12.1 Let X and Y be two absolutely continuous random variables. Let X have a marginal PDF of $f_{X}(x)=\lambda^{2} x \exp (-\lambda x)$ if $x \geq 0$, and 0 otherwise. Conditional on $X=x$, let Y be uniform on the interval $[0, x]$. What is:
(a) the joint PDF of (X, Y) ?
(b) the marginal PDF of Y, and $\mathbb{E}(Y)$?
(c) $\mathbb{E}(X \mid Y=y)$ and $\mathbb{E}(Y \mid X=x)$?
(d) $\mathbb{E}(X)$? (Hint: use previous results)
(e) $\operatorname{Cov}(X, Y)$?
12.2 Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables (iid).

What is $\mathbb{E}\left(X_{1} \mid X_{1}+\cdots+X_{n}\right)$?
HW 12.3 (2 points) Let X and Y be independent and identical, nonnegative random variables.

$$
\mathbb{E}\left(\frac{X}{X+Y}\right)=?
$$

12.4 Let Y be a normal variable with mean μ and variance 1 , and $X \mid Y$ be a normal variable with mean Y and variance 1. What is the conditional distribution of $Y \mid X$?

HW 12.5 (3 points) We take a PQ line segment with length 3 and break it into two parts, at a uniformly chosen point R. Let X denote the length of the $P R$ line segment. The other, $3-X$ long line segment is broken again, at a uniformly chosen point S. Let Y denote the length of the $R S$ line segment.
(a) What is the joint PDF of (X, Y) ?
(b) $\mathbb{E}(Y \mid X=x)$
(c) Calculate $\operatorname{Cov}(X, Y)$
\& 12.6 (3 points) Let X, Y and Z be independent random variables. Let the CDF of X and Y be $F(x)$ and $G(y)$, respectively. Let Z be a Bernoulli random variable with parameter p. Determine the CDF of the following distributions:
(a) $T:=Z X+(1-Z) Y$,
(b) $U:=Z X+(1-Z) \max \{X, Y\}$,
(b) $U:=Z X+(1-Z) \min \{X, Y\}$.
12.7 We roll a die. If the result is i, then we choose Y uniformly on $[0, i]$. What is $\mathbb{E}(Y)$ and $\mathbb{D}^{2}(Y)$?
12.8 The amount of time until a lightbulb breaks follows an exponential distribution with 9 months expected time. If the lightbulb breaks, I immediately replace it with the same kind of lightbulb. I use my lamp for T years, where T is a number uniformly chosen between 0 and 9 years. Let Y be the number of times I have to change the lightbulb during this time. $\mathbb{E}(Y)=$? and $\mathbb{D}^{2}(Y)=$?
12.9 Let U_{1} and U_{2} be two independent random variables with uniform distribution on $[0,1]$. Show that if

$$
\begin{aligned}
X & =\sqrt{-2 \ln U_{1}} \cdot \cos \left(2 \pi U_{2}\right) \\
Y & =\sqrt{-2 \ln U_{1}} \cdot \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

Then (X, Y) have a joint Normal distribution.

HW 12.10 (3 points) Let X and Y be the two coordinates of a point that we choose randomly on the disc with radius 1 around the origin. $\left(f(x, y)=\frac{1}{\pi}\right.$ if $x^{2}+y^{2} \leq 1$.) What is the joint density function of $R=\sqrt{X^{2}+Y^{2}}$ and $\Theta=\operatorname{arctg}(Y / X)$?
12.11 Let $X, Y \sim \operatorname{Exp}(\lambda)$ be independent. What is the joint density of $U:=X+Y$ and $V:=\frac{X}{X+Y}$? Show that U and V are independent.
12.12 Let $X_{1}, \ldots, X_{n}, X_{n+1}$ be independent, standard normal random variables, and let $Y=\frac{X_{1}+\cdots+X_{n}}{n}$.
(a) What is the covariance matrix of $\left(X_{1}, Y\right)$?
(b) $\mathbb{P}\left(|Y| \leq\left|X_{n+1}\right|\right)$

HW 12.13 (2 points) Two different research groups are trying to estimate the weight of an atom. The first group takes k samples, while the second group takes l samples. The true weight of the atom is μ, and the samples have a Normal distribution with a variance of σ^{2}, independently. What is the probability that the first group has a closer estimate than the second group?
12.14 Let X be a standard normal distribution, and I independent from X, with $\mathbb{P}(I=1)=\mathbb{P}(I=0)=\frac{1}{2}$. Define Y as

$$
Y:=\left\{\begin{aligned}
X, & \text { if } I=1 \\
-X, & \text { if } I=0 .
\end{aligned}\right.
$$

(a) Show that Y is standard normal.
(b) Are I and Y independent?
(c) Are X and Y independent?
(d) Show that $\operatorname{Cov}(X, Y)=0$.

