Probability 1 - Exercises

Tutorial no. 9
9th Nov 2023
9.1 Assume that Z is such a random variable that $2 Z$ has the same distribution. What is the distribution of Z ?
9.2 Let X be a continuous random variable, with CDF F. What is the distribution of $Y=F(X)$?
9.3 Calculate the PDF of the following random variables:
(a) If ξ is exponential with parameter λ, then what is the PDF of $X:=4 \xi-5$, and $Z:=\sqrt[8]{\xi}$?
(b) If ξ is uniform on the $[-1 ; 1]$ interval, then what is the PDF of $X:=\xi^{2}$ and $U:=\cos (\pi \xi)$?

HW (c) (1 point) If ξ is exponential with parameter λ, then what is the PDF of $Y:=e^{\xi}$?
HW (d) (2 points) If ξ is uniform on $[-1 ; 2]$, then what is the PDF of $Z:=\xi^{2}$?
9.4 Let X be a standard Cauchy random variable. (Recall that its PDF is $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ for $x \in$ $(-\infty, \infty)$.) Show that X and $1 / X$ have the same distribution.
\& $\quad 9.5$ (3 point) Let X be a random variable with $\operatorname{PDF} \frac{1}{\ln 2} \frac{1}{1+x}$ on the $[0,1]$ interval, and 0 otherwise. What is the PDF of the fractional part of $\frac{1}{X}$?
9.6 We roll two independent fair dice. What is the joint probability distribution function of X and Y if
(a) X is the maximum throw, Y is their sum;

HW (b) (2 points) X is the first throw, Y is the minimum?
9.7 We break a stick of length L into 3 parts, at 2 independent uniformly random points.
(a) What is the probability that the three parts can form a triangle?
(b) What is the expected value of the lenth of the shortest part?
9.8 From the Leaning Tower of Pisa, I drop a ball from height 40.5 meters. As we know from physics, in t seconds it falls $g t^{2} / 2$ meters, where $g=9 \mathrm{~m} / \mathrm{s}^{2}$, hence it reaches the ground in exactly 3 seconds. Each of my two friends, Galileo and Isaac, takes a photo of the experiment, at independent random times with distribution Uni $[0 ; 3]$ sec.
(a) In expectation, how high is the ball on Isaac's photo?
(b) In expectation, how high is the ball on the photo that is taken later?

HW 9.9 (3 points) Jack arrives to school with a delay of $X \sim \operatorname{Uni}[0,20]$ minutes. Jill arrives with a delay of $Y \sim$ Uni $[0,15]$ minutes, independently of Jack.
(a) What is the probability that Jill arrives earlier than Jack?
(b) What is the expectation of the difference $|X-Y|$?
9.10 Let X and Y be random variables with joint probability density function

$$
f(x, y)= \begin{cases}\frac{4}{5}(x+x y+y) & \text { if } 0<x, y<1 \\ 0 & \text { else } .\end{cases}
$$

Calculate the marginals. Are the two variables independent?
9.11 Calculate the marginal distributions! Are X and Y independent?

HW (a) (2 points) Let the joint probability density function of X and Y be

$$
f(x, y)= \begin{cases}A \cdot\left(x^{2} y+y^{2} x\right) & \text { if } 0<x, y<1 \\ 0 & \text { else }\end{cases}
$$

where A is a positive constant that must be calculated first.
(b) Same question when (X, Y) is uniform on the unit circle.
(c) (X, Y) is a uniform distribution on $D=\left\{(x, y) \in \mathbb{R}^{2}: 2 x^{2}+y^{2} / 2 \leq 1\right\}$.
9.12 A rectangle has sides with length 1 and a. We choose one point on each side of length 1 , with independent uniform distributions. Let X be the distance of these two points. What is the PDF of X ?

