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Abstract

We consider the q-Hahn TASEP which is a three-parameter family of discrete
time interacting particle systems. The particles jump to the right independently
according to a certain q-Binomial distribution with parallel updates. It is a gen-
eralization of the totally asymmetric simple exclusion process (TASEP) on Z. For
step initial condition, we prove that the current fluctuation of q-Hahn TASEP at
time τ is of order τ

1/3 and asymptotically distributed as the GUE Tracy–Widom
distribution. We verify the KPZ scaling theory conjecture for the q-Hahn TASEP.
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1 Introduction

In the totally asymmetric simple exclusion process (TASEP) on the one-dimensional
integer lattice Z, particles with vacant right neighbour jump to the right by 1 according
to independent Poisson processes with unit rate. However it is a simple non-reversible
stochastic interacting particle system, the exclusion constraint produces an interesting
behaviour. There has been a lot of studies around this model and its discrete time
versions. Due to the determinantal structures of correlation functions, the limiting process
for particle positions or for the current fluctuations were found to be given by the Airy
processes [18, 10, 9, 20].

For a parameter q ∈ [0, 1), the q-TASEP is a particle system on Z where the jumps
are independent of each other and happen with rate 1−qgap where the gap is the number
of consecutive vacant sites next to the particle on its right. It reduces to TASEP for
q = 0. The q-TASEP was first introduced by Borodin and Corwin in [5]. For step initial
condition, a Fredholm determinant formula was given in [6] for the q-Laplace transform of
the particle position. q-TASEP belongs to the Kardar–Parisi–Zhang (KPZ) universality
class. Based on the formula of [6], Ferrari and Vető showed in [16] that the large time
current fluctuations are governed by the (GUE) Tracy–Widom distribution. This result
confirms the KPZ universality conjecture for q-TASEP and shows that it possesses the
characteristic asymptotic fluctuation statistics of the KPZ class. The predictions of KPZ
scaling theory conjecture are proved to be true in this case, see also [22]. A technical
limitation of [16] was removed by Barraquand in [2] and the analysis was extended to
the case of finitely many extra slow particles. In [4], two natural discrete time versions
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of q-TASEP were introduced and Fredholm determinant expressions were proved for the
q-Laplace transform of the particle positions. The q-Boson particle system introduced by
Sasamoto and Wadati in [21] was proved to be dual to q-TASEP in [8] and, as a conse-
quence, joint moment formulas for multiple particle positions were obtained for q-TASEP
which characterize their distribution, however they are not of Fredholm determinant form.

Povolotsky introduced a three-parameter family of discrete time particle systems on Z

in [19] which was referred to as q-Hahn TASEP or (q, µ, ν)-TASEP in subsequent works.
This model is solvable by the Bethe ansatz, and many known integrable stochastic particle
models can be obtained as limiting cases, in particular the q-TASEP, see Section 2.
Using the duality of the q-Hahn Boson process and the q-Hahn TASEP, Corwin derived
a Fredholm determinant formula for the q-Laplace transform of the particle position in
q-Hahn TASEP with step initial condition in [11], the proof was recently simplified by
Barraquand in [1]. This formula is used as a starting point of the asymptotic analysis
carried out in the present paper, see Theorem 4.1 below. The spectral theory for q-Hahn
TASEP was developed in [7], i.e. the eigenfunctions of the Markov transition operator and
their properties are described. The four-parameter family of stochastic higher spin vertex
models in [13] also includes the q-Hahn TASEP. In the q-Hahn asymmetric exclusion
process which is a related two-sided continuous-time model, a discontinuity of the particle
density and Tracy–Widom asymptotics also for the first particles were found in [3].

The asymptotic analysis performed in this paper shows similarities with the one in [6]
and [16]. In all of these cases, one of the main difficulties lies in the choice of the
contours for the Fredholm determinant: they are chosen to be steep descent paths which
is sufficient for the asymptotic analysis to work, but also the extra singularities of the
integrand have to be controlled. The contours that we choose in the present case are
circular and they are shown on Figure 3. Since the present analysis covers a model with
three parameters, the proof of the steep descent property along the contours here is more
general and parallelly also more involved than in earlier works. It was necessary however
to impose the technical conditions (2.15)–(2.16) on the parameters of the model which
excludes the application of the present results to the discrete time geometric q-TASEP,
see [4].

The paper is organized as follows. We introduce the q-Hahn TASEP model and
describe the main result on the fluctuation of the particle position in Section 2. Section 3
provides a physical explanation of global behaviour of the particle position, in particular,
a heuristic proof of the law of large numbers is given. Further, the prediction of the KPZ
scaling conjecture on the non-universal scale coefficient is verified. Section 4 contains
the pre-asymptotic Fredholm determinant formula for q-Hahn TASEP which was proved
in [11]. We also show how the main result of the paper follows from the convergence of the
corresponding Fredholm determinants. The rest of the paper is devoted to the asymptotic
analysis for the full proof of the limit theorem on the particle position variable: Section 5
contains the main steps of the analysis as propositions; the complex contours which are
suitable for asymptotics are given and proved to be of steep descent in Section 6; finally
the propositions are proved in Section 7.
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2 Model and main results

We start with the definition of the q-Hahn TASEP with step initial condition following
[19] and with further notations. Let q ∈ (0, 1). The q-Pochhammer symbol is given by

(a; q)n =
n−1∏

k=0

(1− aqk) (2.1)

for any a ∈ C and n integer. The definition naturally extends to the infinite q-
Pochhammer symbol (a; q)∞ which is meant as an infinite product. For a fixed q ∈ (0, 1)
and 0 < ν < µ < 1 and integers 0 ≤ j ≤ m, define the weights of the q-Binomial
distribution as

ϕq,µ,ν(j|m) = µj (ν/µ; q)j(µ; q)m−j

(ν; q)m

(q; q)m
(q; q)j(q; q)m−j

. (2.2)

When m = ∞, extend this definition by setting

ϕq,µ,ν(j|∞) = µj (ν/µ; q)j(µ; q)∞
(ν; q)∞

1

(q; q)j
. (2.3)

The q-Hahn TASEP is a discrete time interacting particle system on Z with parallel
updates that consists of the evolution of particles X(τ) = (XN(τ) : N ∈ Z or N ∈ N)
for τ ≥ 0. The particles are numbered from right to left. For the Nth particle at time
τ , given that the number of vacant sites to the right of it is m = XN−1(τ)−XN(τ)− 1,
the particle at XN (τ) jumps to the right by j with probability ϕq,µ,ν(j|m) independently
of the others. Jumps of different particles happen with parallel updates. For ν = 0, the
dynamics reduces to the geometric q-TASEP, see [4], and by setting µ = (1− q)ε and by
scaling time by ε−1, one gets the jump rates of q-TASEP as ε → 0.

Note that the dynamics preserves the order of particles. Step initial condition means
that the particles are initially at all negative integer positions, i.e. there are only particles
with labels N = 1, 2, . . . and they are initially at XN(0) = −N .

Definition 2.1. Let

Γq(z) = (1− q)1−z (q; q)∞
(qz; q)∞

(2.4)

be the q-gamma function. Then the q-digamma function is defined by

Ψq(z) =
∂

∂z
log Γq(z). (2.5)

Definition 2.2. Let q ∈ (0, 1) be fixed and choose a parameter θ > 0. To these values,

we associate the parameters

κ ≡ κ(q, µ, ν, θ) =
Ψ′

q(θ)−Ψ′
q(θ + logq ν)

Ψ′
q(θ + logq µ)−Ψ′

q(θ + logq ν)
, (2.6)

f ≡ f(q, µ, ν, θ) =
κ
(
Ψq(θ + logq µ)−Ψq(θ + logq ν)

)
+Ψq(θ + logq ν)−Ψq(θ)

log q
, (2.7)

χ ≡ χ(q, µ, ν, θ) =
κ
(
Ψ′′

q (θ + logq µ)−Ψ′′
q(θ + logq ν)

)
+Ψ′′

q (θ + logq ν)−Ψ′′
q(θ)

2
, (2.8)

φ ≡ φ(q, µ, ν, θ) = Ψq(θ + logq µ)−Ψq(θ + logq ν). (2.9)

and we denote by φ′ the derivative of φ with respect to θ.
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Figure 1: The macroscopic shape of the positions of q-Hahn TASEP particles for q =
0.2, µ = 0.4, ν = 0.3 which is given by the blue parametric curve (f/κ, 1/κ). Due to the
technical condition (2.16), Theorem 2.5 is valid for positions which are on the right of
the red dot on the plot, i.e. for the major part of the rarefaction fan for these values of
the parameters.

Remark 2.3. Explicit formulas for the quantities given above are only available in terms
of the parameter θ which appears naturally in the asymptotic analysis of the problem. It
could however be physically natural to parametrize the problem by κ since it corresponds
to the macroscopic position where we focus on as explained below. Note that

∂κ

∂θ
= −

2χ

Ψ′
q(θ + logq µ)−Ψ′

q(θ + logq ν)
(2.10)

holds by differentiation. The numerator is positive by Theorem 2.8 (the positivity of χ
is actually proved at the end of Section 3 without using the rest of Theorem 2.8). The
denominator of (2.10) is positive, since the function z 7→ Ψ′

q(z) is decreasing. Hence κ
depends decreasingly on θ and the parametrization by κ is also possible.

The parameters f and κ describe the global behaviour of the particle system. We
provide a physical explanation of the following law of large numbers in Section 3.

Proposition 2.4. The law of large numbers

XN (τ = κN)

N
→ f − 1 (2.11)

holds for the position of the N th particle after time κN as N → ∞.

In order to visualize the macroscopic behaviour given above, consider the evolution
of the points (XN(τ) +N,N) in the coordinate system. For τ = 0, these points all lie on
the positive half of the vertical axis. For τ large and after rescaling the picture by τ , the
points are macroscopically around (f/κ, 1/κ) which is a curve that can be parametrized
by θ and it is shown on Figure 1. By computing limits using (2.6)–(2.7), one can see that
the curve (f/κ, 1/κ) touches the axes at ((Ψq(logq µ) − Ψq(logq ν))/ log q, 0) for θ → 0
and at (0, (µ − ν)/(1 − ν)) for θ → ∞. It means that the right-most q-Hahn TASEP
particle has speed (Ψq(logq µ) − Ψq(logq ν))/ log q and that the left-most particle which
has already started moving after time τ is around the position −(µ− ν)τ/(1− ν).

In this paper, we study the fluctuations of particleXN around the deterministic macro-
scopic position given by (2.11). One expects by KPZ universality that these fluctuations
are of order O(N1/3) and have Tracy–Widom statistics (see the review [15]). Further, at
a given time τ = κN , particles are correlated over a scale O(N2/3) and their limit process
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Figure 2: The upper bound (2.16) on θ as a function of q.

is the Airy2 process. It is also expected by [12] that the same limit process arises for the
position XN at times of order N2/3 away from κN as it was shown for TASEP in [17].

Therefore it is natural to consider for any c ∈ R the scaling

τ(N, c) = κN + cN2/3, (2.12)

p(N, c) = (f − 1)N −
cφ

log q
N2/3 +

c2(φ′)2

4χ log q
N1/3 (2.13)

with κ, f , χ, φ and φ′ given in Definition 2.2. It means that on the top of the macroscopic
behaviour given by (2.11) and governed by the parameter θ through κ and f , we allow
for a smaller N2/3 time scale on which the parameter c in (2.12) is understood as the
time parameter of the expected Airy2 process scaling limit. Hence the rescaled tagged
particle position given by

ξN =
XN(τ(N, c))− p(N, c)

χ1/3(log q)−1N1/3
(2.14)

is expected to converge to the Airy2 process as a process in c. Our main result is the
convergence of the one-point distribution of ξN to the Tracy–Widom distribution func-
tion [23].

For our proof to work, we have to assume that for the parameters of the q-Hahn
TASEP the technical conditions

q ≤ ν < µ ≤ 1/2, (2.15)

θ < logq
2q

1 + q
(2.16)

hold. It is shown on Figure 1 which part of the rarefaction fan is covered by the condition
(2.16) for a certain choice of parameters. The upper bound (2.16) on θ is plotted as a
function of q on Figure 2.

Theorem 2.5. Let q ∈ (0, 1) and θ > 0 be fixed and suppose that the conditions (2.15)–
(2.16) hold. For any c, x ∈ R and with the notation above, the rescaled position ξN
converges in distribution, i.e.

lim
N→∞

P(ξN < x) = FGUE(x) (2.17)

where FGUE is the GUE Tracy–Widom distribution function.
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Remark 2.6. Condition (2.15) is needed for the proof of Proposition 6.2 and 6.3 to
establish the steep descent property along the contours Cθ and Dθ. The origin of this
condition is more explained in Remark 6.4. We expect that this condition is purely
technical, because the predictions of the KPZ scaling conjecture (explained in Section 3
in details) are valid in the full parameter range.

Condition (2.16) is already used in the first step of the proof of Proposition 5.1 in
the contour deformation in order to make sure that no poles coming from the sine in the
denominator of the integrand in the kernel Kx given by (5.2) have to be encountered.
Theorem 2.5 is expected to hold in the entire rarefaction fan without the technical lim-
itation (2.16). To eliminate this condition, one should control the blow up of the kernel
at the additional poles by futher bounds on the kernel. The restriction of (2.16) is shown
on Figure 2. Note that (2.16) is in particular satisfied for θ < 1/2 and for any q ∈ (0, 1).

Remark 2.7. An equivalent statement of Theorem 2.5 is that if one expresses the particle
position as

XN(τ,c)(τ) = P (τ, c) +
χ1/3

κ1/3 log q
ξττ

1/3, (2.18)

where

N(τ, c) =
τ

κ
−

cτ 2/3

κ5/3
+

2c2τ 1/3

3κ7/3
,

P (τ, c) =
f − 1

κ
τ − c

(
f − 1

κ5/3
+

φ

κ2/3 log q

)
τ 2/3

+ c2
(
2(f − 1)

3κ7/3
+

2φ

3κ4/3 log q
+

(φ′)2

4χκ1/3 log q

)
τ 1/3,

then for any x ∈ R,
lim
τ→∞

P(ξτ < x) = FGUE(x).

To state the next equivalent formulation of our main result, we introduce the height
function h(j, τ) via the height differences h(j + 1, τ) = h(j, τ) = −1 if there is a particle
at position j at time τ and +1 if the site is vacant. This defines the height function up
to a global shift which is determined by its initial value h(j, 0) = |j|. It corresponds to
the step (or wedge) initial condition. We remark that the height function can also be
interpreted as particle current: the number of particles in the interval [j,∞) at time τ is
given by (h(j, τ)− j)/2.

Theorem 2.8. Let q ∈ (0, 1) and θ > 0 be fixed and suppose that the conditions (2.15)–
(2.16) hold. With the notation introduced above, we can write the height fluctuation as

h

(
f − 1

κ
τ, τ

)
=

f + 1

κ
τ +

2

log q +Ψq(θ)−Ψq(θ + logq ν)

χ1/3

κ1/3
ξττ

1/3 (2.19)

with

lim
τ→∞

P(ξτ < x) = FGUE(x)

for any x ∈ R.

Furthermore, this verifies the prediction of the KPZ scaling theory conjecture on the

non-universal scale coefficient of the ξτ . In particular, this coefficient is negative due to

the fact that χ > 0 for any choice of q ∈ (0, 1) and 0 < ν < µ < 1.
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3 Hydrodynamic limit and KPZ scaling conjecture

In this section, we first give a non-rigorous argument about the hydrodynamic limit of
q-Hahn TASEP, more precisely, about the particle density

ρ(t, x) = lim
τ→∞

P(there is a particle at position xτ at time tτ )

where the limit is expected to exist. In particular, we show that if the local stationarity
assumption is satisfied, then the law of large numbers stated in Proposition 2.4 holds.
This computation is based on the mass conservation of particles. Later, in Section 5,
we prove Theorem 2.5 using the steepest descent method, which implies the law of large
numbers without the local stationarity assumption. Further, the KPZ scaling theory
provides a prediction on the non-universal scale coefficient. We show in this section that
the predictions coincide with the coefficients which appear in Theorem 2.5 and 2.8.

It was shown in [14] that the q-Hahn TASEP admits a family of translation invariant
stationary measures parametrized by α ∈ (0, 1) where the gaps between consecutive
particles are i.i.d. random variables with distribution

P(G = k) =
(α; q)∞
(αν; q)∞

(ν; q)k
(q; q)k

αk (3.1)

for k = 0, 1, 2, . . . which is a proper probability distribution by the q-Binomial theorem

∞∑

n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

. (3.2)

For the stationary q-Hahn TASEP, the particle density is clearly a constant ρ(t, x) ≡ ρ,
its value is given in Proposition 3.1 below. The average particle current j(ρ) in the
stationary q-Hahn TASEP is defined as the probability that a bond of Z is jumped over
by a particle in one time step. This definition does not depend on the choice of the bond,
it is a function of the parameter α of the stationary measure (3.1), hence by Remark 3.2,
it is a function of the density ρ.

Proposition 3.1. The stationary measure of q-Hahn TASEP with parameter α has par-

ticle density and particle current given by

ρ =
log q

log q +Ψq(logq α)−Ψq(logq(αν))
, j(ρ) =

Ψq(logq(αµ))−Ψq(logq(αν))

log q +Ψq(logq α)−Ψq(logq(αν))
.

(3.3)

Remark 3.2. Since the function z 7→ Ψq(z) is increasing for z > 0, the numerators and
denominators in (3.3) are all negative. Note that the function z 7→ Ψq(z)−Ψq(z+logq ν)
is also increasing for z > 0 since logq ν > 0. As a consequence, for fixed q, µ and ν, the
formula for ρ in (3.3) is a decreasing function of α. Using the inverse of this function,
the average particle current can be understood as a function of the particle density ρ.

Since the number of particles in q-Hahn TASEP is a conserved quantity, the following
mass conservation equation has to be satisfied provided that the particle density is well-
defined:

∂

∂t
ρ(t, x) +

∂

∂x
j(ρ(t, x)) = 0. (3.4)

If the q-Hahn TASEP is started from step initial condition, then the corresponding initial
condition for (3.4) is ρ(0, x) = 1(x < 0).
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Proof of Proposition 3.1. Since in the stationary q-Hahn TASEP the gaps between par-
ticles are i.i.d. and distributed as G given in (3.1) with some fixed α ∈ (0, 1), the renewal
theorem implies that

ρ =
1

1 + E(G)
. (3.5)

A direct computation yields

E(G) =
(α; q)∞
(αν; q)∞

∞∑

k=0

k
(ν; q)k
(q; q)k

αk

=
(α; q)∞
(αν; q)∞

α
∂

∂α

(αν; q)∞
(α; q)∞

= α
∂

∂α
log

(αν; q)∞
(α; q)∞

=
Ψq(logq α)−Ψq(logq(αν))

log q

which together with (3.5) proves the formula for ρ. The average particle current is the
product of the particle density ρ and the expected jump size. The latter is equal to

∞∑

n=0

P(G = n)

n∑

m=0

mϕ(m|n) =

∞∑

m=0

∞∑

k=0

P(G = m+ k)mϕ(m|m+ k)

=
(α; q)∞
(αν; q)∞

∞∑

m=0

mµm (ν/µ; q)m
(q; q)m

∞∑

k=0

αm+k (µ; q)k
(q; q)k

=
(αµ; q)∞
(αν; q)∞

α
∂

∂α

∞∑

m=0

(αµ)m
(ν/µ; q)m
(q; q)m

= α
∂

∂α

∞∑

m=0

log
(αν; q)∞
(αµ; q)∞

=
Ψq(logq(αµ))−Ψq(logq(αν))

log q

where we used the definitions (3.1) and (2.2) in the second equation and the q-Binomial
theorem (3.2) in the third equation. The previous calculation verifies the expression for
j(ρ) in (3.3).

Heuristic proof of Proposition 2.4. The proof that we give here assumes the local sta-
tionarity of the particle system, that is, the gaps between particles are distributed like
(3.1) for some space and time dependent parameter α which can be obtained from the
local particle density. The full proof of Proposition 2.4 follows from Theorem 2.5.

To get the hydrodynamic limit, position p(θ)τ is considered after time τ for large τ for
some parametric global position p(θ). By local stationarity, the gaps between particles
are distributed around this position given by (3.1) for some α and we assume that the
parametrization is such that α = qθ holds. The relation of the macroscopic position p(θ)
and α is therefore determined by the mass conservation PDE (3.4) as follows. By the
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stationarity assumption, we can use formulas (3.3) to get

ρ(t, p(θ)t) =
log q

log q +Ψq(θ)−Ψq(θ + logq ν)
,

j(ρ(t, p(θ)t)) =
Ψq(θ + logq µ)−Ψq(θ + logq ν)

log q +Ψq(θ)−Ψq(θ + logq ν)

(3.6)

where ρ with double argument is the solution of the PDE (3.4). The function p(θ) can
be expressed from the derivatives of the quantities in (3.6) and using the PDE (3.4). The
solution is given in [3] in general simply by

p(θ) =
∂j(ρ(t, p(θ)))

∂θ

(
∂ρ(t, p(θ)t)

∂θ

)−1

(3.7)

which in our case equals (f − 1)/κ with (2.6)–(2.7) by straightforward computation from
(3.6).

Let r(θ)τ be the label of particle at position p(θ)τ at time τ in leading order for some
function r(θ). By definition, one has

dr(θ)

dp(θ)
= −ρ(t, p(θ)t) (3.8)

with r(∞) = −p(∞) by the step initial condition. The equation (3.8) is satisfied by

r(θ) = −p(∞) +

∫ ∞

θ

ρ(t, p(θ′)t)
dp(θ′)

dθ′
dθ′

= −p(∞) + [ρ(t, p(θ′)t)p(θ′)− j(ρ(t, p(θ′)t))]∞θ
= −ρ(t, p(θ)t)p(θ) + j(ρ(t, p(θ)t))

where integration by parts and (3.7) are used in the second equation as it is given in [3]
in general. Using the fact that p(θ) = (f − 1)/κ and (3.6), it is straightforward to see
that r(θ) = 1/κ. This verifies the law of large numbers (2.11).

At the end of this section, we show how Theorem 2.8 follows from Theorem 2.5 and
we verify the validity of the KPZ scaling theory conjecture.

Proof of Theorem 2.8. We start with (2.18) for c = 0 which reads as

Xτ/κ(τ) =
f − 1

κ
τ +

χ1/3

κ1/3 log q
ξττ

1/3 (3.9)

where ξτ is asymptotically Tracy–Widom distributed. The global position (f − 1)/κ and
the global factor 1/κ of the particle label are both functions of θ. We consider the right-
hand side of (3.9) as the τ−2/3 order random perturbation of the function (f−1)/κ. With
a τ−2/3 order modification of θ, the right-hand side of (3.9) becomes (f − 1)/κ and the
random perturbation appears in the particle label with coefficient multiplied by

−
d

dθ

1

κ

(
d

dθ

f − 1

κ

)−1

= −
dr(θ)

dp(θ)
= ρ(t, p(θ)t) =

log q

log q +Ψq(θ)−Ψq(θ + logq ν)
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with the notations of the previous proof and by using (3.8) and (3.6). This means that
(3.9) is transformed into

XÑ(τ) =
f − 1

κ
τ with Ñ =

τ

κ
+

1

log q +Ψq(θ)−Ψq(θ + logq ν)

χ1/3

κ1/3
ξττ

1/3. (3.10)

By the remark before Theorem 2.8, we have the equality of events

{XN(τ) < j} =

{
h(j, τ)− j

2
< N

}

which exactly implies (2.19) using (3.10).
Now we prove that the KPZ scaling theory conjecture is satisfied, more precisely, we

show that the non-universal scale coefficient in (2.19) coincides with the prediction given
in [22]. We denote the particle density and the corresponding particle current given in
(3.3) by ρ and j respectively for the sake of simplicity. The next two crucial quantities
are defined in order to verify the KPZ conjecture of [22]. First let

λ =
1

2

d2j

dρ2
. (3.11)

We remark that the ρ in [22] corresponds to 2ρ− 1 with our notation by the relation of
the particle density and the slope of the height function h. Consequently, the current
in [22] equals to −2j with the present notation the minus sign being present due to the
fact that all particles jump to the left in [22]. This explains the extra −1/2 factor in
(3.11) compared to [22].

To define the second quantity, it is supposed that the stationary distribution of the
gaps between particles is of the form

P(G = k) =
1

Z(α)

(
k∏

j=1

g(j)

)−1

αk

for some increasing function g where

Z(α) =
∞∑

k=0

(
k∏

j=1

g(j)

)−1

αk

is the normalizing constant and G(α) = logZ(α). Then the second quantity of interest
is

A =
4α(αG′(α))′

(1 + αG′(α))3
(3.12)

where the primes denote derivatives with respect to α. The scaling conjecture predicts
the non-universal scale coefficient to be −(−1

2
λA2τ)1/3.

We check the conjecture by direct computation. To simplify the calculation in this
proof, we introduce the shorthand notation

a = log q +Ψq(θ)−Ψq(θ + logq ν), b = Ψq(θ + logq µ)−Ψq(θ + logq ν)

which we understand as functions of θ. With this notation,

ρ = log q/a, j = b/a (3.13)
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by (3.6). In our case, the quantity λ is computed as

λ =
j′′ρ′ − j′ρ′′

2(ρ′)3
=

a3(b′′a′ − a′′b′)

2(a′)3(log q)2

where all the primes are derivatives with respect to θ and we used (3.11) and (3.13).
For q-Hahn TASEP, G(α) = log(αν; q)∞ − log(α; q)∞ and the relation α = qθ holds as
observed in the proof of Proposition 2.4, hence differentiation as given by (3.12) yields
that

A =
4a′ log q

a3

where the prime is derivative with respect to θ. This gives that

−
1

2
λA2 = −

4(b′′a′ − a′′b′)

a′a3
= −

8χ

a3κ

where we used the observations b′′a′ − a′′b′ = 2χb′ and κ = a′/b′ in the second equality.
This completes the proof of the scaling conjecture for q-Hahn TASEP.

Finally, we show the positivity of the parameter χ. By definition (2.6)–(2.8) and due
to the fact that the function Ψ′

q is decreasing, the positivity of χ is equivalent to

Ψ′′
q(θ + logq µ)−Ψ′′

q (θ + logq ν)

Ψ′
q(θ + logq µ)−Ψ′

q(θ + logq ν)
>

Ψ′′
q(θ)−Ψ′′

q (θ + logq ν)

Ψ′
q(θ)−Ψ′

q(θ + logq ν)
.

We will prove that the function

x 7→
Ψ′′

q(θ + x)−Ψ′′
q(θ + logq ν)

Ψ′
q(θ + x)−Ψ′

q(θ + logq ν)

is increasing for x ∈ (0, logq ν). By taking derivative and using the fact that Ψ′
q is

decreasing and Ψ′′
q < 0, what remains to show is

Ψ′′′
q (θ + x)

Ψ′′
q(θ + x)

<
Ψ′′

q (θ + x)−Ψ′′
q(θ + logq ν)

Ψ′
q(θ + x)−Ψ′

q(θ + logq ν)
.

By Cauchy’s mean value theorem, the right-hand side above is equal to Ψ′′′
q (θ+y)/Ψ′′

q(θ+y)
for some y ∈ (x, logq ν). Hence the proof is complete, since θ 7→ Ψ′′′

q (θ)/Ψ
′′
q (θ) is an

increasing function, see e.g. the proof of Lemma 4.2 in [3].

4 Finite time formula and proof of the main result

The first part of Theorem 1.10 in [11] gives the following Fredholm determinant expression
for the q-Laplace transform of the particle position in q-Hahn TASEP with step initial
condition.

Theorem 4.1. Fix q ∈ (0, 1) and 0 ≤ ν ≤ µ < 1. Consider q-Hahn TASEP (XN(τ))N≥1

started from step initial data. Then for all ζ ∈ C \ R+,

E

(
1

(ζqXN(τ)+N ; q)∞

)
= det (I +Kζ)L2(C1)

(4.1)
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where C1 is a positively oriented circle containing 1 with small enough radius so as to not

contain 0, 1/q and 1/ν. The operator Kζ is defined in terms of its integral kernel

Kζ(w,w
′) =

1

2πi

∫

1
2
+iR

π

sin(−πs)
(−ζ)s

h(w)

h(qsw)

1

qsw − w′
ds (4.2)

with

h(w) =

(
(νw; q)∞
(w; q)∞

)N (
(µw; q)∞
(νw; q)∞

)τ
1

(νw; q)∞
.

Let us choose

ζ = −q−fN+ cφ
log q

N2/3+βx
N1/3

log q ∈ C \R+ (4.3)

where

βx =
c2(φ′)2

4χ
− χ1/3x. (4.4)

Theorem 4.2 below is about the convergence of the Fredholm determinant on the right-
hand side of (4.1) under the right scaling of the parameters. It is the most important
input for the Tracy–Widom limit of the rescaled particle position in q-Hahn TASEP. It
is proved by the method of steepest descent later in Section 5. We show in this section
how the proof of Theorem 2.5, the main result of this paper follows from Theorem 4.2.

Theorem 4.2. Let x ∈ R be fixed and choose ζ according to (4.3). Let τ be scaled with

N as in (2.12). Suppose that for the parameters of the q-Hahn TASEP, the conditions

(2.15)–(2.16) hold. Then
det(1 +Kζ)L2(C1) → FGUE(x)

as N → ∞.

Proof of Theorem 2.5. With the scaling (4.3) of ζ on the left-hand side of (4.1), one has

ζqXN (τ)+N = −q
χ1/3

log q
N1/3(ξN−x). (4.5)

Hence that the argument presented in Section 5 of [16] can be used for the q-Hahn TASEP
as well. In particular, using Lemma 5.1 of [16], it follows from (4.5) that the left-hand side
of (4.1) converges as N → ∞ to the limiting distribution function limN→∞P(ξN < x)
when ζ is rescaled via (4.3). By Lemma 4.1.39 of [5], Theorem 4.2 on the convergence
of the right-hand side of (4.1) to the GUE Tracy–Widom distribution function is enough
for the weak convergence of ξN and for the proof of Theorem 2.5.

5 Asymptotic analysis

We prove Theorem 4.2 in this section. In order to perform the asymptotic analysis, we
substitute (2.12) and (4.3) for the values of τ and ζ into (4.2) and perform the change of
variables

w = qW , w′ = qW
′

, s+W = Z. (5.1)

The kernel which we get is

Kx(W,W ′)
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=
qW log q

2πi

∫

θ+iR

dZ

qZ − qW ′

π

sin(π(W − Z))

(νqZ ; q)∞
(νqW ; q)∞

eNf0(qZ)+N2/3f1(qZ )+N1/3f2(qZ)

eNf0(qW )+N2/3f1(qW )+N1/3f2(qW )
(5.2)

with

f0(z) = −f log z + κ(log(νz; q)∞ − log(µz; q)∞) + log(z; q)∞ − log(νz; q)∞, (5.3)

f1(z) = cφ logq z + c(log(νz; q)∞ − log(µz; q)∞), (5.4)

f2(z) = βx logq z (5.5)

and βx as in (4.4). The contours for the Fredholm determinant and for the integral
defining the kernel transform under the change of variables (5.1) are as follows. The
contour for w and w′ was originally C1, a small circle around 1, hence the contour for W
and W ′ can be chosen to be C0 which is a small circle around 0 that does not contain
the singularities at −1 and at − logq ν. If this circle is small enough, the contour for Z
becomes a small perturbation of 1/2+ iR which can be shifted to θ+iR without crossing
any singularity of the integrand since (2.16) means in particular that θ ∈ (0, 1). Hence
the choice for the Z contour in (5.2) is appropriate and we can write the equality of the
Fredholm determinants

det(1+Kζ)L2(C1) = det(1+Kx)L2(C0).

Theorem 4.2 follows immediately from the series of propositions below. The proposi-
tions are stated in this section without proofs in order to keep the proof of Theorem 4.2
transparent. The proofs of the propositions are given later separately in Section 7. In
the propositions without repeating everywhere, we assume that for the parameters of
the q-Hahn TASEP, the conditions (2.15)–(2.16) hold. To state the first proposition, we
introduce the V-shaped contour

V δ
θ,ϕ = {θ + eiϕ sgn(t)|t| : t ∈ [−δ, δ]} (5.6)

where θ > 0 is the tip of the V, ϕ ∈ (0, π) is its angle and δ ∈ R+ ∪ {∞}. We also
introduce the kernel

Kx,δ(W,W ′)

=
qW log q

2πi

∫

V δ
θ,ϕ

dZ

qZ − qW ′

π

sin(π(W − Z))

(νqZ ; q)∞
(νqW ; q)∞

eNf0(qZ)+N2/3f1(qZ )+N1/3f2(qZ)

eNf0(qW )+N2/3f1(qW )+N1/3f2(qW )
(5.7)

whereW,W ′ ∈ V δ
θ,π−ϕ. The dependence of the kernel on ϕ is not indicated in the notation.

Note that Kx,δ only differs from Kx by the integration contours.

Proposition 5.1. For any fixed δ > 0 and ε > 0 small enough, there are ϕ ∈ (0, π/2)
and N0 such that for all N > N0∣∣∣det(1+Kx)L2(C0) − det(1−Kx,δ)L2(V δ

θ,π−ϕ)

∣∣∣ < ε.

By defining the rescaled kernel

KN
x,δ(w,w

′) = N−1/3Kx,δN1/3(θ + wN−1/3, θ + w′N−1/3), (5.8)

the change of variables shows that

det(1−Kx,δ)L2(V δ
θ,π−ϕ)

= det(1−KN
x,δ)L2(V δN1/3

0,π−ϕ )
.

Next we show that on the contour V δN1/3

0,π−ϕ , the kernel KN
x,δ can be replaced by the one

obtained by using the Taylor approximation given later in (7.1)–(7.3).
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Proposition 5.2. For any fixed ε > 0 small enough, there is a small δ > 0 and an N0

such that for any N > N0,

∣∣∣det(1−KN
x,δ)L2(V δN1/3

0,π−ϕ )
− det(1−K ′

x,δN1/3)L2(V δN1/3
0,π−ϕ )

∣∣∣ < ε

where

K ′
x,L(w,w

′) =
1

2πi

∫

V L
0,ϕ

dz

(z − w′)(w − z)

eχz
3/3+cφ′z2/2+βxz

eχw3/3+cφ′w2/2+βxw
. (5.9)

Proposition 5.3. With the notation as above,

det(1−K ′
x,δN1/3)L2(V δN1/3

0,π−ϕ )
→ det(1−K ′

x,∞)L2(V ∞
0,π−ϕ)

as N → ∞.

Proposition 5.4. We can rewrite the Fredholm determinant

det(1−K ′
x,∞)

L2(V δN1/3
0,π−ϕ )

= det(1−KAi,x)L2(R+) = FGUE(x)

where

KAi,x(a, b) =

∫ ∞

0

dλAi(x+ a) Ai(x+ b)

and FGUE is the GUE Tracy–Widom distribution function.

6 Steep descent contours

This section is devoted to establish contours which are of steep descent for the function
with principal contribution in the exponent. We follow the lines of the method of steepest
descent with the slight generalization that our contours are not necessarily of steepest
descent but of steep descent. A finite contour γ in the complex plane is of steep descent
for a real function if there is a unique point on γ where the function attains its maximum
over γ and there is another point on γ where the function is minimal, furthermore, the
function is monotone along both arcs connecting the two points. We first define these
contours which are also shown on Figure 3 along with the contourplot of the function
Re(f0).

Definition 6.1. Let us define the contours along with their parametrizations as

Cθ = {w(s) = 1− (1− qθ)eis, s ∈ (−π, π]}, Dθ = {z(t) = qθeit, t ∈ (−π, π]}

and let C̃θ be the image of Cθ under the map w 7→ logq w.

The next two propositions are the main statements of the present section and the
main technical tools for the proof of Theorem 2.5. They are proved later in this section
after the proof of Lemma 6.5.

Proposition 6.2. Suppose that for the parameters of the q-Hahn TASEP, (2.15) holds.

Then the contour Cθ is of steep descent for the function −Re(f0) in the sense that the

function attains its maximum at qθ corresponding to s = 0, it increases for s ∈ (−π, 0)
and it decreases for s ∈ (0, π).
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Figure 3: Contourplot of the function Re(f0) in the neighbourhood of the double critical
point θ and the steep descent contours Cθ (purple) and Dθ (orange). Parameter values:
θ = 0.4, q = 0.2, µ = 0.4, ν = 0.3.

Proposition 6.3. Suppose that for the parameters of the q-Hahn TASEP, (2.15) holds.

Then the contour Dθ is of steep descent for the function Re(f0) in the sense that the

function attains its maximum at qθ corresponding to t = 0, it increases for t ∈ (−π, 0)
and it decreases for t ∈ (0, π).

Remark 6.4. The condition q ≤ ν is needed for the use of the first part of Lemma 6.5 to
obtain (6.8) which is an ingredient to the steep descent property in Proposition 6.2. This
condition is also used in the proof of Proposition 6.3 for the application of (6.15) with
α = νqk and β = qk+1. The condition µ ≤ 1/2 is imposed in Proposition 6.3, because
the inequality (6.15) could be proved for β ≤ 1/2. The 1/2 seems numerically to be
close to optimal. The condition µ ≤ 1/2 could be weakened in Proposition 6.2, because
(1−qθ)µ/(1−µ) ≤ 1 is enough to obtain (6.7) from the first part of Lemma 6.5. The latter
is a weaker condition, but µ ≤ 1/2 has to be assumed for our proof of Proposition 6.3 to
work.

The function given by

g(b, s) =
b sin s

1 + b2 − 2b cos s
is useful for the proof of the propositions about steep descent contours. It has the following
properties.

Lemma 6.5. 1. If −1 < b ≤ c < 1 and 0 ≤ s ≤ π, then

(1− b)2

b
g(b, s) ≥

(1− c)2

c
g(c, s) (6.1)

and the inequality above is sharp for s ∈ (0, π) if b < c.

2. For 0 < b < 1 and 0 ≤ t ≤ π, one has
(
(1− b/2)2

b/2
g(b/2, t)

)2

≥
(1− b)2

b
g(b, t) sin t.

with strict inequality for t ∈ (0, π).
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Remark 6.6. The first part of Lemma 6.5 is designed to compare the different terms in
the derivative of f0 along a circular contour given in (6.6). The inequality (6.1) is sharp
in the sense that the two sides as functions of s are tangential at s = 0. The factor 1/2
in the second part of the lemma seems numerically to be close to optimal.

Proof of Lemma 6.5. 1. The inequality is the consequence of the fact that

∂

∂b

(
(1− b)2

b
g(b, s)

)
= −

2(1− b2)(1− cos s) sin s

(1 + b2 − 2b cos s)2

is non-positive for −1 < b < 1 and 0 ≤ s ≤ π and it is strictly negative for
−1 < b < 1 and 0 < s < π.

2. Calculations show that

(
(1− b/2)2

b/2
g(b/2, t)

)2

−
(1− b)2

b
g(b, t) sin t

=
4b2(4b− 3b3 + 8(1− b)2(1 + cos t)) sin2(t/2) sin2 t

(4 + b2 − 4b cos t)2(1 + b2 − 2b cos t)

which is non-negative for the given parameter values and strictly positive for for
t ∈ (0, π).

The series representations of the q-digamma function and that of its derivative are
used in the proof below. They are expressed as

Ψq(Z) = − log(1− q) + log q
∞∑

k=0

qZ+k

1− qZ+k
, (6.2)

Ψ′
q(Z) = (log q)2

∞∑

k=0

qZ+k

(1− qZ+k)2
. (6.3)

Proof of Proposition 6.2. We investigate the function −Re(f0) along Cθ, i.e. w(s) = 1−
reis for s ∈ [0, π] where we use the notation r = 1 − qθ as we will do throughout this
proof. The case s ∈ (−π, 0] is similar. One can check by calculation that

Re
d

ds
logw(s) = g(r, s) (6.4)

and that for any 0 < α ≤ 1,

Re
d

ds
log(αw(s); q)∞ =

∞∑

k=0

g

(
−r

αqk

1− αqk
, s

)
(6.5)

where the k = 0 term for α = 1 is understood as the limit limb→−∞ g(b, s) = 0. Using
(6.4)–(6.5) for (5.3), we have

−Re
d

ds
f0(w(s)) = fg(r, s) + κ

∞∑

k=0

(
g

(
−r

µqk

1− µqk
, s

)
− g

(
−r

νqk

1− νqk
, s

))

+
∞∑

k=0

(
g

(
−r

νqk

1− νqk
, s

)
− g

(
−r

qk

1− qk
, s

))
.

(6.6)
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Note that the k = 0 term of the last summand is 0 by the observation above.
The first part of Lemma 6.5 for b = −rµqk/(1− µqk) and c = −rνqk/(1− νqk) yields

that

∞∑

k=0




(
1 + r µqk

1−µqk

)2

r µqk

1−µqk

r νqk

1−νqk(
1 + r νqk

1−νqk

)2 g
(
−r

µqk

1− µqk
, s

)
− g

(
−r

νqk

1− νqk
, s

)

 ≤ 0 (6.7)

and the inequality is strict for s ∈ (0, π). Similarly for b = −rνqk/(1 − νqk) and c =
−rqk+1/(1− qk+1), one has

∞∑

k=0




(
1 + r νqk

1−νqk

)2

r νqk

1−νqk

r qk+1

1−qk+1

(
1 + r qk+1

1−qk+1

)2g
(
−r

νqk

1− νqk
, s

)
− g

(
−r

qk+1

1− qk+1
, s

)

 ≤ 0.

(6.8)
Note that since the function b 7→ (1 + b)2/b is decreasing on b ∈ (0, 1), the prefactor of
g(−rµqk/(1−µqk), s) in (6.7) and that of g(−rνqk/(1− νqk), s) in (6.8) are smaller than
1.

Hence in order to complete the argument, one has to compare the remainder of the
terms g(−rµqk/(1− µqk), s) and g(−rνqk/(1− νqk), s) in (6.6) with g(r, s). To this end,
we use the first part of Lemma 6.5 for b = −rµqk/(1−µqk) and c = r which gives us that

(1− r)2

r

r µqk

1−µqk(
1 + r µqk

1−µqk

)2g(r, s) + g

(
−r

µqk

1− µqk
, s

)
≤ 0 (6.9)

and for b = −rνqk/(1− νqk) and c = r, we have

(1− r)2

r

r νqk

1−νqk(
1 + r νqk

1−νqk

)2g(r, s) + g

(
−r

νqk

1− νqk
, s

)
≤ 0. (6.10)

What remains to show is that

f = κ
∞∑

k=0


1−

(
1 + r µqk

1−µqk

)2

r µqk

1−µqk

r νqk

1−νqk(
1 + r νqk

1−νqk

)2




(1− r)2

r

r µqk

1−µqk(
1 + r µqk

1−µqk

)2

+
∞∑

k=0


1−

(
1 + r νqk

1−νqk

)2

r νqk

1−νqk

r qk+1

1−qk+1

(
1 + r qk+1

1−qk+1

)2




(1− r)2

r

r νqk

1−νqk(
1 + r νqk

1−νqk

)2

(6.11)

because of the following. Let us multiply (6.9) by κ times the factor between parentheses
in the first sum of (6.11) and multiply (6.10) by the factor between parentheses in the
second sum of (6.11) and sum these up for k. Then add κ times (6.7) and (6.8) to
the sum. This altogether is to be compared to (6.6). Note that the coefficients of
g(−rµqk/(1−µqk), s), g(−rνqk/(1−νqk), s) and g(−rqk/(1−qk), s) coincide. (Remember
that the last term for k = 0 in (6.6) is 0.) On the other hand, the coefficients of g(r, s)
are exactly the two sides of (6.11), therefore if (6.11) holds true, then the derivative (6.6)
is non-positive for s ∈ [0, π] and negative for s ∈ (0, π).
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By multiplication in (6.11), for α ∈ (0, 1], we get terms of the form

∞∑

k=0

(1− r)2 αqk

1−αqk(
1 + r αqk

1−αqk

)2 = −(1− qθ)

∞∑

k=0

αqθ+k

(1− αqθ+k)2
+

∞∑

k=0

αqθ+k

1− αqθ+k

= −(1− qθ)
Ψ′

q(θ + logq α)

(log q)2
+

Ψq(θ + logq α) + log(1− q)

log q

(6.12)

where we used that r = 1 − qθ and the series expansions (6.2)–(6.3). The right-hand
side of (6.11) equals κ times the difference of (6.12) for α = µ and for α = ν and the
difference of (6.12) for α = ν and for α = q. Note that the sum in (6.12) for α = q can
be replaced by the one for α = 1, because the extra term is 0 as it can be seen from the
second expression in (6.12). Hence the right-hand side of (6.11) can be written as

1

log q

(
κ
(
Ψq(θ + logq µ)−Ψq(θ + logq ν)

)
+Ψq(θ + logq ν)−Ψq(θ)

)

−
1− qθ

(log q)2
(
κ
(
Ψ′

q(θ + logq µ)−Ψ′
q(θ + logq ν)

)
+Ψ′

q(θ + logq ν)−Ψ′
q(θ)

)

which is exactly f by (2.6)–(2.7) as required.

Proof of Proposition 6.3. First note that

Re
d

dt
log z(t) = 0

and that for 0 < α ≤ 1,

Re
d

dt
log(αz(t); q)∞ =

∞∑

k=0

g(αqθ+k, t).

We write the derivative of Re(f0) as

Re
d

dt
f0(z(t)) = g(qθ, t)−

∞∑

k=0

[
κ
(
g(µqθ+k, t)− g(νqθ+k, t)

)
+ g(νqθ+k, t)− g(qθ+k+1, t)

]
.

(6.13)
We prove that it is non-positive for t ∈ [0, π] with strict inequality for t ∈ (0, π). The
corresponding inequality for t ∈ [−π, 0] is similar.

As a consequence of (2.6) and (6.3), one can write the coefficient of g(qθ, t) in the
derivative above as

1 =
(1− qθ)2

qθ

∞∑

k=0

(
κ

(
µqθ+k

(1− µqθ+k)2
−

νqθ+k

(1− νqθ+k)2

)
+

νqθ+k

(1− νqθ+k)2
−

qθ+k+1

(1− qθ+k+1)2

)
.

(6.14)
We shall prove that if 0 < α ≤ β ≤ 1/2, then

(
βqθ

(1− βqθ)2
−

αqθ

(1− αqθ)2

)
(1− qθ)2

qθ
g(qθ, t) ≤ g(βqθ, t)− g(αqθ, t) (6.15)

with strict inequality for t ∈ (0, π) and α < β. An application of (6.15) for α = νqk and
β = µqk and an application for α = νqk and β = qk+1 together with (6.14) proves that
(6.13) is non-positive.
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To show (6.15), we write it as

(1− qθ)2

qθ
g(qθ, t) ≤

g(βqθ, t)− g(αqθ, t)
βqθ

(1−βqθ)2
− αqθ

(1−αqθ)2

(6.16)

and we observe that by Cauchy’s mean value theorem the right-hand side of (6.16) can
be written as

d

db
g(b, t)

(
d

db

b

(1− b)2

)−1

=

(
(1− b)2

b
g(b, t)

)2
1

sin t
(6.17)

for some b ∈ (αqθ, βqθ). By the first part of Lemma 6.5, b 7→ (1−b)2g(b, t)/b is decreasing.
Since β ≤ 1/2, (6.17) for b ∈ (αqθ, βqθ) cannot be smaller than its value at qθ/2, i.e.

(
(1− qθ/2)2

qθ/2
g(qθ/2, t)

)2
1

sin t
.

Applying the second part of Lemma 6.5 gives the inequality (6.16) which completes the
proof.

7 Proofs of propositions

This section contains the proofs of the propositions stated in Section 5 which lead to
Theorem 4.2. For later use, note that differentiation of (5.3)–(5.5) gives the following
Taylor series expansions

f0(q
Z) = f0(q

θ) +
χ

3
(Z − θ)3 +O((Z − θ)4), (7.1)

f1(q
Z) = f1(q

θ) +
cφ′

2
(Z − θ)2 +O((Z − θ)3), (7.2)

f2(q
Z) = f2(q

θ) + βx(Z − θ). (7.3)

Proof of Proposition 5.1. The proof consists of the following three steps. We first deform
the integration contour for the kernel Kx to the steep descent contour. Then we show
that Proposition 5.1 holds with ϕ = π/2 instead of ϕ ∈ (0, π/2). In the last step, we
deform the short contours so that we get the statement for ϕ ∈ (0, π/2).

Step 1: Contour deformation. The first observation is that as long as conditions
(2.15)–(2.16) hold, then

det(1+Kx)L2(C0) = det(1+Kx)L2(C̃θ)
,

i.e. the contour C0 can be blowed up to C̃θ. This simply follows from the Cauchy the-
orem since the singularities coming from f0 at − logq µq

k, − logq νq
k and logq q

k for

k = 0, 1, 2, . . . are by condition (2.15) all smaller than logq 2 and the point of C̃θ with the
smallest real part is logq(2 − qθ). One the other hand, the condition (2.16) ensures that
no pole coming from the sine in the denominator is crossed along the deformation, since
the real part of the points of C̃θ is between logq(2 − qθ) and θ and the difference of the
two is assumed to be less than 1 by (2.16).

Step 2: Localization to short contours. In this step, we prove the statement of the
proposition with ϕ = π/2 instead of ϕ ∈ (0, π/2). Recall from Definition 6.1 that

19



s 7→ w(s) parametrized the contour Cθ and hence s 7→ logq w(s) parametrized the contour

C̃θ. It allows for writing the Fredholm determinant as

det(1+Kx)L2(C̃θ)

=

∞∑

k=0

1

k!

∫ π

−π

ds1 . . .

∫ π

−π

dsk det

(
Kx(logq w(si), logq w(sj))

d

dsi
logq w(si)

)k

i,j=1

. (7.4)

The kernel in (7.4) diverges logarithmically in the neighbourhood of si = 0, but it is
bounded otherwise. More precisely, there is a constant C such that

|Kx(logq w(s), logq w(s
′))| ≤ C(1 + (log |s|)− + (log |s′|)−).

On the other hand, we use the fact that the contour C̃θ is of steep descent for the function
W 7→ −Re(f0(q

W )) as an immediate consequence of Proposition 6.2. Since this function
gives the main contribution in the exponent in the W variable, the kernel converges to
0 exponentially as N → ∞ for all W ∈ C̃θ except for a δ-neighbourhood of θ. Hence by
dominated convergence, the integral along the contour C̃θ in the Fredholm series of Kx

in (7.4) can be neglected apart from a δ-neighbourhood of θ by making an error of order
O(exp(−cδ3N)) for some c > 0. Keeping the endpoints of the remaining contour, it can
be replaced by V δ

θ,π−ϕ for some ϕ ∈ (0, π/2) by Cauchy’s theorem. Note that in the last
step, the orientation of the contour changes.

With a similar argument, we can localize the Z-contour as well. By linearity, one
can take out the Z integrations from the determinant in (7.4) to obtain a sum where
the kth term is a 2k-fold integration. It is still integrable, since the behaviour in the
Z variables is e−π Im(Z) due to the sine in the denominator. The function Re(f0(q

Z)) is
periodic along the contour θ+ iR with period 2π/| log q| in the imaginary direction. The
contour {θ + it : t ∈ [π/ log q,−π/ log q]} is however of steep descent for Re(f0(q

Z)) by
Proposition 6.3. Therefore, the steep descent property and the periodicity implies that
by making an exponentially small error in N , we can restrict the Z integral to the set
∪k∈ZIk where Ik = {θ + it : t− 2kπ/ log q ∈ [−δ, δ]}, in particular, I0 = V δ

θ,π/2.
Now we argue that in the limit, only the integral over I0 survives. Let us consider the

change of variables

W = θ + wN−1/3, Z = θ + ik
2π

log q
+ zN−1/3.

Now the term N−1/3/ sin(π(W − Z)) for k = 0 converges to 1/(π(w − z)), whereas for
k 6= 0, we have

N−1/3

sin(π(W − Z))
≍ N−1/3e−π| ImZ| ≍ N−1/3e−

2π2

| log q|
|k|

which is a summable but it is of smaller order than the term for k = 0. It means that
the integral over ∪k∈ZIk can be replaced by the one over I0 in the limit. This proves the
proposition for ϕ = π/2.

Step 3: Deformation of short contours. What we show in this step is that the contour
for the Z integral in the kernel Kx,δ that can be taken to be a segment from θ− iδ to θ+iδ
can be replaced by V δ

θ,ϕ by possibly choosing a smaller δ. First with the ϕ obtained in the
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localization of the W contour and by using Cauchy’s theorem, we replace the integration
path for Z by the union of

S1 = [θ − iδ, θ + δ cosϕ− iδ sinϕ], S2 = [θ + δ cosϕ− iδ sinϕ, θ],

S3 = [θ, θ + δ cosϕ+ iδ sinϕ], S4 = [θ + δ cosϕ+ iδ sinϕ, θ + iδ]

where we mean four segments in the complex plane with the given endpoints.
The new integration path is not a steep descent contour any more, nevertheless one

can proceed as follows. The function Z 7→ f0(q
Z) behaves around θ as f(qθ)+(Z−θ)3 in

the leading order by the Taylor expansion (7.1). On the other hand by Proposition 6.3,
we know that the value of Re(f0(q

Z)) as Z ∈ θ + iR is smaller than f0(q
θ). Hence by

taking δ sufficiently small so that the Taylor approximation works well enough, we can
achieve that Re(f0(q

Z)) as Z ∈ S1 ∪ S4 is strictly smaller than f0(q
θ). Similarly to the

second step of this proof, we can further reduce the integration path to S2∪S3 = V δ
θ,ϕ by

making an exponentially small error in N . This completes the proof.

Proof of Proposition 5.2. We apply the change of variables

W = θ + wN−1/3, W ′ = θ + w′N−1/3, Z = θ + zN−1/3 (7.5)

as in (5.7) and use the Taylor expansions (7.1)–(7.3). It gives that up to an errorO(N−1/3)

in the exponent, the kernel KN
x,δ(w,w

′) is close to K ′
x,δN1/3(w,w

′) for any w,w′ ∈ V δN1/3

0,π−ϕ

as N → ∞. By using the inequality |ex− 1| ≤ |x|e|x|, we obtain that the kernel with and
without the error in the exponent differ by an O(N−1/3) term.

In order to get that the Fredholm determinants are also close, we need a uniform fast
decaying bound on KN

x,δ(w,w
′). The main term in the exponent is

−N Re f0(q
W ) = −χRe

w3

3
+Oǫ(N

−1/3w4) = −χRe
w3

3
+Oǫ(w

3)

for any ǫ > 0 where Oǫ(w
3) means that the error term is at most ǫw3. By taking δ small

enough, ǫ can be arbitrarily small, hence the error term is negligible compared to the
cubic behaviour of −χRew3/3. The error terms coming from f1 and f2 in the exponent
are similarly dominated. Hence the difference of the Fredholm determinants goes to 0 as
N → ∞ by dominated convergence, which proves the proposition.

Proof of Proposition 5.3. Since the integrand in (5.9) has cubic exponential decay in w
and z along the given contours V ∞

0,π−ϕ and V ∞
0,ϕ respectively, the convergence of the Fred-

holm determinants follows by dominated convergence similarly to the earlier proofs.

Proof of Proposition 5.4. By definition (5.9), we can write the kernel K ′
x,∞ on L2(V ∞

0,π−ϕ)
as

K ′
x,∞(w,w′) = (AB)(w,w′) (7.6)

where

A(w, λ) = e−χw3/3+cφ′w2/2−βxw+λw

B(λ, w′) =
1

2πi

∫

V ∞
0,ϕ

dz

z − w′
eχz

3/3−cφ′z2/2+βxz−λz
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with λ ∈ R+ and the composition AB on the right-hand side of (7.6) is also meant in
L2(R+). The equality (7.6) can be seen since

1

z − w
=

∫ ∞

0

dλ e−λ(z−w)

as long as Re(z − w) > 0.
Hence we can write

det(1−K ′
x,∞)L2(V ∞

0,π−ϕ)
= det(1−AB)L2(V ∞

0,π−ϕ)
= det(1− BA)L2(R+)

with

(BA)(y, y′) =

∫ ∞

0

dλ
1

(2πi)2

∫

V ∞
0,π−ϕ

dw

∫

V ∞
0,ϕ

dz
eχz

3/3−cφ′z2/2+(βx−y−λ)z

eχw3/3−cφ′w2/2+(βx−y′−λ)w
.

Using the general formula

1

2πi

∫

V ∞
0,ϕ

exp

(
a
z3

3
+ bz2 + cz

)
dz = a−1/3 exp

(
2b3

3a2
−

bc

a

)
Ai

(
b2

a4/3
−

c

a1/3

)
,

we get that

(BA)(y, y′) = χ−1/3e−cφ′(y−y′)/(2χ)

∫ ∞

0

dλAi

(
y

χ1/3
+ x+ λ

)
Ai

(
y′

χ1/3
+ x+ λ

)

by (4.4) and after the change of variable λ → χ1/3λ. After conjugation by the exponential
prefactor and by rescaling the Fredholm determinant, we get that

det(1− BA)L2(R+) = det(1−KAi,x)L2(R+) = FGUE(x)

as required.
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