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Abstract

We consider N non-intersecting Brownian bridges conditioned to stay below a
fixed threshold. We consider a scaling limit where the limit shape is tangential to
the threshold. In the large N limit, we determine the limiting distribution of the
top Brownian bridge conditioned to stay below a function as well as the limiting
correlation kernel of the system. It is a one-parameter family of processes which
depends on the tuning of the threshold position on the natural fluctuation scale.
We also discuss the relation to the six-vertex model and to the Aztec diamond on
restricted domains.

1 Introduction

Non-intersecting walks have appeared naturally in the descriptions of many physical
systems as well as in mathematics. To mention just a few examples, the polynuclear
growth model (describing the growth of an interface) is based on the representation
as non-intersecting random walks [34,51], the Aztec diamond (and similar combinatorial
models of random tiling) has a similar mathematical description [9,36], Markov chains on
Young diagrams related to the Plancherel measure [7,12], and the evolution of eigenvalues
of random matrices as the GUE Dyson’s Brownian motion [26] can be expressed and
analyzed as non-intersecting Brownian motions [27,48]. The analysis was possible because
of the determinantal structure of correlation functions [6, 13, 27].

In this paper, we study non-intersecting Brownian motions starting and ending at
a fixed position with the extra constraint that they stay below a given threshold as
illustrated in Figure 1. The motivation for these investigations is twofold:

(a) The six-vertex model with domain wall boundary conditions (DWBC) can be
expressed as a system of non-intersecting line ensembles (in discrete space and time) [30]
with fixed starting and ending points. In particular, at the free-fermion line, there is a
mapping to the Aztec diamond [58] and thus by [36] we know that the border of the lines
are described in the limit of large system by the Airy2 process [51]. Recent studies of limit
shapes (not only for the free-fermion case) consider also geometries beyond the classical
DWBC [15–18]. This raised the natural question on the description of the limit process
for the border of the line ensemble for L-shaped domains or for pentagonal domains
obtained from a square by removing a triangle at the corner. Although we do not do the
analysis for this discrete case, if the removed triangular piece is tangential to the the limit
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Figure 1: Illustration of N = 50 non-intersecting Brownian motions conditioned to stay
below the black threshold.

shape of the lines for the DWBC, then under appropriate scaling, the limiting process
should be exactly the one we study in this paper. See Section 3 for further discussions.

(b) Non-intersecting Brownian motions have attracted a lot of interest also because of
their relations to the eigenvalues of Hermitian random matrices subjected to Dyson’s
Brownian motion [2, 5, 10, 40–42, 48, 55, 56]. Discrete versions have been studied as
well [29, 35, 47, 49, 51]. More recently, the situation where the limit shape of two sets
of non-intersecting Brownian motions just touch in a tacnode geometry has been studied,
first in a random walk setting in [3], then via a 4× 4 Riemann–Hilbert problem [23] and
with a more direct approach in [32, 38]. The equality of the formulas for the correlation
kernel of the tacnode process obtained in [23] and in [32] was verified directly in [21].
The tacnode was observed also in random tiling models [1, 4].

The tacnode geometry occurs also if the non-intersecting trajectories are conditioned
to stay positive and to start and end away from 0 at a distance so that the limit shape
becomes tangential to 0. This has been studied in [22,24] for the case of non-intersecting
squared Bessel processes. Since Brownian motion conditioned to stay positive is a Bessel
process of parameter 1/2, the kernel of the hard-edge tacnode process for non-intersecting
Brownian motions can be obtained from [22] in terms of the solution of a 4×4 Riemann–
Hilbert problem. However, finding explicit formulas for the tacnode limit process for
Brownian motions conditioned to stay positive remained open due to the fact that the
hard-edge tacnode kernel was found in [24] explicitly only for non-intersecting squared
Bessel processes with integer parameter.

We mention that if the starting points of Brownian bridges (or more generally Bessel
processes) are set to 0, the ending points are the same for all paths and it is scaled with
the number of paths, then the limit shape of the non-intersecting paths conditioned to
stay positive separates from 0 at some time in (0, 1). In the neighbourhood of the point
of separation, the hard-edge Pearcey process appears [24, 25, 45].

In this paper, we consider N Brownian bridges starting from 0 at time 0 and ending
at 0 at time 1. We condition the Brownian bridges not to intersect for times t ∈ (0, 1)
and denote by BN(t) the position of the top bridge at time t. This is also known as
Brownian watermelon and it is well-known that under appropriate scaling, BN converges
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to the Airy2 process A2:

2N1/6
(
BN

(
1
2
(1 + uN−1/3)

)
−
√
N
)
→ A2(u)− u2 (1.1)

as N → ∞. Therefore, if we consider the Brownian watermelon conditioned to stay
below a threshold of height

√
N + 1

2
RN−1/6, then the probability that the conditioning

is effective is in (0, 1) also in the N → ∞ limit. Thus we will see a new non-trivial limit
process which we call hard-edge tacnode process for Brownian motions. This process
is characterized by its finite dimensional distributions as given in Theorem 2.6. When
R → ∞, the constraint becomes irrelevant and the top path will be the Airy2 process
(see the discussion after Theorem 2.10). When R → −∞, after appropriate rescaling, the
limit process should be the one with extended Bessel kernel [55] which was also derived
for non-intersecting Brownian excursions studied in [57].

The derivation of our result does not use the standard determinantal point process
approach [37], rather we start with a Fredholm determinant expression with path integral
kernel obtained in [8, 50] which gives the probability that the top path of N Brownian
bridges stays below a given function over an open time subinterval of [0, 1], see Propo-
sition 2.1. First we extend the conditioning to the full time interval (see Theorem 2.3).
The finite dimensional distributions are then written as ratios of probabilities for two
threshold functions leading to Theorem 2.4. Using [8], we can rewrite the Fredholm
determinant of a path integral kernel to a Fredholm determinant of an extended kernel
which is indeed the correlation kernel as shown in Theorem 2.5. ([8] is a generalization of
what was present in [51]. The importance of [51] was rediscovered and extended in [20] in
the setting of the Airy processes.) Notice that with the present method, we directly get
formulas for quantities such as distribution of the maximum of BN (conditioned to stay
below the threshold). This quantity is not directly accessible by the standard method
leading to the finite dimensional distributions. Finally we perform the asymptotic anal-
ysis for the correlation kernel (see Theorem 2.6) and we give the limit of the probability
that the top path of the non-intersecting Brownian bridges stays below a rescaled function
(see Theorem 2.10).

After the appearance of the first version of this paper, non-intersecting Brownian
bridges with reflecting and absorbing walls were studied in [46] by the method of orthogo-
nal polynomials. Their correlation kernel of the hard-edge tacnode process by the solution
of a 2×2 Riemann–Hilbert problem both for reflecting and absorbing walls is less explicit
than our formulation. In a second step they show that the kernel K̂ext(T1, U1;T2, U2) in
Theorem 2.6 below is the odd part of the soft-edge tacnode process of [32] thus prov-

ing the equivalence of the kernel K̂ext(T1, U1;T2, U2) and their formula for the hard-edge
tacnode process in the case of absorbing walls.

Outline: In Section 2, we define the model and present the results of this paper. Sec-
tion 3 contains a short discussion on the relation with the six-vertex model. In Section 4,
we determine the multipoint distribution of BN conditioned to stay below a constant
threshold. Section 5 contains the extension of the formula of [50] to the full time interval.
In Section 6, we prove the formula for the correlation kernel. The large N asymptotic
analysis is performed in Section 7. Finally, Section 8 contains the proof of several tech-
nical lemmas.

Acknowledgements: The authors are grateful for discussions with F. Colomo and A.
Sportiello about their work and to both ICERM and the Galileo Galilei Institute which

3



provided the platform to make such discussions possible. The work of P.L. Ferrari is
supported by the German Research Foundation via the SFB 1060–B04 project. The work
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2 Model and main results

The model

The model considered in this paper is the following system of N non-intersecting Brow-
nian bridges. Consider N standard Brownian bridges B1(t), . . . , BN(t) which start from
zero at time t = 0 and end at zero at time t = 1, and condition them on having no
intersection in t ∈ (0, 1) in Doob’s sense. To denote the paths, we use the convention
B1(t) ≤ · · · ≤ BN(t) with strict inequality for t ∈ (0, 1).

The starting point of the work is a formula for the distribution of the top path BN (t)
conditioned to stay below a given function, based on [8] and [50]. To state it, we need
some notations. Let Hn(x) denote the nth Hermite polynomial defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x2

(2.1)

which form an orthogonal system with respect to the weight e−x2
dx on R, i.e.

∫

R

Hn(x)Hm(x)e
−x2

dx =
√
π2nn!δn,m. (2.2)

Define the harmonic oscillator functions

ϕn(x) = π−1/42−n/2(n!)−1/2e−x2/2Hn(x) (2.3)

and the Hermite kernel

KHerm,N(x, y) =

N−1∑

n=0

ϕn(x)ϕn(y). (2.4)

With the Laplacian ∆ on R, let

D = −1

2
(∆− x2 + 1) (2.5)

be the differential operator for which the eigenfunctions are the harmonic oscillator func-
tions, that is, Dϕn = nϕn. Then KHerm,N is a projection to the space spanned by the
eigenfunctions ϕ0, . . . , ϕN−1.

For some 0 < a < b < 1, let H1([a, b]) be the set of square integrable functions with
square integrable derivative. The following statement is a consequence of Propositions 2.1
(which goes back to Proposition 4.3 of [8]) and Proposition 2.2 in [50].

Proposition 2.1 (Nguyen-Remenik [50]). Let 0 < a < b < 1 and h ∈ H1([a, b]) and
denote by BN (t) the top path of N non-intersecting Brownian bridges. Then

P (BN(t) < h(t) for t ∈ [a, b]) = det
(
1−KHerm,N +ΘA,Be

(B−A)DKHerm,N

)
L2(R)

(2.6)
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where A = 1
2
ln a

1−a
, B = 1

2
ln b

1−b
, and D is the differential operator defined in (2.5).

Further,

ΘA,B(x, y) = e(y
2−x2)/2+B

exp
(
− (eBy−eAx)2

4(β−α)

)

√
4π(β − α)

×Pb̂(α)=eAx,̂b(β)=eBy

(
b̂(τ) ≤ 1 + 4τ√

2
h

(
4τ

1 + 4τ

)
for τ ∈ [α, β]

)
(2.7)

where α = 1
4
e2A = 1

4
a

1−a
and β = 1

4
e2B = 1

4
b

1−b
. In (2.7), b̂(τ) denotes a Brownian bridge

with diffusion coefficient 2 starting at b̂(α) = eAx and ending at b̂(β) = eBy.

Finite N result

First of all, we extend Proposition 2.1 so that the condition for the N non-intersecting
Brownian bridges to stay below a function can be imposed for the whole [0, 1]. Since
we are ultimately interested in the distribution of N non-intersecting Brownian bridges
conditioned to stay below a constant, we consider functions h such that for some 0 <
t1 < t2 < 1 and r > 0,

h(t) ≤ r for t ∈ [0, 1] and h(t) = r for t ∈ [0, 1] \ (t1, t2). (2.8)

Motivated by the definition (2.7), let

τi =
1

4

ti
1− ti

for i = 1, 2 and h̃(τ) =
1 + 4τ√

2

[
h

(
4τ

1 + 4τ

)
− r

]
. (2.9)

Further, for such a function h, define

T h
α1,α2

(u, v)

=
d

dv
Pb̃(α1)=u

(
b̃(τ) ≤ 0 for τ ∈ [α1, α2], b̃(τ) ≤ h̃(τ) for τ ∈ (τ1, τ2), b̃(α2) ≤ v

)
(2.10)

where τ1, τ2 ∈ [α1, α2] and h̃ are as in (2.9). The Brownian motion b̃ above has diffusion
coefficient 2.

For any u, v ∈ R and n,m integers, introduce the functions

Φn
τ (u) =

1

πi

∫

iR

dW W neτ(
√
2r−2W)

2−
√
2rW (fW (u)− fW (−u)), (2.11)

Ψm
τ (v) =

1

2πi

∮

Γ0

dZ Z−(m+1)e−τ(
√
2r−2Z)

2
+
√
2rZ(gZ(v)− gZ(−v)) (2.12)

with
fW (u) = e(

√
2r−2W )u and gZ(v) = e−(

√
2r−2Z)v (2.13)

and define the kernel

K0(n,m) =
1

2πi

∮

Γ0

dZ
(
√
2r − Z)n

Zm+1
e−2r2+2

√
2rZ . (2.14)

They satisfy the following compatibility conditions (see Section 8 for the proof).
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Proposition 2.2. Let φt(x, y) =
1√
2πt

exp (−(x− y)2/2t) and set

Tτ1,τ2(x, y) = φ2(τ2−τ1)(y − x)− φ2(τ2−τ1)(y + x) (2.15)

for any x, y ∈ R. Then, for any 0 < τ1 < τ2, 0 < τ and u, v ∈ R, the following
compatibility relations are satisfied:

∫

R−

duΦn
τ1
(u)Tτ1,τ2(u, v) = Φn

τ2
(v), (2.16)

∫

R−

dv Tτ1,τ2(u, v)Ψ
m
τ2(v) = Ψm

τ1(u), (2.17)

∫

R−

duΦn
τ (u)Ψ

m
τ (u) = (1−K0)(n,m). (2.18)

We can now state the extension of Proposition 2.1 to the conditioning on the full time
interval.

Theorem 2.3 (Full time span conditioning). Let the function h ∈ H1([0, 1]) satisfy (2.8)
for some 0 < t1 < t2 < 1. Then

P(BN(t) < h(t) for t ∈ [0, 1]) = det
(
1−Kh

N

)
L2({0,1,...,N−1}) (2.19)

where the kernel Kh
N is given by

Kh
N (n,m) = 1(n,m)−

∫

R

du

∫

R

dvΦn
τ1
(u)T h

τ1,τ2
(u, v)Ψm

τ2
(v). (2.20)

As a consequence, we get the following for the probability that the conditioned process
remains below a given function.

Theorem 2.4. Under the assumptions of Theorem 2.3, we have

P(BN(t) < h(t) for t ∈ [0, 1]
∣∣ BN(t) < r for t ∈ [0, 1])

= det
(
1−Kτ1 + T h

τ1,τ2
Kτ2,τ1

)
L2(R−)

(2.21)

where Kτ1 = Kτ1,τ1 and Kτ2,τ1 is given by

Kτ2,τ1(u, v) =
N−1∑

n,m=0

Ψn
τ2
(u) (1−K0)

−1(n,m) Φm
τ1
(v). (2.22)

For N non-intersecting Brownian bridges conditioned to stay below a constant
level r for [0, 1], we know by the Karlin–McGregor type formulas and Eynard–Mehta
theorem [27, 39] that it forms a determinantal process. We compute its correlation kernel
which characterizes the finite dimensional distributions of the process. Conditioning N
non-intersecting Brownian bridges to stay below r corresponds to the h ≡ r constant
choice in (2.8). In this case, (2.10) becomes 1u<0Tα1,α2(u, v)1v<0 by the reflection prin-
ciple. The correlation kernel of N non-intersecting Brownian bridges conditioned to be
below a constant level is given as follows.

6



Theorem 2.5 (Correlation kernel). The system of N non-intersecting Brownian bridges
conditioned to stay below the constant level r for time [0, 1] forms a determinantal process
with extended correlation kernel defined for t1, t2 ∈ [0, 1] and x1, x2 ≤ r by

Kext(t1, x1; t2, x2) =
1√

2(1− t1)(1− t2)
Kext(τ1, u1; τ2, u2) (2.23)

where we used the variables

τi =
1

4

ti
1− ti

, ui =
xi − r√
2(1− ti)

(2.24)

due to (2.9) and the kernel

Kext(τ1, u1; τ2, u2) = −1τ1<τ2Tτ1,τ2(u1, u2)+

N−1∑

n,m=0

Ψn
τ1(u1)(1−K0)

−1(n,m)Φm
τ2(u2). (2.25)

In particular, the gap probabilities of N non-intersecting Brownian bridges conditioned to
stay below level r can be expressed for any t1, . . . , tk ∈ [0, 1] and h1, . . . , hk ≤ r as

P
(
BN(t1) < h1, . . . , BN(tk) < hk

∣∣ BN (t) < r, t ∈ [0, 1]
)
= det(1−QKext)L2({τ1,...,τk}×R−)

(2.26)
with

Qf(τi, u) = 1u≥ηif(τi, u), τi =
1

4

ti
1− ti

, ηi =
1 + 4τi√

2
(hi − r). (2.27)

Large N asymptotic result

Next we take the number of Brownian paths N → ∞. We choose the scaling in a way
that the following condition holds. The probability that N non-intersecting Brownian
bridges stay below the rescaled threshold r should stay asymptotically away from 0 and
1. This means that we need to scale the threshold r as well as time and space as follows:

t =
1 + TN−1/3

2
, r =

√
N +

RN−1/6

2
, h =

√
N +

(R +H)N−1/6

2
(2.28)

with H ≤ 0. Let us first describe ingredients of the limiting correlation kernel. For any
parameter s, let

Ai(s)(x) = e2s
3/3+xs Ai(s2 + x). (2.29)

Then we introduce the functions

Φ̂ξ
T (U) = Ai(T )(R + ξ + U)− Ai(T )(R + ξ − U),

Ψ̂ζ
T (U) = Ai(−T )(R + ζ + U)−Ai(−T )(R + ζ − U),

(2.30)

and the shifted GOE kernel

K̂0(ξ, ζ) = 2−1/3 Ai(2−1/3(2R + ξ + ζ)). (2.31)

The next theorem establishes the convergence of the rescaled kernel and the existence of
the hard-edge tacnode process which is the limiting determinantal point process.
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Theorem 2.6 (The hard-edge tacnode process). Consider the scaling

ti =
1 + TiN

−1/3

2
, r =

√
N +

RN−1/6

2
, xi =

√
N +

(R + Ui)N
−1/6

2
. (2.32)

Then the extended correlation kernel of N non-intersecting Brownian bridges conditioned
to stay below a constant level converges uniformly on compact sets, i.e.

lim
N→∞

N−1/6

2
Kext(t1, x1; t2, x2) = K̂ext(T1, U1;T2, U2) (2.33)

where the limiting kernel K̂ext is given by

K̂ext(T1, U1;T2, U2) = −1T1<T2TT1,T2(U1, U2)+

∫

R+

dξ

∫

R+

dζ Ψ̂ξ
T1
(U1)(1−K̂0)

−1(ξ, ζ)Φ̂ζ
T2
(U2)

(2.34)
where T1, T2 ∈ R and U1, U2 ≤ 0.

As a consequence, the hard-edge tacnode process T exists as the limit of N non-
intersecting Brownian bridges conditioned to stay below a constant level under the given
scaling. It is characterized by the following gap probabilities. For any fixed integer k and
T1, . . . , Tk ∈ R and for any compact set E ⊆ {T1, . . . , Tk} × R−,

P(T ∩ E = ∅) = det
(
1− K̂ext

)
L2(E)

. (2.35)

As in [21] and in [24], the soft-edge or hard-edge tacnode process usually has a natural
temperature parameter (here is the threshold R), and the derivative of the correlation
kernel with respect to the temperature parameter has a low rank structure. In particular,
the temperature derivative of the correlation kernel of the soft-edge tacnode process is
rank two, which was proved in [21] to hold for the formulas obtained in [23] and in [32]
yielding a direct proof for the equivalence of the two formulation. In [24], the rank
one structure of the temperature derivative of the hard-edge tacnode kernel was shown
in the case of non-intersecting squared Bessel processes with integer parameter. This
gives the importance of the next proposition about the derivative with respect to the
microscopic position parameter of the threshold since the model studied in the present
paper corresponds to non-intersecting Bessel processes of parameter 1/2. The proposition
is proved in Section 8.

Proposition 2.7. The derivative of the extended correlation kernel of the hard-edge tac-
node process with respect to parameter R has rank one, that is,

∂

∂R
K̂ext(T1, U1;T2, U2) = −f(T1, U1)g(T2, U2) (2.36)

where

f(T1, U1) =

∫

R+

dξ Ψ̂ξ
T1
(U1)(1− K̂0)

−1(ξ, 0), (2.37)

g(T2, U2) =

∫

R+

dζ (1− K̂0)
−1(0, ζ)Φ̂ζ

T2
(U2). (2.38)

In Proposition 1.5 of [46], it was proved that the odd part of the soft-edge tacnode
kernel of [32] coincides with the extended correlation kernel of the hard-edge tacnode
process defined by (2.34). We recall the statement below.
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Proposition 2.8 (Proposition 1.5 of [46]). Let Lλ,σ
tac (T1, U1, T2, U2) be correlation kernel

of the soft-edge tacnode process as defined in (1.5) of [32] where λ is the asymmetry
parameter and where σ is the temperature parameter. The symmetric case corresponds
to λ = 1. Then for any threshold R ∈ R for the hard-edge tacnode process,

K̂ext(T1, U1;T2, U2) = L1,22/3R
tac (T1, U1, T2, U2)−L1,22/3R

tac (T1, U1, T2,−U2) (2.39)

holds.

Remark 2.9. It is possible to view the system of non-intersecting Brownian bridges
conditioned to stay below a constant threshold r as non-intersecting paths r − Y

(i)
t for

i = 1, 2, . . . , N where Y
(i)
t are three-dimensional Bessel bridges, hence the results of [22]

apply. Since the correlation kernel in [22] is expressed with the solution of a 4 × 4
Riemann–Hilbert problem, it is very hard to compare the two kernels. Proposition 2.7 is
the first step towards this aim. Although this approach was successful for the soft-edge
tacnode process (see [21]), the hard-edge tacnode case seems to be more difficult and the
results of [24] and of [22] could not be compared so far.

Theorem 2.6 characterizes the finite dimensional distributions of the limit process,
which does not cover properties such as the limiting probability that the non-intersecting
paths stay below a given function. This can be obtained by performing the large N
asymptotics of Theorem 2.4.

Theorem 2.10. Consider the top path of N non-intersecting Brownian motions condi-
tioned to stay below r =

√
N + 1

2
RN−1/6 rescaled as

BR
N (T ) = 2N1/6

(
BN

(
1
2
(1 + TN−1/3)

)
−
√
N
)
. (2.40)

Let T1 < T2 be given as well as a function H ∈ H1([T1, T2]) with H ≤ R. Then

lim
N→∞

P
(
BR
N (T ) ≤ H(T ) for T ∈ [T1, T2]

)
= det(1− K̂T1 + T̂H−R

T1,T2
K̂T2,T1)L2(R−) (2.41)

where K̂T1 = K̂T1,T1 and K̂T1,T2(U1, U2) := K̂ext(T1, U1;T2, U2) defined in (2.34) and

T̂H
T1,T2

(U1, U2) =
d

dU2

PB(T1)=U1
(B(T ) ≤ H(T ) for T ∈ [T1, T2], B(T2) ≤ U2) (2.42)

with B(T ) being a Brownian motion with diffusion coefficient 2.

Finally, let us discuss the large R limit. As R → ∞, the constraint H ≤ R becomes
trivially satisfied and thus we should recover

lim
R→∞

det(1− K̂T1 + T̂H−R
T1,T2

K̂T2,T1)L2(R−) = P(A2(T )− T 2 ≤ H(T ), T ∈ [T1, T2]) (2.43)

where A2 is the Airy2 process. We verify it below. Consider the entry (U, U ′) of the
kernel on the left-hand side of (2.43). Applying the change of variables U → U −R and
U ′ → U ′ −R, we have that the right-hand side of (2.41) is the Fredholm determinant on
L2((−∞, R)) with kernel

− K̂T1(U − R,U ′ −R) +

∫
dV T̂H−R

T1,T2
(U −R, V −R)K̂T2,T1(V − R,U ′ −R). (2.44)
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It is easy to verify that

lim
R→∞

K̂ext(T, U − R;T ′, U ′ − R) e2(T
3−T ′3)/3+TU−T ′U ′

= KAi(T, U + T 2;T ′, U ′ + T ′2)

= − e
− (U−U′)2

4(T ′−T )

√
4π(T ′ − T )

1T<T ′ +

∫

R+

dξ eξ(T
′−T )Ai(ξ + U + T 2) Ai(ξ + U ′ + T ′2)

(2.45)

where KAi is know as the extended Airy kernel [36,51]. Indeed, as R → ∞, (1−K̂0)
−1 →

1, but also Φ̂ξ
T (U − R)e−2T 3/3−TU → eTξ Ai(ξ + U + T 2), and Ψ̂ζ

T (U − R)e2T
3/3+TU →

e−Tζ Ai(ζ + U + T 2).
These asymptotics imply that in the R → ∞ limit our Fredholm determinant is on

L2(R) with kernel

−KAi(T1, U + T 2
1 ;T1, U

′ + T 2
1 ) +

∫
dV

e
2
3
T 3
1+T1U

e
2
3
T 3
2+T2V

T̂H
T1,T2

(U, V )KAi(T2, V + T 2
2 ;T1, U

′ + T 2
1 )

(2.46)
after the same conjugation as in (2.45). Finally, by the change of variables U → U − T 2

1 ,
U ′ → U ′ − T 2

1 , and V → V − T 2
2 , the kernel becomes

−KAi(T1, U ;T1, U
′) +

∫
dV

e−
1
3
T 3
1+T1U

e−
1
3
T 3
2+T2V

T̂H
T1,T2

(U − T 2
1 , V − T 2

2 )KAi(T2, V ;T1, U
′). (2.47)

By Theorem 2 and 3 of [20], the determinant of this kernel on L2(R) is equal to the the
right-hand side of (2.43) as expected1.

Remark 2.11. There are two natural ways to obtain the hard-edge tacnode process as
the limit of non-intersecting Brownian bridges conditioned to stay below a constant level.
The first option is what we follow in the present paper: we keep the number of paths
fixed first and we characterize the distribution of the paths conditioned to stay below a
constant level for [0, 1], see Theorem 2.5. Then we let the number of paths N → ∞ as it
is done in Theorem 2.6.

An alternative approach is that one imposes the condition that the Brownian bridges
stay under a constant level on a fixed interval [a, b] with 0 < a < b < 1 and one lets the
number of paths N → ∞ first. Then the limit is an Airy2 process conditioned to stay
below a parabola for a fixed finite interval (compare with (2.43) for constant H). In the
second step, by letting this interval grow to R, the same hard-edge tacnode process is
obtained as in Theorem 2.6.

The fact that the two different ways of taking the limit gives the same result is not
obvious, but we do not prove it here. The reason why the first way is more interesting
is that the Airy2 process conditioned to stay below a parabola for a fixed finite interval
i.e. the object which arises in the intermediate step in the second approach is know, its
distribution is given in [20].

1In Theorem 3 of [20] there is a misprint: in the Gaussian factor, one should replace x by x− ℓ2 and
y by y − r2, as it can be easily verified by comparing with formula preceding Theorem 3.
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Figure 2: Illustration of the non-intersecting line ensemble for an Aztec diamond/six-
vertex model with DWBC of size N = 10 (left) and size N = 50 (right).

3 Relation to the six-vertex model and the Aztec

diamond

The six-vertex model is a statistical mechanics model with short range interaction which
is however sensitive to the boundary conditions. For instance, imposing the so-called
domain wall boundary conditions (DWBC), it was noticed in [43] that it has a macroscopic
influence on the system. In this setting, the model has two free parameters. When these
parameters satisfy a given equation, the system becomes “free-fermion” and there is a
(many-to-one) mapping to the Aztec diamond [58]. For the free-fermion case, one can
associate a set of non-intersecting lines to the six-vertex configurations, from which the
Aztec diamond configurations can be recovered [30]. These are illustrated in Figure 2.

In the recent papers on the six-vertex model [15–18], questions concerning the limit
shape and correlation functions have been addressed for the six-vertex model also for
other domains. In particular, domains obtained from a square by cutting off a triangle or
a rectangle from the corner were considered with DWBC. In terms of the Aztec diamond,
this corresponds to conditioning the dominoes in the top corner to be all fixed and
horizontal. The fixed dominoes form the region which has been cut out.

The Aztec diamond has been studied very well. In particular, denote the size of the
Aztec diamond by N . One can think of lines in discrete time t ∈ [−N,N ].

Theorem 3.1 (Theorem 1.1 of [36]). Denote by XN (t) the top line of the Aztec diamond
at time t. Then

XN(2
−1/6N2/3T )−N/

√
2

2−5/6N1/3
→ A2(T )− T 2 (3.1)

in the sense of finite dimensional distributions. Here A2 is the Airy2 process.

The result is derived by analyzing the point process of the lines. Consider the
(N2/3, N1/3) windows around the top line of Figure 2, i.e. if (t, x) denotes the coordi-
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nates of the lines in Figure 2, one considers

(t, x) = (2−1/6N2/3T,N/
√
2 + 2−5/6N1/3U). (3.2)

Then under this scaling, the lines converge to a determinantal point process with corre-
lation kernel given by the extended Airy kernel, see (2.45). This is the same limit as the
appropriate scaling limit obtained from N non-intersecting Brownian bridges as N → ∞.
Notice that the scaling of the horizontal and vertical directions is compatible with the
Brownian scaling (as it is the case for the limit process since the Airy2 process is locally
Brownian [14, 19, 33]).

L-shaped case: Under the scaling (3.2), cutting out a square from the top of the
Aztec diamond such that its lower tip is at height N/

√
2 + 2−5/6N1/3R is asymptotically

equivalent to forbidding only a vertical line segment down to the tip of the square. Denote
by XR

N the top line in this case. Then, from the above discussion, we expect the following:

Conjecture 3.2. Define

XR,resc
N (T ) =

XR
N(2

−1/6N2/3T )−N/
√
2

2−5/6N1/3
. (3.3)

Then for any given T1 < T2 < . . . < Tk and U1, . . . , Uk ≤ R,

lim
N→∞

P

(
k⋂

ℓ=1

{XR,resc
N (Tℓ) ≤ Uℓ}

)
=

P
(⋂k

ℓ=1{A2(Tℓ)− T 2
ℓ ≤ Uℓ} ∩ {A2(0) ≤ R)}

)

P(A2(0) ≤ R)

(3.4)
where A2 is the Airy2 process [36,51]. As a consequence

lim
N→∞

P(XR,resc
N ≤ U) =

FGUE(min{U,R})
FGUE(R)

, (3.5)

where FGUE is the GUE Tracy–Widom distribution function [54].

Pentagonal case: Under the scaling (3.2), cutting out a triangle on the top corner
at height N/

√
2 + 2−5/6N1/3R becomes asymptotically a conditioning to stay below a

fixed height R. Denote by XR
N be the top line in this case. Then, we expect to have the

following:

Conjecture 3.3. Define

XR,resc
N (T ) =

XR
N(2

−1/6N2/3T )−N/
√
2

2−5/6N1/3
. (3.6)

Then

lim
N→∞

P

(
k⋂

ℓ=1

{XR,resc
N (Tℓ) ≤ Uℓ}

)
= det

(
1− K̂ext

)
L2(E)

(3.7)

with the set E = {(T1, [U1 −R, 0])× . . .× (Tk, [Uk −R, 0])}.
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4 Multipoint distribution and heuristics for the cor-

relation kernel

In this section, we consider the process of N non-intersecting Brownian bridges condi-
tioned to stay below a constant level. First we prove Theorem 2.4, that is, the probability
that this conditional process stays below a function of the form (2.8) can be written as
a Fredholm determinant of the kernel Kext. As a consequence, we show that the mul-
tipoint distribution of the conditional process also has a Fredholm determinantal form,
which is part of the statement of Theorem 2.5. This does not imply that Kext is the
correlation kernel for the point process of the non-intersecting Brownian bridges, but it
gives a potential candidate for it. The proof that Kext is actually the correlation kernel
is performed directly in Section 6.

Our heuristic derivation of the correlation kernel for N non-intersecting Brownian
bridges conditioned to stay below a constant is based on the formula given in Theorem 2.3
for the probability that the top path of N Brownian bridges is below a function. First
we verify that the kernel which appears in Theorem 2.3 is trace class.

Lemma 4.1. For any function h : [0, 1] → R and for any fixed integer N , the operator
with kernel Kh

N given in (2.20) is trace class on L2({0, 1, . . . , N − 1}).

Proof. Since N is fixed, it is enough to show that Kh
N(n,m) is finite for any n,m < N ,

that is, the double integral in (2.20) is finite. By (2.12), one clearly has |Ψm
τ2
(v)| ≤ Cec|v|

for some finite constants C and c. By definition (2.10), |Tτ1,τ2(u, v)| ≤ φ2(τ2−τ1)(y − x),
hence ∫

R

dv |T h
τ1,τ2

(u, v)Ψm
τ2
(v)| ≤ Cec|u| (4.1)

for some finite constants C and c. On the other hand, (6.15) shows that Φn
τ1
(u) has a

Gaussian decay in u, i.e.

|Φn
τ1
(u)| ≤ Ce

− u2

8τ1 (4.2)

for some finite C. This completes the proof.

For any function f ∈ L2(R), let

Pηf(x) = 1x≥ηf(x), P ηf(x) = 1x<ηf(x) (4.3)

be the projection operators.

Proof of Theorem 2.4. The strategy of the proof is to compare the kernel Kh
N for a general

h of the form (4.9) to the one which corresponds to the constant h ≡ r. For h ≡ r, in
the second term on the right-hand side of (2.20) one has to insert

T r
τ1,τ2

= P 0Tτ1,τ2P 0 (4.4)

by comparing (2.10), (2.15) and (2.9). Hence the kernel Kr
N for h ≡ r simplifies to

Kr
N(n,m) = 1(n,m)−

∫

R−

du

∫

R−

dvΦn
τ1
(u)Tτ1,τ2(u, v)Ψ

m
τ2
(v) = K0(n,m) (4.5)

as a consequence of Proposition 2.2.
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Hence we can write the kernel Kh
N for a general h of the form (2.8) as

Kh
N (n,m) = K0(n,m) +

∫

R

du

∫

R

dvΦn
τ1
(u)
(
P 0Tτ1,τ2P 0 − T h

τ1,τ2

)
(u, v)Ψm

τ2
(v). (4.6)

The conditional probability on the left-hand side of (2.21) is written as a ratio of two
Fredholm determinants: using (4.5) we get

P
(
BN (t) < h(t) for t ∈ [0, 1]

∣∣ BN(t) < r for t ∈ [0, 1]
)

=
det(1−Kh

N)ℓ2({0,1,...,N−1})
det(1−K0)ℓ2({0,1,...,N−1})

= det
(
1− (Kh

N −K0)(1−K0)
−1
)
ℓ2({0,1,...,N−1})

(4.7)

where we used the multiplicative property of the determinant in the second equality. By
the cyclic property of the determinant and by using (4.6), (2.22) and (2.17), one obtains

det
(
1− (Kh

N −K0)(1−K0)
−1
)
ℓ2({0,1,...,N−1})

= det
(
1−

(
P 0Tτ1,τ2P 0 − T h

τ1,τ2

)
Ψτ2(1−K0)

−1Φτ1

)
L2(R−)

= det
(
1−Kτ1 + T h

τ1,τ2
Kτ2,τ1

)
L2(R−)

(4.8)

which completes the proof.

To obtain the multipoint distribution of N non-intersecting Brownian bridges con-
ditioned to be under the constant level r in the time interval [0, 1], we specialize the
probability that the top path of N non-intersecting Brownian bridges stays below a func-
tion h given by (2.8). Namely, for 0 < t1 < · · · < tk < 1, we consider the function

h(x) =

{
r if x 6= ti for i = 1, . . . , k
hi if x = ti

(4.9)

for some hi ≤ r for i = 1, . . . , k. Since h given by (4.9) is not in H1([0, 1]), one has to
verify that Theorem 2.3 can be used. We prove the following lemma in Section 8.

Lemma 4.2. Theorem 2.3 remains valid for a function h defined in (4.9).

The multipoint distribution of N non-intersecting Brownian bridges conditioned to
stay below a constant level can be expressed as follows.

Proposition 4.3. Let h be a function given by (4.9). Then the following conditional
probability for the top path of N non-intersecting Brownian bridges can be written in a
Fredholm determinant form as

P
(
BN(t) < h(t) for t ∈ [0, 1]

∣∣ BN (t) < r for t ∈ [0, 1]
)

= det
(
1−Kτ1 + P η1Tτ1,τ2P η2 . . . Tτk−1,τkP ηk(Tτ1,τk)

−1Kτ1

)
L2(R−)

. (4.10)

Proof. By Lemma 4.2, Theorem 2.3 holds for this choice of h as well. The same steps
used in the proof of Theorem 2.4 lead to the result. We just need to replace T h

τ1,τ2
with

the corresponding expression for a general h of the form (4.9), namely with

T h
τ1,τk

= P η1Tτ1,τ2P η2Tτ2,τ3 . . . Tτk−1,τkP ηk (4.11)

from (2.10) and using (2.9) with (2.27).

14



Using the result of [8], the Fredholm determinant with the path integral kernel on the
right-hand side of (4.10) can be rewritten as in Proposition 4.4 below. Hence the second
part of Theorem 2.5 about the gap probabilities follows from Proposition 4.3 and 4.4.
This is weaker than proving that Kext is the correlation kernel for N non-intersecting
Brownian bridges conditioned to stay below level r. We prove in Section 6 that Kext is
actually the correlation kernel.

Proposition 4.4. For the Fredholm determinant on the right-hand side of (4.10), the
following identity hold

det
(
1−Kτ1 + P η1Tτ1,τ2P η2 . . . Tτk−1,τkP ηk(Tτ1,τk)

−1Kτ1

)
L2(R−)

= det(1−QKext)L2({τ1,...,τk}×R−) (4.12)

where the extended kernel Kext is given by (2.25) and Q is defined in (2.27).

Proof. Applying formally Theorem 3.3 of [8] with Wτi,τj = Tτi,τj and with Kτi defined by
(2.22) would give (4.12). This is however not correct because the operator Kτ with kernel
given in (2.22) is not a bounded operator and the assumptions of Theorem 3.3 of [8] are
not satisfied.

Hence we introduce the following conjugation in order to circumvent this issue. Let

Φ
n

τ (u) = e
u2

Cτ Φn
τ (u),

T τi,τj (u, v) = e
− u2

Cτi
+ v2

Cτj Tτi,τj(u, v),

Ψ
m

τ (v) = e−
v2

Cτ Ψm
τ (v)

(4.13)

where C is a sufficiently large constant which depends on τ1, . . . , τk in such a way
the operators T τi,τi+1

are bounded. The condition of boundedness of T τi,τi+1
is

C > 4(τi+1 − τi)/τi+1, because then the v2 term in the exponent has negative sign in
T τi,τi+1

(u, v) in (4.13). Further in this case,

∫

R

dv T τi,τi+1
(u, v) =

√
Cτi+1

Cτi+1 − 4(τi+1 − τi)
e
− 4(τi+1−τi)u

2

Cτi+1(Cτi+1−4(τi+1−τi)) (4.14)

which has Gaussian decay in u.
Replacing Φn

τ and Ψm
τ by Φ

n

τ and Ψ
m

τ in the definition (2.22) of Kτ , we get the kernel

Kτ (u, v) = e−
u2

Cτ
+ v2

Cτ Kτ (u, v). (4.15)

Note that the Fredholm determinant on the left-hand side of (4.12) does not change if
the operators K and T are replaced by K and T since it is just a conjugation, i.e.

det
(
1−Kτ1 + P η1Tτ1,τ2P η2 . . . Tτk−1,τkP ηk(Tτ1,τk)

−1Kτ1

)
L2(R−)

= det
(
1−Kτ1 + P η1T τ1,τ2P η2 . . . T τk−1,τkP ηk(T τ1,τk)

−1Kτ1

)
L2(R−)

. (4.16)

To apply Theorem 3.3 of [8] (with the minor modification that now the space is
L2(R−)) with Wτi,τj = T τi,τj and with Kτi , we check the three assumptions of the theo-
rem. For Assumption 1, all the operators which appear are bounded. In particular, the
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boundedness of T τi,τj was checked above. The operator Kτ is also bounded if C > 4 by

comparing the Gaussian decay Φn
τ (u) ∼ e−

u2

4τ with the conjugation (4.13).
Assumption 2 about compatibility is rather clear using the interpretation of Tτi,τj as

a Brownian bridge transition kernel and by Proposition 2.2. Since the kernels of all the
conjugated operators Wτi,τj and Kτi which appear have Gaussian decay, the trace class
properties needed for Assumption 3 are straightforward to check. Hence Theorem 3.3
of [8] can be used which gives (4.12) with Kext replaced by its conjugated version on
the right-hand side, but the conjugation can be removed without changing the Fredholm
determinant.

5 Extension of the Nguyen–Remenik formula

In this section, we extend Proposition 2.1, the Nguyen–Remenik formula for the prob-
ability that N non-intersecting Brownian bridges stay below a given function on [a, b]
for any fixed 0 < a < b < 1 to the probability that the Brownian bridges stay below a
function h of the form (2.8) on [0, 1].

Proof of Theorem 2.3. First we express the Brownian bridge probability on the right-
hand side of (2.7) for the special choice of the function h given in (2.8) in terms of T h

τ1,τ2
.

By introducing the drifted and shifted Brownian bridge b̃(τ) = b̂(τ)− (1 + 4τ)r/
√
2, one

can write

Pb̂(α)=eAx,̂b(β)=eBy

(
b̂(τ) ≤ 1 + 4τ√

2
h

(
4τ

1 + 4τ

)
for τ ∈ [α, β]

)

= Pb̃(α)=eAx−(1+4α)r/
√
2

b̃(β)=eBy−(1+4β)r/
√
2

(
b̃(τ) ≤ 0 for τ ∈ [α, β], b̃(τ) ≤ h̃(τ) for τ ∈ (τ1, τ2)

)
(5.1)

where τ1, τ2 and h̃ are defined by (2.9). Using the notation (2.15), we can condition on

the values of the Brownian bridge b̃(τ) at times τ1 and τ2 and rewrite the right-hand side
of (5.1) as

Pb̃(α)=eAx−(1+4α)r/
√
2

b̃(β)=eBy−(1+4β)r/
√
2

(
b̃(τ) ≤ 0 for τ ∈ [α, β], b̃(τ) ≤ h̃(τ) for τ ∈ (τ1, τ2)

)

= 1x≤
√
2r coshA

y≤
√
2r coshB

∫ 0

−∞ du
∫ 0

−∞ dv Tα,τ1(e
Ax− (1+4α)r√

2
, u)T h

τ1,τ2
(u, v)Tτ2,β(v, e

By − (1+4β)r√
2

)

φ2(β−α)(eBy − eAx− 2
√
2(β − α)r)

(5.2)

where the indicator on the right-hand side of (5.2) comes from the condition that the

starting point and the endpoint of the Brownian bridge b̃(τ) should be below 0 to get a
non-zero probability.

Next we compare the operator ΘA,B to the case of N non-intersecting Brownian
bridges not conditioned to stay below any function, that is, the free case. We express
ΘA,B as the operator for the free case minus a remainder. From the representation of
ΘA,B as the solution operator of a boundary value problem given in [50], one obtains that

e−(B−A)D(x, y) = e(y
2−x2)/2+B

exp
(
− (eBy−eAx)2

4(β−α)

)

√
4π(β − α)

(5.3)
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which corresponds to ΘA,B with the choice h = ∞. By defining

RA,B(x, y) = e(y
2−x2)/2+B

exp
(
− (eBy−eAx)2

4(β−α)

)

√
4π(β − α)

×
(
1−

∫ 0

−∞ du
∫ 0

−∞ dv Tα,τ1(e
Ax− (1+4α)r√

2
, u)T h

τ1,τ2
(u, v)Tτ2,β(v, e

By − (1+4β)r√
2

)

φ2(β−α)(eBy − eAx− 2
√
2(β − α)r)

)
, (5.4)

we can write the operator identity

ΘA,B = P√
2r coshA(e

−(B−A)D −RA,B)P√
2r coshB (5.5)

using the notation (4.3).
For the proof of Theorem 2.3, we need to take the limit a → 0 and b → 1 in (2.6).

Thus we set

A = −L, B = L which means a =
1

1 + e2L
, b =

e2L

1 + e2L
. (5.6)

We decompose the operator Θ−L,L as a sum of the operator which corresponds to the free
case, the remainder operator and an error term as

Θ−L,L = e−2LD −R−L,L − ΩL (5.7)

where the error term is

ΩL = e−2LD −R−L,L − P√
2r coshL(e

−2LD − R−L,L)P√
2r coshL. (5.8)

Since KHerm,N defined by (2.4) is a projector on a subspace of eigenvectors of D, it
commutes with eLD and thus one has e2LDKHerm,N = (eLDKHerm,N)

2. Using the identity
det(1 + AB) = det(1+BA), Proposition 2.1 can be written as

P(BN(t) < h(t) for t ∈ [0, 1])

= lim
L→∞

det(1−KHerm,N + eLDKHerm,NΘ−L,Le
LDKHerm,N)L2(R). (5.9)

Next we use the decomposition (5.7) of Θ−L,L. We prove the following lemma in Section 8.

Lemma 5.1. The error term Ω̃L = eLDKHerm,NΩLe
LDKHerm,N goes to 0 in trace norm

as L → ∞.

Thus, by Lemma 5.1, in the L → ∞ limit, we can neglect the error term in the
Fredholm determinant on the right-hand side of (5.9) (use for example Lemma 4 in
Chap. XIII.17 of [52]). Consequently one obtains

P (BN(t) < h(t) for t ∈ [0, 1]) = lim
L→∞

det
(
1− eLDKHerm,NR−L,Le

LDKHerm,N

)
L2(R)

.

(5.10)
By the definition (2.4), we can write KHerm,N = ϕϕ∗ where ϕ : L2({0, 1, . . . , N−1}) →

L2(R) and ϕ∗ : L2(R) → L2({0, 1, . . . , N − 1}) are operators that are adjoints of each
other defined by

(ϕf) (x) =

N−1∑

n=0

ϕn(x)f(n), (ϕ∗g) (x) =

∫

R

dxϕn(x)g(x). (5.11)
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By this identity and by using the cyclic property of the Fredholm determinant again, we
have

det
(
1− eLDKHerm,NR−L,Le

LDKHerm,N

)
L2(R)

= det
(
1− R−L,Le

2LDKHerm,N

)
L2(R)

= det
(
1− ϕ∗R−L,Le

2LDϕ
)
L2({0,1,...,N−1}) .

(5.12)
The rest of the proof of Theorem 2.3 now follows from the Proposition 5.2 below about the
equality of kernels, since the prefactor in front of Kh

N on the right-hand side of (5.13) is
just a conjugation which can be removed without changing the value of the corresponding
Fredholm determinant.

Proposition 5.2. Let h ∈ H1([a, b]) be a function which satisfies (2.8). Then for any N
and L, one has

(ϕ∗R−L,Le
2LDϕ)n,m =

√
m!

n!

2n

2m
eLm

eLn
Kh

N (n,m) (5.13)

for all n,m = 0, 1, . . . , N − 1.

Remark 5.3. Notice that Kh
N on the right-hand side of (5.13) does not depend on L,

hence up to the conjugation neither the left-hand side does, which is a priori not at all
obvious. This fact shows that the L → ∞ limit of the right-hand side of (2.6) with (5.6)
is obtained up to conjugation by simply removing the projections from Θ−L,L in (5.5).

Proof of Proposition 5.2. We use the following two integral representations of the har-
monic oscillator functions:

ϕn(x) =

√
2n

n!
π1/4ex

2/2 1

πi

∫

iR

dw ew
2−2wxwn, (5.14)

ϕn(x) =

√
n!

2n
π−1/4e−x2/2 1

2πi

∮

Γ0

dz
e−z2+2zx

zn+1
(5.15)

where the integration contour Γ0 is a small circle around 0 with counterclockwise orien-
tation. To compute the kernel on the left-hand side of (5.13), we substitute (2.15) in the
double integral in the definition (5.4) of R−L,L. In this way, we get the terms

Q0(u, v,X, Y ) = φ2τ1−e−2L/2(u−X)φ2(τ2−τ1)(v − u)φe2L/2−2τ2(Y − v),

Q1(u, v,X, Y ) = −φ2τ1−e−2L/2(u−X) T h
τ1,τ2(u, v)φe2L/2−2τ2(Y − v),

Q2(u, v,X, Y ) = φ2τ1−e−2L/2(u−X) T h
τ1,τ2(u, v)φe2L/2−2τ2(Y + v),

Q3(u, v,X, Y ) = φ2τ1−e−2L/2(u+X) T h
τ1,τ2(u, v)φe2L/2−2τ2(Y − v),

Q4(u, v,X, Y ) = −φ2τ1−e−2L/2(u+X) T h
τ1,τ2(u, v)φe2L/2−2τ2(Y + v).

(5.16)

By simplifying the exponential prefactor with the denominator on the right-hand side of
(5.4), one gets

R−L,L(x, y) = e(y
2−x2)/2+L−

√
2r(eLy−e−Lx)+sinh(2L)r2

×
∫

R

du

∫

R

dv
4∑

j=0

Qj

(
u, v, e−Lx− (1 + e−2L)r√

2
, eLy − (1 + e2L)r√

2

)
.
(5.17)

Note that one has changed the domain of integration for u and v to R because of the
term which corresponds to Q0. In the terms which correspond to Q1–Q4, T

h
τ1,τ2(u, v) is 0
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if u or v is positive by (2.10). With these notations, the kernel on the left-hand side of
(5.13) using both representations (5.14)–(5.15) of the harmonic oscillator functions ϕn is
equal to

(ϕ∗R−L,Le
2LDϕ)n,m

=

∫

R

dx

∫

R

dy ϕn(x)R−L,L(x, y)e
2Lmϕm(y)

=

√
m!

n!

2n

2m
2

(2πi)2

∫

R

dx

∫

R

dy

∫

iR

dw

∮

Γ0

dz

∫

R

du

∫

R

dv ew
2−2wxwne−

√
2r(eLy−e−Lx)

× esinh(2L)r
2+L

4∑

j=0

Qj

(
u, v, e−Lx− (1 + e−2L)r√

2
, eLy − (1 + e2L)r√

2

)
e2Lm

e−z2+2zy

zm+1
.

(5.18)
Doing the change of variables

X = e−Lx− (1 + e−2L)r√
2

, Y = eLy − (1 + e2L)r√
2

, W = eLw, Z = e−Lz, (5.19)

one obtains

(5.18) =

√
m!

n!

2n

2m
eLm

eLn
2

(2πi)2

∫

R

dX

∫

R

dY

∫

iR

dW

∮

Γ0

dZ

∫

R

du

∫

R

dv eW
2e−2L

× e
−2W (X+

(1+e−2L)r√
2

)
W ne−

√
2r(Y−X)−sinh(2L)r2

4∑

j=0

Qj(u, v,X, Y )
e
−Z2e2L+2Z(Y+ (1+e2L)r√

2
)

Zm+1
.

(5.20)
The integral with respect to X and Y in (5.20) can be computed, since they are

Gaussian integrals. One has
∫

R

dX φ2τ1−e−2L/2(u±X)e−2WX+
√
2rX = e(4τ1−e−2L)(

√
2r−2W )2/4∓(

√
2r−2W )u,

∫

R

dY φe2L/2−2τ2(v ± Y )e2ZY−
√
2rY = e(e

2L−4τ2)(
√
2r−2Z)2/4±(

√
2r−2Z)v.

(5.21)

Then putting the definitions (5.16) into (5.20), using (5.21) and the notation (2.13), one
gets

(ϕ∗R−L,Le
2LDϕ)n,m

=

√
m!

n!

2n

2m
eLm

eLn
2

(2πi)2

∫

iR

dW

∮

Γ0

dZ

∫

R

du

∫

R

dv
W neτ1(

√
2r−2W )2−

√
2rW

Zm+1eτ2(
√
2r−2Z)2−

√
2rZ

×
(
fW (u)φ2(τ2−τ1)(v − u)gZ(v)− (fW (u)− fW (−u))T h

τ1,τ2
(u, v)(gZ(v)− gZ(−v))

)
.

(5.22)
By using (8.3) of Lemma 8.1, one can see that the integral of the first term on the
right-hand side of (5.22) up to conjugation is

2

(2πi)2

∫

iR

dW

∮

Γ0

dZ

∫

R

du

∫

R

dv
W neτ1(

√
2r−2W )2−

√
2rW

Zm+1eτ2(
√
2r−2Z)2−

√
2rZ

fW (u)φ2(τ2−τ1)(v − u)gZ(v)

= 1(n,m). (5.23)

Comparing (5.22) and (5.23) with (2.20) and (2.11)–(2.12) completes the proof.
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6 Direct derivation of the correlation kernel

In this section, we prove Theorem 2.5 where the correlation kernel of N non-intersecting
Brownian bridges conditioned to stay below a constant level is determined. The direct
proof of the correlation kernel follows the line of [57] where the correlation kernel for
non-intersecting Brownian bridges were computed without further conditioning.

Let us define the functions

Φ̃i
t(x) =

1

2n
√
π

(
1− t

t

) i+1
2
(
e−

x2

2t Hi

( x√
2t(1− t)

)
− e−

(2r−x)2

2t Hi

( 2r − x√
2t(1− t)

))
, (6.1)

Ψ̃j
t (x) =

1

j!

(
t

1− t

) j
2
(
e−

x2

2(1−t)Hj

( x√
2t(1− t)

)
− e−

(2r−x)2

2(1−t) Hj

( 2r − x√
2t(1− t)

))
(6.2)

for t ∈ [0, 1], x < r and i integer where Hi is the ith Hermite polynomial. For any
0 ≤ t1 < t2 ≤ 1 and x, y < r, let

T̃t1,t2(x, y) =
1√

2π(t2 − t1)

(
e
− (x−y)2

2(t2−t1) − e
− (2r−x−y)2

2(t2−t1)

)
(6.3)

be the free evolution kernel of a Brownian motion below level r.

Proposition 6.1. Let 0 < t1 < · · · < tk < 1 be times and x
(l)
1 < · · · < x

(l)
N be positions,

l = 1, . . . , k. Then the joint density of N non-intersecting Brownian bridges conditioned
to stay below level r for [0, 1] at times ti and positions x

(l)
j is proportional to

det
(
Φ̃i−1

t1
(x

(1)
j )
)N
i,j=1

k−1∏

l=1

det
(
T̃tl,tl+1

(x
(l)
i , x

(l+1)
j )

)N
i,j=1

det
(
Ψ̃i−1

tk
(x

(k)
j )
)N
i,j=1

. (6.4)

Proof of Proposition 6.1. We follow the usual strategy to get N non-intersecting Brow-
nian bridges which start and end at 0. We let them start and end at positions
−ε,−2ε, . . . ,−Nε, and then we will let ε → 0. By a Karlin–McGregor type formula,
their joint density is given by

det
(
T̃0,t1(−iε, x

(1)
j )
)N
i,j=1

k−1∏

l=1

det
(
T̃tl,tl+1

(x
(l)
i , x

(l+1)
j )

)N
i,j=1

det
(
T̃tk ,1(x

(k)
i ,−jε)

)N
i,j=1

.

(6.5)
The product of k − 1 determinants in the middle in (6.4) and in (6.5) is the same. The
general (i, j) entry of the first determinant in (6.5) is

T̃0,t1(−iε, x
(1)
j ) =

1√
2πt1

(
e
−

(x
(1)
j

+iε)2

2t1 − e
−

(2r−x
(1)
j

+iε)2

2t1

)

=
e
− i2ε2

2t1√
2πt1

e
−

(x
(1)
j

)2

2t1

(
1−

iεx
(1)
j

t1
+

1

2

i2ε2(x
(1)
j )2

t21
± . . .

)

− e
− i2ε2

2t1√
2πt1

e
−

(2r−x
(1)
j

)2

2t1

(
1−

iε(2r − x
(1)
j )

t1
+

1

2

i2ε2(2r − x
(1)
j )2

t21
± . . .

)

(6.6)
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where we used Taylor expansion in the last step.
By elementary row operations with the matrix in the first determinant in (6.5), one

obtains

det
(
T̃0,t1(−iε, x

(1)
j )
)N
i,j=1

= c(ε)

[
det

(
e
−

(x
(1)
j

)2

2t1 (x
(1)
j )i−1 − e

−
(2r−x

(1)
j

)2

2t1 (2r − x
(1)
j )i−1

)N

i,j=1

+O(ε)

]
(6.7)

where c(ε) is a constant which does not depend on the x
(1)
j variables. (Notice that c(ε)

depends on ε asymptotically as εN(N−1)/2, but it is unimportant for the proposition.)
The determinant on the right-hand side of (6.7) is already independent of ε, hence it is
also the factor which appears in the ε → 0 limit. By further row manipulations in the
determinant on the right-hand side of (6.7), one can turn the monomials (x

(1)
j )i−1 and

(2r − x
(1)
j )i−1 into any polynomials of degree i − 1, but with the same polynomial for

both terms. In particular, by choosing the (i − 1)st Hermite polynomial with rescaled
argument x 7→ Hi−1(x/

√
2t(1− t)), one gets that the determinant on the right-hand side

of (6.7) is proportional to the first factor in (6.4). The argument for the last determinant
is the same, hence the proof is complete.

Proposition 6.2. With the relation (2.9) between the variables t1, t2 and τ1, τ2 and with
(2.24) between xi and ui, one has the following equality of the conjugated functions

Φn
τ (u) = e−

r2

2
− (x−r)2

2(1−t) Φ̃n
t (x), (6.8)

Ψn
τ (u) = e

r2

2
+ (x−r)2

2(1−t) Ψ̃n
t (x), (6.9)

Tτ1,τ2(u1, u2) =
√
2(1− t1)(1− t2)e

(x1−r)2

2(1−t1)
− (x2−r)2

2(1−t2) T̃t1,t2(x1, x2). (6.10)

With Proposition 6.2, proving Theorem 2.5 is easy.

Proof of Theorem 2.5. The correlation kernel can be directly obtained from the general
formula given in [38], since the joint density of N non-intersecting Brownian bridges
conditioned to stay below level r is given by (6.4) where the functions which appear in
the determinants satisfy

∫ r

−∞
dx

Φ̃i
t1(x)

21/4
√
1− t1

T̃t1,t2(x, y) =
Φ̃i

t2(y)

21/4
√
1− t2

, (6.11)

∫ r

−∞
dy T̃t1,t2(x, y)

Ψ̃j
t2(y)

21/4
√
1− t2

=
Ψ̃j

t1(x)

21/4
√
1− t1

, (6.12)

∫ r

−∞
dx

Φ̃i
t(x)

21/4
√
1− t1

Ψ̃j
t(x)

21/4
√
1− t2

= (1−K0)(i, j) (6.13)

which is a direct consequence of Proposition 2.2 knowing the relations proved in Propo-
sition 6.2. Hence the extended kernel can be written for x1, x2 ≤ r as

Kext(t1, x1; t2, x2) = −1τ1<τ2 T̃t1,t2(x1, x2)

+
N−1∑

n,m=0

Ψ̃n
t1(x1)

21/4
√
1− t1

(1−K0)
−1(n,m)

Φ̃m
t2 (x2)

21/4
√
1− t2

. (6.14)
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Due to Proposition 6.2, one can write the correlation kernel in terms of the variables τi, ui

according to (2.24) since the extra factor 1/
√
2(1− t1)(1− t2) is the volume element.

This proves that the correlation kernel in terms of the the natural variables τi, ui is given
by (2.25). It is also consistent with the definition (2.23) of the correlation kernel, which
finishes the proof.

For the proof of Proposition 6.2, the following representations are useful.

Proposition 6.3. The functions Φn
τ and Ψm

τ admit the following representations in terms
of Hermite polynomials

Φn
τ (u) =

1

22n+1τ
n+1
2
√
π
e
−
(

(1+4τ)r

2
√

2τ
+ u

2
√

τ

)2

Hn

((1 + 4τ)r

2
√
2τ

+
u

2
√
τ

)
e2τr

2+
√
2ru − (u ↔ −u)

(6.15)
and

Ψm
τ (u) =

(2
√
τ)m

m!
Hm

((1 + 4τ)r

2
√
2τ

+
u

2
√
τ

)
e−2τr2−

√
2ru − (u ↔ −u). (6.16)

The notation (u ↔ −u) means that we have the same term with u replaced by −u.

Proof of Proposition 6.3. Expanding the exponent of (2.11) and doing the change of vari-
ables 2

√
τW = w, one gets

Φn
τ (u) =

1

πi

∫

iR

dW W ne4τW
2−(1+4τ)

√
2rW+2τr2e−2uW+

√
2ru − (u ↔ −u)

=
1

(2
√
τ)n+1

1

πi

∫

iR

dwwne
w2−2

(
(1+4τ)r

2
√

2τ
+ u

2
√

τ

)
w+2τr2+

√
2ru − (u ↔ −u).

(6.17)

By (2.3) and (5.14), one has

1

πi

∫

iR

dwwnew
2−2xw =

1

2n
√
π
e−x2

Hn(x). (6.18)

Then the integral on the right-hand side of (6.17) can be expressed with Hermite poly-
nomials using (6.18) which immediately yields (6.15).

The representation (6.16) is proved similarly. With the change of variables 2
√
τZ = z

in (2.12), one obtains

Ψm
τ (u) =

1

2πi

∮

Γ0

dZ Z−(m+1)e−4τZ2+(1+4τ)
√
2rZ−2τr2e2uZ−

√
2ru − (u ↔ −u)

= (2
√
τ)m

1

2πi

∮

Γ0

dz z−(m+1)e
−z2+2

(
(1+4τ)r

2
√

2τ
+ u

2
√

τ

)
z−2τr2−

√
2ru − (u ↔ −u).

(6.19)

Using (2.3) and the representation (5.15) yields

1

2πi

∮

Γ0

dz
e−z2+2zx

zn+1
=

1

n!
Hn(x) (6.20)

Then the two integrals on the right-hand side of (6.19) are rewritten with (6.20) which
proves (6.16).
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Proof of Proposition 6.2. We proceed by direct computation. To prove (6.8), one can
first rearrange the right-hand side to get

e−
r2

2
− (x−r)2

2(1−t) Φ̃n
t (x)

= Cn,te
− r2

2
− (x−r)2

2(1−t)

(
e−

x2

2t Hn

( x√
2t(1− t)

)
− e−

(2r−x)2

2t Hn

( 2r − x√
2t(1− t)

))

= Cn,t

(
e−

x2

2t(1−t)Hn

( x√
2t(1− t)

)
e

rx
1−t

+
(t−2)r2

2(1−t) − e−
(2r−x)2

2t(1−t) Hn

( 2r − x√
2t(1− t)

)
e−

rx
1−t

+
(t+2)r2

2(1−t)

)

(6.21)

where Cn,t =
1

2n
√
π

(
1−t
t

)n+1
2 .

Next we rewrite the right-hand side of (6.21) in terms of the variables τ and u. Using
(2.24), one has

x√
2t(1− t)

=
(1 + 4τ)r

2
√
2τ

+
u

2
√
τ
,

2r − x√
2t(1− t)

=
(1 + 4τ)r

2
√
2τ

− u

2
√
τ

(6.22)

and

± rx

1− t
+

(t∓ 2)r2

2(1− t)
= 2τr2 ±

√
2ru. (6.23)

By substituting (2.9), (6.22) and (6.23) on the right-hand side of (6.21), one exactly gets
the representation (6.15), which proves (6.8).

Similarly,

e
r2

2
+

(x−r)2

2(1−t) Ψ̃n
t (x)

=
1

n!

(
t

1− t

)n
2

e
r2

2
+

(x−r)2

2(1−t)

(
e−

x2

2(1−t)Hn

( x√
2t(1− t)

)
− e−

(2r−x)2

2(1−t) Hn

( 2r − x√
2t(1− t)

))

=
1

n!

(
t

1− t

)n
2
(
Hn

( x√
2t(1− t)

)
e−

rx
1−t

− (t−2)r2

2(1−t) −Hn

( 2r − x√
2t(1− t)

)
e

rx
1−t

− (t+2)r2

2(1−t)

)
.

(6.24)
Then by (2.9), (6.22) and (6.23), one can write the right-hand side of (6.24) in terms of
the variables τ and u. Comparing this with (6.16), (6.9) is proved.

Finally, by definition (6.3) and by using (2.24),

√
2(1− t1)(1− t2)e

(x1−r)2

2(1−t1)
− (x2−r)2

2(1−t2) T̃t1,t2(x1, x2)

=

√
(1− t1)(1− t2)

π(t2 − t1)
e(1−t1)u2

1−(1−t2)u2
2

(
e
− ((1−t1)u1−(1−t2)u2)

2

t2−t1 − e
− ((1−t1)u1+(1−t2)u2)

2

t2−t1

)

=

√
(1− t1)(1− t2)

π(t2 − t1)

(
e
− (1−t1)(1−t2)

t2−t1
(u1−u2)2 − e

− (1−t1)(1−t2)
t2−t1

(u1+u2)2
)
.

(6.25)
By noticing that

4(τ2 − τ1) =
t2 − t1

(1− t1)(1− t2)
, (6.26)

the proof is complete.
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7 Asymptotics

This section is devoted to the proof of Theorem 2.6 and Theorem 2.10. To this end, we
start with a lemma which contains the asymptotic properties of the harmonic oscillator
functions which are necessary for further proofs.

Lemma 7.1. For the nth harmonic oscillator function ϕn, one has

lim
n→∞

2−1/4n1/12ϕn

(√
2n+

sn−1/6

√
2

)
= Ai(s) (7.1)

uniformly on any compact subset of R for s. Further, for any c > 0, there are s0 and n0

such that for any s ≥ s0 and n ≥ n0,
∣∣∣∣2

−1/4n1/12ϕn

(√
2n+

sn−1/6

√
2

)∣∣∣∣ ≤ e−cs. (7.2)

There is a universal constant C such that for any n ≥ 1,

sup
x∈R

∣∣2−1/4n1/12ϕn(x)
∣∣ ≤ C. (7.3)

Proof of Lemma 7.1. The formula (7.1) is well-known, see e.g. [53]. It can be also seen
in Lemma 5.8 of [31], while (7.2) can be derived directly from Lemma 5.9 of [31]. Using
Definition 5.7 of [31], one has

αn(0, s) = n1/3e3n/2+sn1/3 1

2πi

∫

iR

dw enw
2/2+(2n+sn1/3)w(−w)n

= 2n−1/2n−n/2−1/6e3n/2+sn1/3 1

πi

∫

iR

dW eW
2−2(

√
2n+sn1/3/

√
2)WW n

= 2n−1/2n−n/2−1/6e3n/2+sn1/3

√
n!

2n
π−1/4e(

√
2n+sn1/3/

√
2)2/2ϕn

(√
2n+

sn−1/6

√
2

)

= 2−1/4n1/12ϕn

(√
2n+

sn−1/6

√
2

)

(7.4)
with the change of variables W = −

√
n/2w in the second equality, with the use of (5.14)

in the third and by Stirling’s formula in the last one. Hence the results of [31] apply
and one gets (7.1) and (7.2) with c = 1. By inspecting the proof of Lemma 5.9 in [31],
one can realize that the terms which appear in the integral representation of βt(r, s)
in (5.40)–(5.42) of [31] are bounded by a large constant times exp(−s3/2) which is less
than e−cs for any c if s is large enough. By the last remark after (5.47) in the proof of
Proposition 5.9 in [31], one gets that the same bound applies for αt(r, s) as required.

Finally, (7.3) is an easy consequence of the detailed bound obtained in [44], see also
(A.54) of [28] where pk(x) = Hk(x) (except for a small typo: 22/k should be 2k/2). By
replacing x/

√
2N by x and by (2.3), one exactly gets (7.3).

Then one has the following limits as N → ∞ and bounds for the functions which
appear in the kernel of N non-intersecting Brownian bridges.

Proposition 7.2. Consider the scaling

u =
UN−1/6

√
2

, n = N − ξN1/3, m = N − ζN1/3 (7.5)
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as well as (2.32) for ti, r, xi. Then as N → ∞, it holds

lim
N→∞

(
2

N

)n
2 N−1/6

√
2

eN+RN1/3

2 Φn
τ (u) = Φ̂ξ

T (U), (7.6)

lim
N→∞

(
N

2

)m
2

N1/3e−N−RN1/3

2 Ψm
τ (u) = Ψ̂ζ

T (U). (7.7)

For the rescaled kernel the convergence

lim
N→∞

(
2

N

)n−m
2

N1/3K0(n,m) = K̂0(ξ, ζ) (7.8)

holds.
Furthermore, for U, V in a compact interval and for any c > 0, there is a C = C(c)

such that the bounds
∣∣∣∣∣

(
2

N

)n
2 N−1/6

√
2

eN+RN1/3

2 Φn
τ (u)

∣∣∣∣∣ ≤ Ce−cξ, (7.9)

∣∣∣∣∣

(
N

2

)m
2

N1/3e−N−RN1/3

2 Ψm
τ (u)

∣∣∣∣∣ ≤ Ce−cζ , (7.10)

∣∣∣∣∣

(
2

N

)n−m
2

N1/3K0(n,m)

∣∣∣∣∣ ≤ Ce−c(ξ+ζ) (7.11)

hold for ξ and ζ uniformly in [0, N2/3].

Theorem 2.6 is now an easy consequence of Proposition 7.2.

Proof of Theorem 2.6. It is enough to prove (2.33) in terms of the variables τi, ui, that
is,

lim
N→∞

N−1/6

√
2

Kext(τ1, u1; τ2, u2) = K̂ext(T1, U1;T2, U2). (7.12)

First of all, (2.32), (7.5) and Brownian scaling give

N−1/6

√
2

Tτ1,τ2(u1, u2) = TT1,T2(U1, U2). (7.13)

Further, by the uniform decay properties (7.9)–(7.11) in ξ and ζ , in the sum for n and
m in (2.25), dominated convergence can be used. We thus replace the rescaled functions
Ψn

τ1(u1), Φ
m
τ2(u2) and the rescaled resolvent of the kernel K0 in (2.25) according to (7.6)–

(7.8). The conjugations and prefactors exactly cancels. We turn the Riemann sum into
an integral and by dominated convergence, we obtain (2.33).

Proof of Theorem 2.10. First note that the left-hand side of (2.41) before taking the
N → ∞ limit is equal to the left-hand side of (2.21) for

h(t) =
√
N +

H(T )N−1/6

2
, t =

1 + TN−1/3

2
. (7.14)
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Thus we can apply Theorem 2.4. Under the same scaling as in the proof of Theorem 2.6,

in particular with ui =
UiN−1/6

√
2

, Proposition 7.2 yields

N−1/6

√
2

Kτ1,τ2(u1, u2) → K̂T1,T2(U1, U2). (7.15)

In order to compute the limit of T h, observe that with the scaling (7.14) and r =
√
N +

1
2
RN−1/6 and by (2.9),

τ = τ(T ) =
1

4

1 + TN−1/3

1− TN−1/3
, h̃(τ) =

N−1/6

√
2

(H(T )− R)(1 +O(N−1/3)). (7.16)

Further, inserting (7.16) and ui =
UiN−1/6

√
2

into T h given by (2.10), we obtain

lim
N→∞

N−1/6

√
2

T h
τ1,τ2

(u1, u2)

= lim
N→∞

N−1/6

√
2

d

du2

Pb̃(τ1)=u1

(
b̃(τ(T )) ≤ h̃(τ(T )) for T ∈ [T1, T2], b̃(τ2) ≤ u2

)

=
d

dU2
PB(T1)=U1 (B(T ) ≤ (H(T )− R) for T ∈ [T1, T2], B(T2) ≤ U2)

= T̂H−R
T1,T2

(U1, U2)
(7.17)

where we used the Brownian scaling by writing the probability in terms of the Brownian
motion B(T ) = 1√

2
N−1/6b̃(1

4
+ 1

2
TN−1/3) in the second equality. The convergence of the

Fredholm determinant follows from the bounds of Proposition 7.2 in the same way as for
the convergence of the Fredholm determinant of Theorem 2.6.

Proof of Proposition 7.2. In the representation of Φ in terms of Hermite polynomials
(6.15), we use (2.3). Then we get

Φn
τ (u) =

√
n!

2
3n
2
+1τ

n+1
2 π

1
4

e
− 1

2

(
(1+4τ)r

2
√

2τ
+ u

2
√

τ

)2

ϕn

((1 + 4τ)r

2
√
2τ

+
u

2
√
τ

)
e2τr

2+
√
2ru − (u ↔ −u).

(7.18)

Using the scaling of the variables (2.32), (7.5), as well as (2.9), one has

(1 + 4τ)r

2
√
2τ

± u

2
√
τ
=

√
2N +

(T 2 +R± U)N−1/6

√
2

∓ TUN−1/2

√
2

+ o(N−1/2),

2τr2 ±
√
2ru =

N

2
+ TN2/3 +

(
T 2 +

R

2
± U

)
N1/3 +RT + T 3 + o(1).

(7.19)

Further, by the scaling (2.32), (7.5) and (2.9),

(4τ)
n+1
2 = eTN2/3+T 3/3−Tξ+o(1). (7.20)

Finally, Stirling’s formula leads to

√
n! = N

n
2 (1− ξN−2/3)

N−ξN1/3

2 e−
N
2
− ξN1/3

2
+o(1)(2πN)

1
4 = (2π)

1
4N

n
2
+ 1

4 e−
N
2
+o(1). (7.21)
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Plugging (7.19)–(7.21) into (7.18), one has

Φn
τ (u) =

(
N

2

)n
2 √

2N1/6e−N−RN1/3

2
+o(1)e

2
3
T 3+(R+ξ+U)T

× 2−1/4N1/12ϕN−ξN1/3

(√
2N +

(T 2 +R + U)N−1/6

√
2

)
− (U ↔ −U). (7.22)

On the other hand, by (7.1) from Lemma 7.1, for any ξ > 0 fixed,

lim
N→∞

2−1/4N1/12ϕN−ξN1/3

(√
2N +

sN−1/6

√
2

)
= Ai(s+ ξ). (7.23)

Using the notation (2.30), this proves (7.6).
The proof of (7.7) is similar. Using (2.3) in (6.16) gives

Ψm
τ (u) =

2
3m
2 τ

m
2 π

1
4√

m!
e

1
2

(
(1+4τ)r

2
√

2τ
+ u

2
√

τ

)2

ϕm

((1 + 4τ)r

2
√
2τ

+
u

2
√
τ

)
e−2τr2−

√
2ru − (u ↔ −u).

(7.24)

Substituting (7.19)–(7.21) with n replaced by m, one has

Ψm
τ (u) =

(
2

N

)m
2

N−1/3eN+RN1/3

2
+o(1)e−

2
3
T 3−(R+ζ+U)T

× 2−1/4N1/12ϕN−ζN1/3

(√
2N +

(T 2 +R + U)N−1/6

√
2

)
− (U ↔ −U) (7.25)

which proves (7.7) by using (2.30).
To show (7.8), one uses (8.4). By comparing the definitions (2.11)–(2.12) with (7.22)

and (7.25), one can write the kernel as

K0(n,m) =

(
N

2

)n−m
2

2−1/2N−1/6eT (ξ−ζ)+o(1)

×
∫

R

dU e2TUϕN−ξN1/3

(√
2N +

(T 2 +R + U)N−1/6

√
2

)

× ϕN−ζN1/3

(√
2N +

(T 2 +R− U)N−1/6

√
2

)

(7.26)

where we made the change of variables u = UN−1/6/
√
2. For any c > 0, there is a uniform

constant C = C(c) such that

∣∣∣∣2
−1/4N1/12ϕN−ξN1/3

(√
2N +

sN−1/6

√
2

)∣∣∣∣ ≤ Ce−c(ξ+s) (7.27)

for s > 0, because of (7.2) with n = N − ξN1/3.
If n does not grow to infinity with N → ∞, then by definition (2.3) with

x =
√
2N + sN−1/6/

√
2, the harmonic oscillator function on the left-hand side of (7.27)

is of order e−N which is even smaller than the right-hand side. Using (7.3), the left-hand
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side of (7.27) is at most a uniform constant for s ≤ 0. Hence we can use dominated
convergence in (7.26) and conclude that

(
2

N

)n−m
2

N1/3K0(n,m) → eT (ξ−ζ)

∫

R

dU e2TU Ai(T 2 +R + ξ + U) Ai(T 2 +R + ζ − U)

= 2−1/3Ai(2−1/3(2R + ξ + ζ)).
(7.28)

In the last step we use the following identity: for any s1, s2, t ∈ R,
∫

R

dλ etλ Ai(s2 + λ) Ai(s1 − λ) = 2−1/3e
1
2
(s1−s2)t Ai

(
2−1/3

(
s1 + s2 −

t2

2

))
, (7.29)

which follows from (A.5)–(A.6) of [11] using the notation (A.1) in [11]. This proves (7.8).
Using the uniformity of the bound (7.27) in ξ, the exponential bounds in ξ and ζ

which can be given for (7.22), (7.25) and for (7.26) yield (7.9)–(7.11). This completes the
proof.

8 Proof of lemmas

In this section, we give the proofs of all those propositions and lemmas which were found
to be technical to give immediately. For the proof of Proposition 2.2 we will use the
following lemma.

Lemma 8.1. With the notation (2.13), for any u, v ∈ R, one has
∫

R

du fW (u)φ2(τ2−τ1)(v − u) = e(τ2−τ1)(
√
2r−2W )2fW (v), (8.1)

∫

R

dv φ2(τ2−τ1)(v − u)gZ(v) = e(τ2−τ1)(
√
2r−2Z)2gZ(u). (8.2)

Further, for any τ > 0 and integers n and m,

2

(2πi)2

∫

iR

dW

∮

Γ0

dZ

∫

R

du
W neτ(

√
2r−2W)

2−
√
2rW

Zm+1eτ(
√
2r−2Z)

2−
√
2rZ

fW (u)gZ(u) = 1(n,m), (8.3)

2

(2πi)2

∫

iR

dW

∮

Γ0

dZ

∫

R

du
W neτ(

√
2r−2W)

2−
√
2rW

Zm+1eτ(
√
2r−2Z)

2−
√
2rZ

fW (u)gZ(−u) = K0(n,m). (8.4)

Proof of Proposition 2.2. We substitute the definition (2.15) of Tτ1,τ2 and by combining
terms after the change of variables u → −u, one gets

∫

R−

du (fW (u)− fW (−u))Tτ1,τ2(u, v)

=

∫

R

du fW (u)φ2(τ2−τ1)(v − u)−
∫

R

du fW (u)φ2(τ2−τ1)(v + u)

= e(τ2−τ1)(
√
2r−2W )2(fW (v)− fW (−v))

(8.5)

where (8.1) was used in the second equality. This proves (2.16). The proof of (2.17) is
similar. The identity (2.18) immediately follows from (8.3)–(8.4) after the combination
of the terms which appear in (2.11)–(2.12) and by the change of variables u → −u.
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Proof of Lemma 8.1. The identities (8.1) and (8.2) are Gaussian integrals which are
straightforward to compute.

To show (8.3), one separates the integral with respect to u restricted to R− and to
R+. We can suppose that Γ0 is so small that Re(Z) ∈ (−1, 1) along Z ∈ Γ0. Then in the
integral on R−, one can deform the W contour to −1 + iR, and with this, the integral
with respect to u can be computed as

∫

R−

du fW (u)gZ(u) =

∫

R−

du e2(Z−W )u =
1

2(Z −W )
(8.6)

since Re(Z −W ) > 0 for any Z ∈ Γ0 and W ∈ −1 + iR. Similarly on R+, one deforms
the W contour to 1 + iR, and then

∫

R+

du fW (u)gZ(u) =

∫

R+

du e2(Z−W )u = − 1

2(Z −W )
(8.7)

since Re(Z −W ) < 0 in this case. By joining the two integration contours for W and by
Cauchy’s theorem, one gets

2

(2πi)2

∫

R

du

∫

iR

dW

∮

Γ0

dZ
W neτ(

√
2r−2W)

2−
√
2rW

Zm+1eτ(
√
2r−2Z)

2−
√
2rZ

fW (u)gZ(u)

=
1

2πi

∮

Γ0

dZ Res

(
W neτ(

√
2r−2W)

2−
√
2rW

Zm+1eτ(
√
2r−2Z)

2−
√
2rZ

;W = Z

)

=
1

2πi

∮

Γ0

dZ Zn−m−1 = 1(n,m)

(8.8)

which shows (8.3).
In the same way, (8.4) follows by

2

(2πi)2

∫

R

du

∫

iR

dW

∮

Γ0

dZ
W neτ(

√
2r−2W)

2−
√
2rW

Zm+1eτ(
√
2r−2Z)

2−
√
2rZ

fW (u)gZ(−u)

=
1

2πi

∮

Γ0

dZ Res

(
W neτ(

√
2r−2W)

2−
√
2rW

Zm+1eτ(
√
2r−2Z)

2−
√
2rZ

;W =
√
2r − Z

)

= K0(n,m).

(8.9)

This completes the proof of the lemma.

Proof of Proposition 2.7. First observe that due to definition (2.31),

∂

∂R
K̂0(ξ, ζ) =

(
∂

∂ξ
+

∂

∂ζ

)
K̂0(ξ, ζ). (8.10)

By writing the resolvent of K̂0 as a Neumann series and by applying (8.10) to each term
of the series, one obtains

∂

∂R
(1−K̂0)

−1(ξ, ζ) =

(
∂

∂ξ
+

∂

∂ζ

)
(1−K̂0)

−1(ξ, ζ)−(1−K̂0)
−1K̂0(ξ, 0)(1−K̂0)

−1K̂0(0, ζ).

(8.11)
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Further, by (2.30),

∂

∂R
Ψ̂ξ

T (U) =
∂

∂ξ
Ψ̂ξ

T (U) and
∂

∂R
Φ̂ζ

T (U) =
∂

∂ζ
Ψ̂ζ

T (U). (8.12)

Now one can take the derivative of the kernel K̂ext in (2.34) with respect to R. Using
(8.11) and (8.12), the proposition follows by direct computation.

Proof of Lemma 4.2. For a function h of the form (4.9), one can define approximating
functions hε ∈ H1([0, 1]) for any small ε > 0 such that as ε decreases to 0, the functions
increasingly approach h. With other words, hε(x) → h(x) increasingly as ε → 0 for any
x ∈ [0, 1].

Then the events Eε = {BN(t) < hε(t) for t ∈ [0, 1]} increase to E0 = {BN(t) <
h(t) for t ∈ [0, 1]} as ε → 0, hence P(Eε) → P(E0) by the continuity of the measure.

Similarly, the events Ẽε = {b̃(τ) ≤ h̃ε(τ) for τ ∈ (τ1, τ2)} which appear in (2.10) used in

the definition (2.20) of Kh
N increase to Ẽ0 = {b̃(τ) ≤ h̃(τ) for τ ∈ (τ1, τ2)} as ε → 0, since

the functions h̃ε increase to h̃ pointwise as ε → 0, see (2.9). Hence P(Ẽε) → P(Ẽ0).
To complete the proof, the convergence of the corresponding Fredholm determinants

on the right-hand side of (2.19) has to be shown. From P(Ẽε) → P(Ẽ0), one has the
pointwise convergence of the operators in the Fredholm determinant. On the other hand,
by Lemma 4.1, Kh

N is a trace class operator for any function h, i.e. the Fredholm deter-
minant series converges absolutely, hence the corresponding Fredholm determinants on
the right-hand side of (2.19) converge as ε → 0 by dominated convergence.

Proof of Lemma 5.1. This proof follows the lines of the proof of Lemma 2.3 in [50]. We
first rewrite the operator e−2LD−R−L,L as follows. We substitute (5.6) into the definitions
(5.3) and (5.4) and we use the identity

− (eLy − e−Lx)2

e2L − e−2L
+
(eLy − e−Lx− (e2L − e−2L) r√

2
)2

e2L − e−2L
=

(e2L − e−2L)r2

2
−
√
2r(eLy−e−Lx)

(8.13)
to simplify the exponential factors. Then one has the decomposition

e−2LD −R−L,L = Γ1Γ2Γ3 (8.14)

where

Γ1(x, u1) = e−x2/2+
√
2e−Lxr+u2

1/8τ1Te−2L/4,τ1

(
e−Lx− (1 + e−2L)r√

2
, u1

)
1u1≤H1 , (8.15)

Γ2(u1, u2) = e−u2
1/(8τ1)+u2

2/8τkT τi,Hi
τ1,τk

(u1, u2), (8.16)

Γ3(u2, y) = 1u2≤Hk
Tτk ,e2L/4

(
u2, e

Ly − (1 + e2L)r√
2

)
e−u2

2/8τk+y2/2+L−
√
2eLyr+(e2L−e−2L)r2/2.

(8.17)

The extra conjugation by eu
2
1/8τ1 and by eu

2
2/8τk was introduced because in this way all

the operators Γ1,Γ2,Γ3 have finite norm as shown below. Next we decompose the error
term as ΩL = Ω1

L + Ω2
L with

Ω1
L = P√

2r coshL(e
−2LD − R−L,L)P√

2r coshL, (8.18)

Ω2
L = (e−2LD − R−L,L)P√

2r coshL. (8.19)
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We bound the trace norm of

Ω̃L = eLDKHerm,NΩ
1
Le

LDKHerm,N + eLDKHerm,NΩ
2
Le

LDKHerm,N (8.20)

as follows. One has by (8.14) and (8.18) that

‖eLDKHerm,NΩ
1
Le

LDKHerm,N‖1
≤ ‖eLDKHerm,NP√

2r coshLΓ1‖2 ‖Γ2‖op ‖Γ3P√
2r coshLe

LDKHerm,N‖2. (8.21)

By definition, one can write the square of the first Hilbert–Schmidt norm as

‖eLDKHerm,NP√
2r coshLΓ1‖22

=
N−1∑

n,m=0

∫

R

dx

∫ H1

−∞
dy

∫ ∞

√
2r coshL

dw

∫ ∞

√
2r coshL

dz

× eL(n+m)ϕn(x)ϕm(x)ϕn(w)ϕm(z)Γ1(w, y)Γ1(z, y)

=
N−1∑

n=0

e2nL
∫ H1

−∞
dy

(∫ ∞

√
2r coshL

dz ϕn(z)Γ1(z, y)

)2

≤ Ne2(N−1)L

∫ H1

−∞
dy

(∫ ∞

√
2r coshL

dz ϕn(z)
2

)(∫ ∞

√
2r coshL

dz Γ1(z, y)
2

)

≤ Ne2(N−1)L

∫ ∞

√
2r coshL

dz

∫

R

dy Γ1(z, y)
2

(8.22)

where we used first that the harmonic oscillator functions ϕn are orthonormal, then the
Cauchy–Schwarz inequality, and finally the orthonormal property of ϕn again. In the
definition of Γ1 (8.15) and by comparing it with (2.15), one can give the upper bound

∫

R

dy Γ1(z, y)
2 ≤ e−z2+2

√
2e−Lzr

∫

R

dy e
y2

4τ1 φ2τ1−e−2L/2

(
y − e−Lz +

1 + e−2L

√
2

r

)2

= e−z2+2
√
2e−Lzr

∫

R

dy
e

y2

4τ1

π(4τ1 − e−2L)
exp

(
−
(y − e−Lz + 1+e−2L

√
2

r)2

2τ1 − e−2L/2

)

= e−(1+o(1))z2+o(1)z

∫

R

dy
1

4πτ1
e
−(1+o(1)) y2

4τ1
+(1+o(1)) ry√

2τ1
− r2

4τ1
+o(1)yz+o(1)

=
1√
4πτ1

e
−(1+o(1))z2+ r2

4τ1
+o(1)z+o(1)

(8.23)
by computing the Gaussian integral in the last step. The o(1) above means a term which
does neither depend on y nor z and which goes to 0 as L → ∞. Putting (8.22) and (8.23)
together, one obtains

‖eLDKHerm,NP√
2r coshLΓ1‖22 ≤

Ne
2(N−1)L+ r2

4τ1√
4πτ1

∫ ∞

√
2r coshL

dz e−(1+o(1))z2+o(1)z+o(1)

≤ Ne
2NL+ r2

4τ1√
4πτ1

e−2r2(coshL)2(1+o(1))

≤ c1e
2NL−c2e2L

(8.24)
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with positive constants c1 and c2 for L large enough. We used the Chernoff bound on the
tail of the normal distribution in the second inequality.

Obtaining a bound on ‖Γ3P√
2r coshLe

LDKHerm,N‖22 is very similar. There is a difference
in the step which corresponds to (8.23). It can be done as follows.

∫

R

dxΓ3(x, z)
2 ≤ ez

2+2L−2
√
2eLzr+(e2L−e−2L)r2

∫

R

dx e
− x2

4τk φe2L/2−2τk

(
x− eLz +

(1 + e2L)r√
2

)2

= e2L−2r2−(1+o(1))z2+o(1)z

∫

R

dx
1√
πe2L

e
−(1+o(1)) x2

4τk
−(1+o(1))2

√
2xr+o(1)xz+o(1)

=
1

πe2L
e2L+(8τk−2)r2−(1+o(1))z2+o(1)z+o(1)

(8.25)
where the o(1) term are again independent of y and z and they go to 0 as L → ∞. The
computation (8.25) results in a bound

‖Γ3P√
2r coshLe

LDKHerm,N‖2 ≤ c1e
NL (8.26)

very similarly as in (8.24). The factor e−c2e2L is not present due to the fact that the
projection P√

2r coshL is replaced by P√
2r coshL.

Finally, the operator norm of Γ2 can be bounded in the following way.

‖Γ2‖2op ≤ sup
y∈R

∫

R

dxΓ2(x, y)
2 ≤ sup

y∈R

∫

R

dx e
− x2

4τ1
+ y2

4τk φ2(τk−τ1)(y − x)2

= sup
y∈R

1

2

√
τ1

π(τ 2k − τ 21 )
e
− (τk−τ1)y

2

4τk(τ1+τk) =
1

2

√
τ1

π(τ 2k − τ 21 )

(8.27)

by straightforward computation involving a Gaussian integral. Putting (8.21), (8.22),
(8.27) and (8.26) together proves that the error corresponding to Ω1

L goes to 0 as L → ∞.
The proof for Ω2

L can be done similarly.
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