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Abstract

We consider a variant of self-repelling random walk on the integer lattice Z where
the self-repellence is defined in terms of the local time on oriented edges. The long-
time asymptotic scaling of this walk is surprisingly different from the asymptotics of
the similar process with self-repellence defined in terms of local time on unoriented
edges, examined in [10]. We prove limit theorems for the local time process and
for the position of the random walker. The main ingredient is a Ray – Knight-type
of approach. At the end of the paper, we also present some computer simulations
which show the strange scaling behaviour of the walk considered.
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1 Introduction

The true self-avoiding random walk on Z is a nearest neighbour random walk, which
is locally pushed in the direction of the negative gradient of its own local time (i.e.
occupation time measure). For precise formulation and historical background, see [1], [8],
[7], [10], the survey papers [12], [13], and/or further references cited there. In [10], the
edge version of the problem was considered, where the walk is pushed by the negative
gradient of the local time spent on unoriented edges. There, precise asymptotic limit
theorems were proved for the local time process and position of the random walker at
late times, under space scaling proportional to the 2/3-rd power of time. For a survey of
these and related results, see [12], [13], [9]. Similar results for the site version have been
obtained recently, [14]. In the present paper, we consider a similar problem but with
the walk being pushed by the local differences of occupation time measures on oriented
rather than unoriented edges. The behaviour is phenomenologically surprisingly different
from the unoriented case: we prove limit theorems under square-root-of-time (rather than
time-to-the-2

3
) space-scaling but the limit laws are not the usual diffusive ones. Our model

belongs to the wider class of self-interacting random walks which attracted attention in
recent times, see e.g. [5], [3], [2], [15], [4] for a few other examples. In all these cases
long memory of the random walk or diffusion is induced by a self-interaction mechanism
defined locally in a natural way in terms of the local time (or occupation time) process.
The main challenge is to understand the asymptotic scaling limit (at late times) of the
process.

Let w be a weight function which is non-decreasing and non-constant:

w : Z → R+, w(z + 1) ≥ w(z), lim
z→∞

(
w(z) − w(−z)

)
> 0. (1)

We will consider a nearest neighbour random walk X(n), n ∈ Z+ := {0, 1, 2, . . . }, on
the integer lattice Z, starting from X(0) = 0, which is governed by its local time process
through the function w in the following way. Denote by ℓ±(n, k), (n, k) ∈ Z+ × Z, the
local time (that is: its occupation time measure) on oriented edges:

ℓ±(n, k) := #{0 ≤ j ≤ n − 1 : X(j) = k, X(j + 1) = k ± 1},

where #{. . . } denotes cardinality of the set. Note that

ℓ+(n, k) − ℓ−(n, k + 1) =





+1 if 0 ≤ k < X(n),

−1 if X(n) ≤ k < 0,

0 otherwise.

(2)

We will also use the notation

ℓ(n, k) := ℓ+(n, k) + ℓ−(n, k + 1) (3)

for the local time spent on the unoriented edge 〈k, k + 1〉.
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Our random walk is governed by the evolution rules

P
(
X(n + 1) = X(n) ± 1 | Fn

)
=

ω±
n

ω+
n + ω−

n

(4)

with
ω±

n = w(∓(ℓ+(n,X(n)) − ℓ−(n,X(n)))),

and
ℓ±(n + 1, k) = ℓ±(n, x) + 11{X(n) = k, X(n + 1) = k ± 1}. (5)

That is: at each step, the walk prefers to choose that oriented edge pointing away from
the actually occupied site which had been less visited in the past. In this way balancing
or smoothing out the roughness of the occupation time measure. We prove limit theorems
for the local time process and for the position of the random walker at large times under
diffusive scaling, that is: essentially for n−1/2ℓ(n, ⌊n1/2x⌋) and n−1/2X(n), but with limit
laws strikingly different from usual diffusions. See Theorem 1 and 2 for precise statement.

The paper is further organized as follows. In Section 2, we formulate the main results.
In Section 3, we prove Theorem 1 about the convergence in sup-norm and in probability
of the local time process stopped at inverse local times. As a consequence, we also prove
convergence in probability of the inverse local times to deterministic values. In Section
4, we convert the limit theorems for the inverse local times to local limit theorems for
the position of the random walker at independent random stopping times of geometric
distribution with large expectation. Finally, in Section 5, we present some numerical
simulations of the position and local time processes with particular choices of the weight
function w(k) = exp(βk).

2 The main results

As in [10], the key to the proof is a Ray – Knight-approach. Let

T±
j,r := min{n ≥ 0 : ℓ±(n, j) ≥ r}, j ∈ Z, r ∈ Z+

be the so called inverse local times and

Λ±
j,r(k) := ℓ(T±

j,r, k) = ℓ+(T±
j,r, k) + ℓ−(T±

j,r, k + 1), j, k ∈ Z, r ∈ Z+ (6)

the local time sequence (on unoriented edges) of the walk stopped at the inverse local
times. We denote by λ±

j,r and ρ±
j,r the leftmost, respectively, the rightmost edges visited

by the walk before the stopping time T±
j,r:

λ±
j,r := inf{k ∈ Z : Λ±

j,r(k) > 0},

ρ±
j,r := sup{k ∈ Z : Λ±

j,r(k) > 0}.

The next proposition states that the random walk is recurrent in the sense that it
visits infinitely often every site and edge of Z.
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Proposition 1. Let j ∈ Z and r ∈ Z+ be fixed. We have

max

{
T±

j,r , ρ±
j,r − λ±

j,r , sup
k

Λ±
j,r(k)

}
< ∞

almost surely.

Actually, we will see it from the proofs of our theorems that the quantities in Proposi-
tion 1 are finite, and much stronger results are true for them, so we do not give a separate
proof of this statement.

2.1 Limit theorem for the local time process

The main result concerning the local time process stopped at inverse local times is the
following:

Theorem 1. Let x ∈ R and h ∈ R+ be fixed. Then

A−1λ±
⌊Ax⌋,⌊Ah⌋

P−→ −|x| − 2h, (7)

A−1ρ±
⌊Ax⌋,⌊Ah⌋

P−→ |x| + 2h, (8)

and
sup
y∈R

∣∣∣A−1Λ±
⌊Ax⌋,⌊Ah⌋(⌊Ay⌋) − (|x| − |y| + 2h)+

∣∣∣ P−→ 0 (9)

as A → ∞.

Note that

T±
j,r =

ρ±j,r∑

k=λ±
j,r

Λ±
j,r(k).

Hence, it follows immediately from Theorem 1 that

Corollary 1. With the notations of Theorem 1,

A−2T±
⌊Ax⌋,⌊Ah⌋

P−→ (|x| + 2h)2 (10)

as A → ∞.

Theorem 1 and Corollary 1 will be proved in Section 3.

Remark: Note that the local time process and the inverse local times converge in proba-
bility to deterministic objects rather than converging weakly in distribution to genuinely
random variables. This makes the present case somewhat similar to the weakly reinforced
random walks studied in [11].
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2.2 Limit theorem for the position of the walker

According to the arguments in [10], [12], [13], from the limit theorems

A−1/νT±
⌊Ax⌋,⌊A(1−ν)/νh⌋

⇒ Tx,h

valid for any (x, h) ∈ R × R+, one can essentially derive the limit theorem for the one-
dimensional marginals of the position process:

A−νX(⌊At⌋) ⇒ X (t).

Indeed, the summation arguments, given in detail in the papers quoted above, indicate
that

ϕ(t, x) := 2
∂

∂t

∫ ∞

0

P
(
Tx,h < t

)
dh

is the good candidate for the density of the distribution of X (t), with respect to Lebesgue-
measure. The scaling relation

A1/νϕ(At,A1/νx) = ϕ(t, x) (11)

clearly holds. In some cases (see e.g. [10]) it is not trivial to check that x 7→ ϕ(t, x)
is a bona fide probability density of total mass 1. (However, a Fatou-argument easily
shows that its total mass is not more than 1.) But in our present case, this fact drops
out from explicit formulas. Indeed, the weak limits (10) hold, which, by straightforward
computation, imply

ϕ(t, x) =
1

2
√

t
11{|x| ≤

√
t}.

Actually, in order to prove limit theorem for the position of the random walker, some
smoothening in time is needed, which is realized through the Laplace-transform. Let

ϕ̂(s, x) := s

∫ ∞

0

e−stϕ(t, x) dt =
√

sπ(1 − F (
√

2s|x|))

where

F (x) :=
1√
2π

∫ x

−∞

e−y2/2 dy

is the standard normal distribution function.
We prove the following local limit theorem for the position of the random walker

stopped at an independent geometrically distributed stopping time of large expectation:

Theorem 2. Let s ∈ R+ be fixed and θs/A a random variable with geometric distribution

P
(
θs/A = n

)
= (1 − e−s/A)e−sn/A (12)

which is independent of the random walk X(n). Then, for almost all x ∈ R,

A1/2
P

(
X(θs/A) = ⌊A1/2x⌋

)
→ ϕ̂(s, x)

as A → ∞.
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From the above local limit theorem, the integral limit theorem follows immediately:

lim
A→∞

P
(
A−1/2X(θs/A) < x

)
=

∫ x

−∞

ϕ̂(s, y) dy.

From (7) and (8), the tightness of the distributions (A−1/2X(⌊At⌋))A≥1 follows easily.
Theorem 2 yields that if the random walk X(·) has any scaling limit, then

A−1/2X(⌊At⌋) =⇒ UNI(−
√

t,
√

t) (13)

as A → ∞ holds where UNI(−
√

t,
√

t) stands for the uniform distribution on the interval
(−

√
t,
√

t).
The proof of Theorem 2 is presented in Section 4.

3 Proof of Theorem 1

The proof is organized as follows. We introduce independent auxiliary Markov-chains
associated to the vertices of Z in such a way that the value of the local time at the edges
can be expressed with a sum of such Markov-chains. It turns out that the auxiliary
Markov-chains converge exponentially fast to their common unique stationary distribu-
tion. It allows us to couple the local time process of the self-repelling random walk with
the sum of i.i.d. random variables. The coupling yields that the law of large numbers for
i.i.d. variables can be applied for the behaviour of the local time, with high probability.
The coupling argument breaks down when the local time approaches 0. We show in
Subsection 3.4, how to handle this case.

Let
Lj,r(k) := ℓ+(T+

j,r, k). (14)

Mind that due to (2), (3) and (6)
∣∣Λ+

j,r(k) − 2Lj,r(k)
∣∣ ≤ 1. (15)

We give the proof of (7), (8) and

sup
y∈R

∣∣∣∣A
−1L⌊Ax⌋,⌊Ah⌋(⌊Ay⌋) −

( |x| − |y|
2

+ h

)

+

∣∣∣∣
P−→ 0

as A → ∞, which, due to (15), implies (9) for Λ+. The case of Λ− can be done similarly.
Without loss of generality, we can suppose that x ≤ 0.

3.1 Auxiliary Markov-chains

First we define the Z-valued Markov-chain l 7→ ξ(l) with the following transition proba-
bilities:

P
(
ξ(l + 1) = x + 1 | ξ(l) = x

)
=

w(−x)

w(x) + w(−x)
=: p(x), (16)

P
(
ξ(l + 1) = x − 1 | ξ(l) = x

)
=

w(x)

w(x) + w(−x)
=: q(x). (17)
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Let τ±(m), m = 0, 1, 2, . . . be the stopping times of consecutive upwards/downwards
steps of ξ:

τ±(0) := 0, τ±(m + 1) := min {l > τ±(m) : ξ(l) = ξ(l − 1) ± 1} .

Then, clearly, the processes

η+(m) := −ξ(τ+(m)), η−(m) := +ξ(τ−(m))

are themselves Markov-chains on Z. Due to the ± symmetry of the process ξ, the Markov-
chains η+ and η− have the same law. In the present subsection, we simply denote them
by η neglecting the subscripts ±. The transition probabilities of this process are

P (x, y) := P
(
η(m + 1) = y | η(m) = x

)
=

{ ∏y
z=x p(z)q(y + 1) if y ≥ x − 1,

0 if y < x − 1.
(18)

In the following lemma, we collect the technical ingredients of the forthcoming proof
of our limit theorems. We identify the stationary measure of the Markov-chain η, state
exponential tightness of the distributions of

(
η(m)

∣∣ η(0) = 0
)

uniformly in m and expo-
nentially fast convergence to stationarity.

Lemma 1. (i) The unique stationary measure of the Markov-chain η is

ρ(x) = Z−1

⌊|2x+1|/2⌋∏

z=1

w(−z)

w(z)
with Z := 2

∞∑

x=0

x∏

z=1

w(−z)

w(z)
. (19)

(ii) There exist constants C < ∞, β > 0 such that for all m ∈ N and y ∈ Z

Pm(0, y) ≤ Ce−β|y|. (20)

(iii) There exist constants C < ∞ and β > 0 such that for all m ≥ 0
∑

y∈Z

|Pm(0, y) − ρ(y)| < Ce−βm. (21)

Remark on notation: We shall use the generic notation

something ≤ Ce−βY

for exponentially strong bounds. The constants C < ∞ and β > 0 will vary at different
occurrences and they may (and will) depend on various fixed parameters but of course
not on quantities appearing in the expression Y . There will be no cause for confusion.

Note that for any choice of the weight function w

+∞∑

x=−∞

xρ(x) = −1

2
. (22)
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Proof of Lemma 1. The following proof is reminiscent of the proof of Lemmas 1 and 2
from [10]. It is somewhat streamlined and weaker conditions are assumed.

(i) The irreducibility of the Markov-chain η is straightforward. One can easily rewrite
(18), using (19), as

P (x, y) =

{
1

ρ(x)

(
p(x)

∏y+1
z=x+1 q(z)

)
ρ(y) if y ≥ x − 1,

0 if y < x − 1.

It yields that ρ is indeed the stationary distribution for η, because

∑

x∈Z

ρ(x)P (x, y) =

(
∑

x≤y+1

p(x)

y+1∏

z=x+1

q(z)

)
ρ(y) = ρ(y)

where the last equality holds, because limz→−∞

∏y+1
u=z q(u) = 0.

(ii) The stationarity of ρ implies that

P n(0, y) ≤ ρ(y)

ρ(0)
=

⌊|2y+1|/2⌋∏

z=1

w(−z)

w(z)
≤ Ce−β|y|. (23)

The exponential bound follows from (1). As a consequence, we get finite expectations in
the forthcoming steps of the proofs below.

(iii) Define the stopping times

θ+ = min{n ≥ 0 : η(n) ≥ 0},

θ0 = min{n ≥ 0 : η(n) = 0}.
From Theorem 6.14 and Example 5.5(a) of [6], we can conclude the exponential

convergence (21), if for some γ > 0

E
(
exp(γθ0) | η(0) = 0

)
< ∞ (24)

holds.
The following decomposition is true, because the Markov-chain η can jump at most

one step to the left.

E
(
exp(γθ0) | η(0) = 0

)
= eγ

∑

y≥0

P (0, y)E
(
exp(γθ0) | η(0) = y

)

+ eγP (0,−1)
∑

y≥0

E
(
exp(γθ+)11{η(θ+) = y} | η(0) = −1

)
E

(
exp(γθ0) | η(0) = y

)
.

(25)

One can easily check that, given η(0) = −1, the random variables θ+ and η(θ+) are
independent, and P

(
η(θ+) = y | η(0) = −1

)
= p(0)p(1) . . . p(y)q(y + 1) = P (0, y), by

definition. Hence for y ≥ 0

E
(
exp(γθ+)11{η(θ+) = y} | η(0) = −1

)
=

P (0, y)

1 − P (0,−1)
E

(
exp(γθ+) | η(0) = −1

)
.

(26)
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Combining (25) and (26) gives us

E
(
exp(γθ0) | η(0) = 0

)

= eγ
∑

y≥0

P (0, y)E
(
exp(γθ0) | η(0) = y

) (
1 +

P (0,−1)

1 − P (0,−1)
E

(
exp(γθ+) | η(0) = −1

))
.

(27)

So, in order to get the result, we need to prove that for properly chosen γ > 0

E
(
exp(γθ+) | η(0) = −1

)
< ∞ (28)

and
E

(
exp(γθ0) | η(0) = y

)
≤ Ce

β
2
y for y ∈ Z+ (29)

where β is the constant in (20).
In order to make the argument shorter, we make the assumption

w(−1) < w(+1),

or, equivalently,

p(1) =
w(−1)

w(+1) + w(−1)
<

1

2
<

w(+1)

w(+1) + w(−1)
= q(1).

The proof can be easily extended for the weaker assumption (1), but the argument is
somewhat longer.

First, we prove (28). Let x < 0 and x − 1 ≤ y < 0. Then the following stochastic
domination holds:

∑

z≥y

P (x, z) =

y∏

z=x

p(z) ≥ p(−1)y−x+1 = q(1)y−x+1. (30)

Let ζ(r), r = 1, 2, . . . be i.i.d. random variables with geometric law:

P
(
ζ = z

)
= q(1)z+1p(1), z = −1, 0, 1, 2, . . . ,

and

θ̃ := min
{
t ≥ 0 :

t∑

s=1

ζ(s) ≥ 1
}
.

Note that E
(
ζ
)

> 0. From the stochastic domination (30), it follows that for any t ≥ 0

P
(
θ+ > t | η(0) = −1

)
≤ P

(
θ̃ > t

)
,

and hence
E

(
exp(γθ+) | η(0) = −1

)
≤ E

(
exp(γθ̃)

)
< ∞

8



for sufficiently small γ > 0.
Now, we turn to (29). Let now 0 ≤ x − 1 ≤ y. In this case, the following stochastic

domination is true:
∑

z≥y

P (x, z) =

y∏

z=x

p(z) ≤ p(1)y−x+1. (31)

Let now ζ(r), r = 1, 2, . . . be i.i.d. random variables with geometric law:

P
(
ζ = z

)
= p(1)z+1q(1), z = −1, 0, 1, 2, . . . ,

and for y ≥ 0

θ̃y := min
{
t ≥ 0 :

t∑

s=1

ζ(s) ≤ −y
}
.

Note that now E
(
ζ
)

< 0. From the stochastic domination (31), it follows now that with
y ≥ 0, for any t ≥ 0

P
(
θ0 > t | η(0) = y

)
≤ P

(
θ̃y > t

)
,

and hence
E

(
exp(γθ) | η(0) = y

)
≤ E

(
exp(γθ̃y)

)
≤ Ce

β
2
y,

for sufficiently small γ > 0.

3.2 The basic construction

For j ∈ Z, denote the inverse local times (times of jumps leaving site j ∈ Z)

γj(l) := min
{
n : ℓ+(n, j) + ℓ−(n, j) ≥ l

}
, (32)

and

ξj(l) := ℓ+(γj(l), j) − ℓ−(γj(l), j), (33)

τj,±(0) := 0, τj,±(m + 1) := min {l > τj,±(m) : ξj(l) = ξj(l − 1) ± 1} , (34)

ηj,+(m) := −ξj(τj,+(m)), ηj,−(m) := +ξj(τj,−(m)). (35)

The following proposition is the key to the Ray – Knight-approach.

Proposition 1. (i) The processes l 7→ ξj(l), j ∈ Z, are independent copies of the
Markov-chain l 7→ ξ(l), defined in Subsection 3.1, starting with initial conditions
ξj(0) = 0.

(ii) As a consequence: the processes k 7→ ηj,±(k), j ∈ Z, are independent copies of the
Markov-chain m 7→ η±(m), if we consider exactly one of ηj,+ and ηj,− for each j.
The initial conditions ηj,±(0) = 0.
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The statement is intuitively clear. The mathematical content of the driving rules (4)
of the random walk X(n) is exactly this: whenever the walk visits a site j ∈ Z, the
probability of jumping to the left or to the right (i.e. to site j − 1 or to site j + 1),
conditionally on the whole past, will depend only on the difference of the number of
past jumps from j to j − 1, respectively, from j to j + 1, and independent of what had
happened at other sites. The more lengthy formal proof goes through exactly the same
steps as the corresponding statement in [10]. We omit here the formal proof.

Fix now j ∈ Z− and r ∈ N. The definitions (14), (32), (33), (34) and (35) imply that

Lj,r(j) = r (36)

Lj,r(k + 1) = Lj,r(k) + 1 + ηk+1,−(Lj,r(k) + 1), j ≤ k < 0, (37)

Lj,r(k + 1) = Lj,r(k) + ηk+1,−(Lj,r(k)), 0 ≤ k < ∞, (38)

Lj,r(k − 1) = Lj,r(k) + ηk,+(Lj,r(k)), −∞ < k ≤ j, (39)

because ηk,±-s are defined in such a way that they are the differences of the local time at
two neighbouring vertices. The definition of the stopping (34) yields that the argument
of ηk,± is the value of the local time at k. Similar formulas are found for j ∈ Z+ and
r ∈ N.

Note that if Lj,r(k0) = 0 for some k0 ≥ 0 (respectively, for some k0 ≤ j) then
Lj,r(k) = 0 for all k ≥ k0 (respectively, for all k ≤ k0).

The idea of the further steps of proof can be summarized in terms of the above setup.
With fixed x ∈ R− and h ∈ R+, we choose j = ⌊Ax⌋ and r = ⌊Ah⌋ with the scaling
parameter A → ∞ at the end. We know from Lemma 1 that the Markov-chains ηj,±

converge exponentially fast to their stationary distribution ρ. This allows us to couple
efficiently the increments L⌊Ax⌋,⌊Ah⌋(k + 1) − L⌊Ax⌋,⌊Ah⌋(k) with properly chosen i.i.d.
random variables as long as the value of L⌊Ax⌋,⌊Ah⌋(k) > A1/2+ε and to use the law of
large numbers. This coupling does not apply when the value of L⌊Ax⌋,⌊Ah⌋(k) < A1/2+ε.
We prove that once the value of L⌊Ax⌋,⌊Ah⌋(k) drops below this threshold, L⌊Ax⌋,⌊Ah⌋(k)
hits zero (and sticks there) in o(A) time, with high probability. These steps of the proof
are presented in the next two subsections.

3.3 Coupling

We are in the context of the representation (36), (37), (38), (39) with j = ⌊Ax⌋, r = ⌊Ah⌋.
Due to Lemma 1, we can realize jointly the pairs of coupled processes

(
m 7→ (ηk,−(m), η̃k(m))

)
k>j

,
(
m 7→ (ηk,+(m), η̃k(m))

)
k≤j

(40)

with the following properties.

– The pairs of coupled processes with different k-indices are independent.
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– The processes
(
m 7→ ηk,−(m)

)
k>j

and
(
m 7→ ηk,+(m)

)
k≤j

are those of the previous

subsection. I.e. they are independent copies of the Markov-chain m 7→ η(m) with
initial conditions ηk,±(0) = 0.

– The processes
(
m 7→ η̃k(m)

)
k∈Z

are independent copies of the stationary process m 7→
η(m). I.e. these processes are initialized independently with P

(
η̃k(0) = x

)
= ρ(x) and

run independently of one another.

– The pairs of coupled processes m 7→ (ηk,±(m), η̃k(m)) are coalescing. This means the
following: we define the coalescence time

µk := inf{m ≥ 0 : ηk,±(m) = η̃k(m)}. (41)

Then, for m ≥ µk, the two processes stick together: ηk,±(m) = η̃(m). Mind that the
random variables µk, k ∈ Z are i.i.d.

– The tail of the distribution of the coalescence times decays exponentially fast:

P
(
µk > m

)
< Ce−βm. (42)

We define the processes k 7→ L̃j,r(k) similarly to the processes k 7→ Lj,r(k) in (36),
(37), (38), (39), with the η-s replaced by the η̃-s:

L̃j,r(j) = r

L̃j,r(k + 1) = L̃j,r(k) + 1 + η̃k+1,−(L̃j,r(k) + 1), j ≤ k < 0,

L̃j,r(k + 1) = L̃j,r(k) + η̃k+1,−(L̃j,r(k)), 0 ≤ k < ∞,

L̃j,r(k − 1) = L̃j,r(k) + η̃k,+(L̃j,r(k)), −∞ < k ≤ j.

Note that the increments of this process are independent with distribution

P
(
L̃j,r(k + 1) − L̃j,r(k) = z

)
= ρ(z − 1), j ≤ k < 0,

P
(
L̃j,r(k + 1) − L̃j,r(k) = z

)
= ρ(z), 0 ≤ k < ∞,

P
(
L̃j,r(k − 1) − L̃j,r(k) = z

)
= ρ(z), −∞ < k ≤ j.

Hence, from (22), it follows that for any K < ∞

sup
|y|≤K

∣∣∣A−1L̃⌊Ax⌋,⌊Ah⌋(⌊Ay⌋) −
(
(|x| − |y|)/2 + h

)∣∣∣ P−→ 0. (43)

Actually, by Doob’s inequality, the following large deviation estimate holds: for any
x ∈ R, h ∈ R+ and K < ∞ fixed

P
(

sup
|k|≤AK

∣∣∣L̃⌊Ax⌋,⌊Ah⌋(k) −
(
(A|x| − |k|)/2 + Ah

)∣∣∣ > A1/2+ε
)

< Ce−βA2ε

. (44)
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(The constants C < ∞ and β > 0 do depend on the fixed parameters x, h and K.)
Denote now

κ+
j,r := min{k ≥ j : Lj,r(k) 6= L̃j,r(k)},

κ−
j,r := max{k ≤ j : Lj,r(k) 6= L̃j,r(k)}.

Then, for k ≥ j:

P
(
κ+

j,r ≤ k + 1
)
− P

(
κ+

j,r ≤ k
)

=

= P
(
κ+

j,r = k + 1, L̃j,r(k) ≤ A1/2+ε
)

+ P
(
κ+

j,r = k + 1, L̃j,r(k) ≥ A1/2+ε
)

≤ P
(
L̃j,r(k) ≤ A1/2+ε

)
+ P

(
κ+

j,r = k + 1 | κ+
j,r > k, Lj,r(k) = L̃j,r(k) ≥ A1/2+ε

)
.

(45)

Similarly, for k ≤ j:

P
(
κ−

j,r ≥ k − 1
)
− P

(
κ−

j,r ≥ k
)

=

= P
(
κ−

j,r = k − 1, L̃j,r(k) ≤ A1/2+ε
)

+ P
(
κ−

j,r = k − 1, L̃j,r(k) ≥ A1/2+ε
)

≤ P
(
L̃j,r(k) ≤ A1/2+ε

)
+ P

(
κ−

j,r = k − 1 | κ−
j,r < k, Lj,r(k) = L̃j,r(k) ≥ A1/2+ε

)
.

(46)

Now, from (44), it follows that for |k| ≤ A(|x| + 2h) − 4A1/2+ε

P
(
L̃j,r(k) ≤ A1/2+ε

)
≤ Ce−βA2ε

. (47)

On the other hand, from (42),

P
(
κ+

j,r = k + 1 | κ+
j,r > k, Lj,r(k) = L̃j,r(k) ≥ A1/2+ε

)
≤ Ce−βA1/2+ε

, (48)

P
(
κ−

j,r = k − 1 | κ−
j,r < k, Lj,r(k) = L̃j,r(k) ≥ A1/2+ε

)
≤ Ce−βA1/2+ε

(49)

with some constants C < ∞ and β > 0, which do depend on all fixed parameters and
may vary from formula to formula.

Putting together (45), (47), (48), respectively, (46), (47), (49) and noting that P
(
κ+

j,r =

j
)

= 0, we conclude that

P
(
min

{
|k| : L⌊Ax⌋,⌊Ah⌋(k) 6= L̃⌊Ax⌋,⌊Ah⌋(k)

}
≤ A(|x| + 2h) − 4A1/2+ε

)
≤ CAe−βA2ε

,
(50)

P
(
L⌊Ax⌋,⌊Ah⌋(±⌊A(|x| + 2h) − 4A1/2+ε⌋) ≥ 3A1/2+ε

)
≤ Ce−βA2ε

. (51)
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3.4 Hitting of 0

It follows from Lemma 1 that all moments of the distributions P n(0, ·) converge to the
corresponding moments of ρ. In particular, for any δ > 0 there exists nδ < ∞, such that

∑

x∈Z

P n(0, x)x ≤ − 1

2 + δ

holds if n ≥ nδ.
Consider now the Markov-chains defined by (38) or (39) (the two are identical in law):

L(k + 1) = L(k) + ηk+1(L(k)), L(0) = r ∈ N,

where m 7→ ηk(m), k = 1, 2, 3, . . . are i.i.d. copies of the Markov-chain m 7→ η(m) with
initial conditions ηk(0) = 0. Define the stopping times

τx := min{k : L(k) ≤ x}, x = 0, 1, 2, . . . .

Lemma 2. For any δ > 0 there exists Kδ < ∞ such that for any r ∈ N:

E
(
τ0 | L(0) = r

)
≤ (2 + δ)r + Kδ.

Proof. Clearly,

E
(
τ0 | L(0) = r

)
≤ E

(
τnδ

| L(0) = r
)

+ max
0≤s≤nδ

E
(
τ0 | L(0) = s

)
.

Now, by optional stopping,

E
(
τnδ

| L(0) = r
)
≤ (2 + δ)r,

and obviously,

Kδ := max
0≤s≤nδ

E
(
τ0 | L(0) = s

)
< ∞.

In particular, choosing δ = 1 and applying Markov’s inequality, it follows that

P

(
ρ+
⌊Ax⌋,⌊Ax⌋ > A(|x| + 2h) + A1/2+2ε

∣∣∣ L⌊Ax⌋,⌊Ah⌋(⌊A(|x| + 2h) − 4A1/2+ε⌋) ≤ 3A1/2+ε
)

≤ 9A1/2+ε + K1

5A1/2+2ε
< 2A−ε,

(52)

and similarly,

P

(
λ+
⌊Ax⌋,⌊Ax⌋ < −A(|x| + 2h) − A1/2+2ε

∣∣∣ L⌊Ax⌋,⌊Ah⌋(−⌊A(|x| + 2h) + 4A1/2+ε⌋) ≤ 3A1/2+ε
)

≤ 9A1/2+ε + K1

5A1/2+2ε
< 2A−ε.

(53)

Eventually, Theorem 1 follows from (43), (50), (51), (52) and (53).
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4 Proof of the theorem for the position of the random

walker

First, we introduce the following notations. For n ∈ N and k ∈ Z, let

P (n, k) := P
(
X(n) = k

)

be the distribution of the position of the random walker. For s ∈ R+,

R(s, k) := (1 − e−s)
∞∑

n=0

e−snP (n, k) (54)

is the distribution of X(θs) where θs has geometric distribution (12) and it is independent
of X(n).

Also (11) tells us that the proper definition of the rescaled distribution is

ϕA(t, x) := A1/2P (⌊At⌋, ⌊A1/2x⌋),

if t ∈ R+ and x ∈ R. Let

ϕ̂A(s, x) := A1/2R(A−1s, ⌊A1/2x⌋), (55)

which is asymptotically the Laplace-transform of ϕA as A → ∞.
With these definitions, the statement of Theorem 2 is equivalent to

ϕ̂A(s, x) → ϕ̂(s, x),

which is proved below.
We will need the Laplace-transform

ρ̂(s, x, h) = sE
(
exp (−s Tx,h)

)
= se−s(|x|+2h)2 ,

for which

ϕ̂(s, x) = 2

∫ ∞

0

ρ̂(s, |x|, h) dh

holds.

Proof of Theorem 2. Fix x ≥ 0. We can proceed in the case x ≤ 0 similarly. We start
with the identity

P (n, k) = P
(
Xn = k

)
=

∞∑

m=0

(
P

(
T+

k−1,m = n
)

+ P
(
T−

k+1,m = n
))

, (56)

which is easy to check. From the definitions (54) and (55),
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ϕ̂A(s, x) =
1 − e−s/A

s/A
s

∞∑

n=0

1√
A

e−ns/AP (n, ⌊A1/2x⌋)

=
1 − e−s/A

s/A
s

∞∑

n=0

1√
A

(
E

(
e
−sA−1T+

⌊A1/2x⌋−1,n
)

+ E
(
e
−sA−1T−

⌊A1/2x⌋+1,n
))

,

(57)

where we used (56) in the second equality. Let

ρ̂±
A(s, x, h) = sE

(
exp

(
− s

A
T±
⌊A1/2x⌋,⌊A1/2h⌋

))
.

Then (57) can be written as

ϕ̂A(s, x) =
1 − e−s/A

s/A

∫ ∞

0

(
ρ̂+

A(s, x − A−1/2, h) + ρ̂−
A(s, x + A−1/2, h)

)
dh. (58)

It follows from (10) that for all s > 0, x ∈ R and h > 0,

ρ̂±
A(s, x, h) → ρ̂(s, x, h)

as A → ∞. Applying Fatou’s lemma in (58) yields

lim inf
A→∞

ϕ̂A(s, x) ≥ 2

∫ ∞

0

ρ̂(s, x, h) dh = ϕ̂(s, x).

If we use Fatou’s lemma again, we get

1 =

∫ ∞

−∞

ϕ̂(s, x) dx ≤
∫ ∞

−∞

lim inf
A→∞

ϕ̂A(s, x) dx ≤ lim inf
A→∞

∫ ∞

−∞

ϕ̂A(s, x) dx = 1,

which gives for all s ∈ R that

ϕ̂(s, x) = lim inf
A→∞

ϕ̂A(s, x) (59)

holds for almost all x ∈ R. Note that (59) is also true for any subsequence Ak → ∞,
which implies the assertion of Theorem 2.

5 Computer simulations

We have prepared computer simulations with exponential weight functions w(k) = 2k

and w(k) = 10k.
Note that the limit objects in our theorems do not depend on the choice of the weight

function w. Therefore, we expect that the behaviour of the local time and the trajectories
is qualitatively similar, and we will find only quantitative differences.
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Figure 1: The local time process of the random walk with w(k) = 2k and w(k) = 10k

Figure 2: The trajectories of the random walk with w(k) = 2k and w(k) = 10k
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Figure 1 shows the local time process of the random walk after approximately 106

steps. More precisely, we have plotted the value of Λ+
100,800 with w(k) = 2k and w(k) = 10k

respectively. One can see that the limits are the same in the two cases – according to
Theorem 1 – but the rate of convergence does depend on the choice of w. We can
conclude the empirical rule that the faster the weight function grows at infinity, the
faster the convergence of the local time process is.

The difference between the trajectories of random walks generated with various weights
is more conspicuous. On Figure 2, the trajectories of the walks with w(k) = 2k and
w(k) = 10k are illustrated, respectively. The number of steps is random, it is about 106.
The data comes from the same sample as that shown on Figure 1.

The first thing that we can observe on Figure 2 is that the trajectories draw a sharp
upper and lower hull according to

√
t and −

√
t, which agrees with our expectations after

(13). On the other hand, the trajectories oscillate very heavily between their extreme
values, especially in the case w(k) = 10k, there are almost but not quite straight crossings
from

√
t to −

√
t and back. It shows that there is no continuous scaling limit of the self-

repelling random walk with directed edges.
The shape of the trajectories are slightly different in the cases w(k) = 2k and w(k) =

10k. The latter has heavier oscillations, because it corresponds to a higher rate of growth
of the weight function. Note that despite this difference in the oscillation, the large scale
behaviour is the same on the two pictures on Figure 2. The reason for this is that if
the random walk explores a new region, e.g. it exceeds its earlier maximum, then the
probability of the reversal does not depend on w, since the both outgoing edges have
local time 0. It can be a heuristic argument, why the upper and lower hulls

√
t and −

√
t

are universal.
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