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Dedicated to Sándor Csörgő on the occasion of his 60th birthday

Abstract

Let B(t), X(t) and Y (t) be independent standard 1d Brownian motions. Define
X

+(t) and Y
−(t) as the trajectories of the processes X(t) and Y (t) pushed upwards

and, respectively, downwards by B(t), according to Skorohod-reflection. In the
recent paper [8] Jon Warren proves inter alia that Z(t) := X

+(t)−Y
−(t) is a three

dimensional Bessel-process. In this note we present an alternative, elementary
proof of this fact.

1 Introduction

The study of 1d Brownian trajectories pushed up or down by Skorohod-reflection on
some other Brownian trajectories (running backwards in time) was initiated in [5] and
motivated in [7] by the construction of the object what is today called the Brownian
Web, see [3]. It turns out that these Brownian paths, reflected on one another, have very
interesting, sometimes surprising properties. For further studies of Skorohod-reflection
of Brownian paths on one another see also [6], [1], [8] etc. In particular, in [8], Warren
considers two interlaced families of Brownian paths with paths belonging to the sec-
ond family reflected off paths belonging to the first (in Skorohod’s sense) and derives a
determinantal formula for the distribution of coalescing Brownian motions.

A particular case of Warren’s formula is the following: fix a Brownian path and let two
other Brownian paths be pushed upwards and, respectively, downwards by Skororhod-
reflection on the trajectory of the first one. The difference of the last two will be a three
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dimensional Bessel-process. In the present note we give an alternative, elementary proof
of this fact.

1.1 Skorohod-reflection

Let T ∈ (0,∞) and b, x : [0, T ) → R be continuous functions. Assume x(0) ≥ b(0).
The construction of the following proposition is due to Skorohod. Its proof can be found
either in [4] (see Lemma 2.1 in Chapter VI) or in [5] (see Lemma 2 in Section 2.1).

Proposition 1. (1) There exists a unique continuous function xb↑ : [0, T ) → R with the
following properties:

– The function xb↑ − b is non-negative.

– The function xb↑ − x is non-decreasing.

– The function xb↑ − x increases only when xb↑ = b. That is

∫ T

0

11{xb↑(t) 6= b(t)} d(xb↑(t) − x(t)) = 0.

(2) The function t 7→ xb↑(t) is given by the construction

xb↑(t) = x(t) + sup
0≤s≤t

(
x(s) − b(s)

)
−
.

(3) The map C([0, T )) × C([0, T )) ∋
(
b(·), x(·)

)
7→

(
b(·), xb↑(·)

)
∈ C([0, T )) × C([0, T ))

is continuous in supremum distance.

We call the function t 7→ xb↑(t) the upwards Skorohod-reflection of x(·) on b(·). As
it is remarked in [5], the term Skorohod-pushup of x(·) by b(·) would be more adequate.
Skorohod-reflection on paths b(t) = const. plays a fundamental role in the proper formu-
lation and proof of Tanaka’s formula, see Chapter VI of [4].

The downwards Skorohod-reflection or Skorohod-pushdown is defined for continuous
functions b, y : [0, T ) 7→ R with y(0) ≤ b(0) by

yb↓ := −
(
(−y)(−b)↑

)
, yb↓(t) = y(t) − sup

0≤s≤t

(
y(s) − b(s)

)
+
.

Given three continuous trajectories b, x, y : [0, T ) → R with y(0) ≤ b(0) ≤ x(0), the
map C([0, T ))×C([0, T ))×C([0, T )) ∋ (b(·), x(·), y(·)) 7→ (b(·), xb↑(·), yb↓(·)) ∈ C([0, T ))×
C([0, T )) × C([0, T )) is clearly continuous in supremum distance.

1.2 The result

Let B(t), X(t) and Y (t) be independent standard 1d Brownian motions starting from 0
and define
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X+(t) := XB↑(t), X̂(t) := X+(t) − B(t), (1)

Y −(t) := YB↓(t), Ŷ (t) := −Y −(t) + B(t). (2)

We are interested in the difference process

Z(t) := X+(t) − Y −(t) = X̂(t) + Ŷ (t). (3)

It is straightforward that 2−1/2X̂(t) and 2−1/2Ŷ (t) are both standard reflected Brownian
motions. They are, of course, strongly dependent.

The following fact is a particular consequence of the main results in [8]:

Theorem. The process 2−1/2Z(t) is BES3, that is a standard 3d Bessel-process,

dZ(t) =
1

2

1

Z(t)
dt +

1√
2

dW (t), Z(0) = 0.

In the next section we present an elementary proof of this fact.

2 Proof

2.1 Discrete Skorohod-reflection

Define the following square lattices embedded in R × R:

L := {(t, x) ∈ Z × Z : t + x is even}, L∗ := {(t, x) ∈ Z × Z : t + x is odd}. (4)

In both of the lattices the points (t1, x1) and (t2, x2) are connected with an edge if and
only if |t1 − t2| = |x1 − x2| = 1. Note that L and L∗ are Whitney-duals of each other.

We define the discrete analogue of the Skorohod-reflection in L and L∗. Later on, we
say that the function y : [0, T ]∩Z → Z is a walk in the lattice L or L∗ if the consecutive
elements of the sequence (0, y(0)), (1, y(1)), . . . , (T, y(T )) are edges in L or L∗.

Let b : [0, T ] ∩ Z → Z and x : [0, T ] ∩ Z → Z be two walks in the lattices L and L∗,
respectively. Assume that x(0) ≥ b(0). An analogue of Proposition 1 holds in this case,
but the proof is even easier.

Proposition 2. (1) There is a unique walk xb↑ : [0, T ]∩Z → Z in L∗ with the following
properties:

– The function xb↑ − b is non-negative.

– The function xb↑ − x is non-decreasing.

– The function xb↑ − x increases only when xb↑ = b + 1, i.e.

T∑

t=1

11{xb↑(t) − b(t) > 1}
[(

xb↑(t) − x(t))(xb↑(t − 1) − x(t − 1)
)]

= 0.

3



(2) The function t 7→ xb↑(t) can be expressed as

xb↑(t) = x(t) + sup
s∈[0,t]∩Z

(x(s) − b(s) − 1)−.

We call the function t 7→ xb↑(t) the discrete upwards Skorohod-reflection of x(·) on
b(·). The discrete downwards Skorohod-reflection is defined similarly. If y : [0, T ]∩Z → Z

is a walk in L and b : [0, T ] ∩ Z → Z is a walk in L∗ with y(0) ≤ b(0), then

yb↓ := −
(
(−y)(−b)↑

)
, yb↓(t) = y(t) − sup

s∈[0,t]∩Z

(y(s) − b(s) + 1)+.

In this paper, we use the same notation for the discrete Skorohod-reflection and the
continuous one (defined as Skorohod-reflection), but it will be always clear from the
context which is the adequate one.

2.2 Approximation of reflected Brownian motions

Let M(t) be a random walk on the lattice L with jumps from (t, x) to (t + 1, x + 1) or
(t + 1, x − 1) with probability 1/2 − 1/2 and M(0) = 0. We define the random walks
U(t) and L(t) on L∗ with the same transition probabilities, which are independent of
each other and of M(t). The initial values are U(0) = 1 and L(0) = −1. We extend our
walks for non-integral values of t linearly, so the trajectories are continuous.

Since all these three random walks have steps with mean 0 and variance 1, it follows
that (

M(nt)√
n

,
U(nt)√

n
,
L(nt)√

n

)
d

=⇒ (B(t), X(t), Y (t)) (n → ∞). (5)

We established earlier that the map (b(·), x(·), y(·)) 7→ (b(·), xb↑(·), yb↓(·)) is continuous
in supremum distance. From Donsker’s invariance principle (see e.g. Section 7.6 of [2]),
we conclude that

(
M(nt)√

n
,
UM(n·)↑(nt)√

n
,
LM(n·)↓(nt)√

n

)
d

=⇒ (B(t), X+(t), Y −(t)) (6)

in distribution as n → ∞. Note that we can use the discrete Skorohod-reflection to
transform U and L, because the difference is only the addition of 1, which vanishes in
the limit. At this point, it suffices to show that

UM(n·)↑(nt) − LM(n·)↑(nt)√
n

converges to a BES3 process.
For x, y ∈ Z

+ we define the stochastic matrix

Pxy =
y

x
·






1
2

if y = x,
1
4

if |y − x| = 1,

0 otherwise.
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It is well known that if Xn is a homogeneous Markov-chain with transition prob-
abilities (Pxy)x,y∈Z+ , then its diffusive limit is BES3, i.e. for every T > 0 the process

(n−1/2Xnt)0≤t≤T converges to a 3d Bessel-process in the Skorohod-topology as n → ∞.
So the proof of our theorem relies on the following.

Lemma 1. UM↑(t)−LM↓(t) is a Markov-chain and its transition matrix is (Pxy)x,y∈Z+,
where UM↑ and LM↓ are discrete Skorohod-reflections.

2.3 Markov-property of the distance of the two reflected walks

We introduce a different notation for the triple (M,UM↑, LM↓), which is just a linear
transformation. Let Kn := LM↓(n) be the position of the lower reflected walk. With the
definition Dn := 1

2
(UM↓(n) − LM↑(n)), the distance of the two reflected walks is 2Dn.

Pn := 1
2
(M(n) − LM↓(n) − 1), which means that the position of M related to the lower

walk is 2Pn + 1. The vector (Kn, Dn, Pn) is clearly a Markov-chain.
We are only interested in the coordinate Dn, which turns out to be also Markovian and

to have transition matrix (Pxy)x,y∈Z+ . To show this, we have to determine the conditional
distribution of Pn, because, in certain cases, it modifies the transition rules of Dn.

Lemma 2. The following identities hold:

P
(
Pn = x

∣∣ Dn
0

)
=

1

Dn

11(x ∈ {0, 1, . . . , Dn − 1}), (7)

P
(
Dn+1 = y

∣∣ Dn
0

)
= PDny, (8)

where Dn
0 means the sequence of variables D0, . . . , Dn.

Proof. The two identities (7), respectively, (8) of the lemma are proved by a common
induction on n. Since D0 = 1 and P0 = 0, the case n = 0 is trivial.

For the induction step, we have to enumerate the possible transitions of the Markov-
chain (Kn, Dn, Pn). For the sake of simplicity, we only prove for Dn = Dn−1 − 1, the
other cases are similar. It is easy to check that the transition (k, d, p) → (k + 1, d− 1, p)
has probability 1

8
11(p ∈ {0, 1, . . . , d − 2}); this will be called type A events. Type B

events are the transitions (k, d, p) → (k + 1, d− 1, p− 1), which happen with probability
1
8
11(p ∈ {1, 2, . . . , d − 1}). No other cases give d → d − 1.
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Proof of (7): Let x, y ∈ Z
+. We suppose that y = Dn−1 − 1.

P
(
Pn = x

∣∣ Dn = y,Dn
0

)
= (9)

=
∑

z∈Z

P
(
Pn = x

∣∣ Pn−1 = z,Dn = y,Dn−1
0

)
P

(
Pn−1 = z

∣∣ Dn = y,Dn−1
0

)

=
∑

z∈Z

P
(
Pn = x,Dn = y

∣∣ Pn−1 = z,Dn−1
0

)

P
(
Dn = y

∣∣ Pn−1 = z,Dn−1
0

) P
(
Pn−1 = z

∣∣ Dn = y,Dn−1
0

)

=
x+1∑

z=x

P
(
Pn = x,Dn = y

∣∣ Pn−1 = z,Dn−1
0

) P
(
Pn−1 = z

∣∣ Dn−1
0

)

P
(
Dn = y

∣∣ Dn−1
0

)

= P
(
Pn = x,Dn = y

∣∣ Pn−1 = x,Dn−1
0

) P
(
Pn−1 = x

∣∣ Dn−1
0

)

P
(
Dn = y

∣∣ Dn−1
0

)

+P
(
Pn = x,Dn = y

∣∣ Pn−1 = x + 1, Dn−1
0

) P
(
Pn−1 = x + 1

∣∣ Dn−1
0

)

P
(
Dn = y

∣∣ Dn−1
0

)

=
1

8
11(x ∈ {0, 1, . . . , Dn−1 − 2})

1
Dn−1

11(x ∈ {0, 1, . . . , Dn−1 − 1})
1
4

Dn−1−1
Dn−1

+
1

8
11(x ∈ {0, 1, . . . , Dn−1 − 2})

1
Dn−1

11(x ∈ {−1, 0, . . . , Dn−1 − 2})
1
4

Dn−1−1
Dn−1

=
1

Dn−1 − 1
11(x ∈ {0, . . . , Dn−1 − 2}) =

1

y
11(x ∈ {0, 1, . . . , y − 1}).

First, we used the law of total probability and the definition of conditional probability
and the identity P(E|F )/P(F |E) = P(E)/P(F ) on a conditional probability space. As
remarked at the beginning of this proof, there are only two cases to reduce the value
of D, so the sum has only two terms. Then, we used both inductional hypotheses to
evaluate the conditional probabilities. The remaining steps are obvious.

Proof of (8): We spell out the proof for Dn+1 = Dn − 1, the cases Dn+1 = Dn and
Dn+1 = Dn + 1 are similar.

P
(
Dn+1 = Dn − 1

∣∣ Dn
0

)
= (10)

=
Dn−1∑

x=0

P
(
Dn+1 = Dn − 1

∣∣ Pn = x,Dn
0

)
P

(
Pn = x

∣∣ Dn
0

)

=
Dn−1∑

x=0

(
1

8
11(x ∈ {0, 1, . . . , Dn − 2}) +

1

8
11(x ∈ {1, 2, . . . , Dn − 1})

)
1

Dn

=
1

4

Dn − 1

Dn

= PDn(Dn−1).

In the second step, only type A and B events can cause the transition Dn+1 = Dn − 1.
We applied part (1) of this lemma to evaluate the second conditional probability factor.
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As a consequence, we see that the distribution of Dn+1 conditioned on Dn
0 depends

only on Dn, which means that Dn is a Markov-chain with transition matrix (Pxy)x,y∈Z+ .
From this, the assertion of the theorem follows.
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