k−1

(
1√
πj

+O(
√
s)
)k

where the O(ε) and O(
√
s) errors are uniform. Since j ≤ ε/s, we have 1/

√
j ≥

√
s/ε,

hence the O(
√
s) errors are negligible in (71) if ε is small enough. Therefore, (71) is

asymptotically equal to

(72)
1

2
(1 +O(ε))

ε/s∑

j=1

1

j
∼ 1

2
(1 +O(ε))(ln ε− ln s).

We have shown that as s → 0, the left-hand side of (67) is asymptotically equal to the
sum of the integral (68) and (72), i.e. it is equal to −1

2
(1 +O(ε)) ln s+O(ε ln ε). Since ε

was arbitrary, (23) is proved.
Following the same computation as in the β = 2 case, the distribution function of

L
(3)
k (n) restricted to the event Rn = m is

F
(3)
k (t, n,m) = F

(3)
k−1(t, n,m) +P(L

(3)
k (n) ≤ t, L

(3)
k−1(n) > t,Rn = m)

= F
(3)
k−1(t, n,m) +

(
m− 1

k − 1

) ∞∑

l1=t+1

· · ·
∞∑

lk−1=t+1

t∑

lk=1

· · ·
t∑

lm−1=1

∞∑

a=0

P(l̄(3), n,m)

and the generating function of F
(3)
k (t, n) =

∑
m≥1 F

(3)
k (t, n,m) is

(73)

F̃
(3)
k (t, z) =

∑

n≥0

F
(3)
k (t, n)zn

=
∑

n≥0

∑

m≥1

F
(3)
k (t, n,m)zn

= F̃
(3)
k−1(t, n) + q̃(z)

(∑∞
j=t+1 f(j)z

j
)k−1

(
1−

∑t
j=1 f(j)z

j
)k .

The generating function of E(L
(3)
k (n)) can easily be expressed from the previous equa-

tion. For k ≥ 2, we get the asymptotic recursion

(74)
∑

n≥0

e−snE(L
(3)
k (n)) ∼

∑

n≥0

e−snE(L
(3)
k−1(n))−

1

s2

∫ ∞

0

√
π

2k−1

Γ(−1/2, x)k−1

(x−1/2e−x + γ(1/2, x))
k
dx.

As for the case β = 2, it readily implies a recursion for C
(3)
k which is satisfied by the

right-hand side (19). Further the limit of C
(3)
k as k → ∞ is 0 by Lemma 8, which is shown

by a dominated convergence argument for the right-hand side of (19). This finishes the
proof. �

4. Conclusion

The asymptotics for the Laplace transform of the probability that the last record is
the kth longest lasting one and for the Laplace transform of the expected proportion of
the kth longest lasting record is understood by Theorem 2. In some of the cases, these
could rigorously be turned into the asymptotics for the sequences themselves by specific
arguments. The rigorous proof of the asymptotics in other cases however remains open.
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Rev. Lett. 101 (2008), 050601
[13] M. Perman, Random discrete distributions derived from subordinators, PhD thesis, University of

California, Berkeley, 1990
[14] M. Perman, Order statistics for jumps of normalised subordinators, Stochastic Process. Appl. 46

(1993), 264–281
[15] M. Perman, J. Pitman and M. Yor, Size-biased sampling of Poisson point processes and excursions,

Probab. Theory Related Fields 92 (1992), 21–39
[16] J. Pitman, Exchangeable and partially exchangeable random partitions, Probab. Theory Related

Fields 102 (1995), 145–158
[17] J. Pitman, Partition structures derived from Brownian motion and stable subordinators, Bernoulli 3

(1997), 79–96
[18] J. Pitman, Combinatorial stochastic processes, Lecture notes for St. Flour course, 2002
[19] J. Pitman and M. Yor, Arcsine laws and interval partitions derived from a stable subordinator, Proc.

London Math. Soc. 65 (1992), 326–356
[20] J. Pitman and M. Yor, The two-parameter Poisson–Dirichlet distribution derived from a stable sub-

ordinator, Ann. Probab. 25 (1997), 855–900
[21] D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3. edition, Springer, 1999
[22] C. L. Scheffer, The rank of the present excursion, Stochastic Process. Appl. 55 (1995), 101–118

University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands

E-mail address : r.szabo@rug.nl

MTA–BME Stochastics Research Group, Egry J. u. 1, 1111 Budapest, Hungary

E-mail address : vetob@math.bme.hu


	1. Introduction
	2. Results
	2.1. Limiting rank of the last interval and limiting proportions of ages of records
	2.2. Relation to the Chinese restaurant process
	2.3. Convergence of average limiting proportions
	2.4. Summation identities

	3. Proof of Laplace transform asymptotics
	4. Conclusion
	Acknowledgements
	References

