4.1 A couple are in a team on a gameshow, and are asked a question. Both of them have p probability independently to know the answer. Which strategy is better?
(a) One of them are chosen randomly, and they answer without talking to the other.
(b) Both of them think of an answer, and if they agree they give that answer, otherwise they decide using a coin.
4.2 We toss a coin 3 times. Let A be the event that there is both at least one heads and at least one tails tossed. Let B be the event, that there is at most one tails in the outcomes. Are the two events independent?
4.3 We deal all the 52 cards of a French deck one-by-one. Which is the most likely position to see the second Ace?

HW 4.4 (2 points) We are throwing a standard die until the second 6 . How many times do we have to throw the die most likely?
\& 4.5 (3 points) Let's pick a random number from the set $\{1,2,3, \ldots, n\}$ with an equal probability. Let A_{p} be the event that the chosen number is divisible by p, which is a prime.
(a) Let's show that if $p_{1}, p_{2}, \ldots, p_{k}$ are prime numbers and n is divisible by $p_{1}, p_{2}, \ldots, p_{k}$, then $A_{p_{1}}, A_{p_{2}}, \ldots, A_{p_{k}}$ events are (totally) independent.
(b) Let C_{n} be the event that the randomly chosen number is a relative prime to n. Prove that

$$
\mathbb{P}\left(C_{n}\right)=\prod_{p \text { prime }, p \mid n}\left(1-\frac{1}{p}\right)
$$

4.6 We put a knight on a random position on a chess board. What is the expected value of the possible moves from that position?

HW 4.7 (2 points) Andrew and Bob are playing a game. There are 5 red and 5 green balls in an urn. They draw 2 balls from the urn. If they're both the same color, Andrew pays Bob 100 forint. If they're different colors, Bob pays Andrew x forint. How much should x be to make the game fair?
4.8 (St. Petersburg paradox) We toss a coin until it lands on heads. If the $n^{\text {th }}$ toss is heads, the player wins 2^{n} forint. Show that the expected value of the reward is infinite.
(a) Is it worth paying 1 million Ft to play the game?
(b) Is it worth paying 1 million Ft per game if we can play as much as we want, and only have to pay after we decide to stop?
4.9 A student has to fill out a test with 20 questions that can be answered with either "yes" or "no". Let's assume that the student knows the answer to each question independently with probability p. With probability q they think they know the answer, but they don't, and with probability r they know that they don't know the answer $(p+q+r=1)$. If the student knows that they don't know the answer, they randomly write "yes" or "no" with $50-50 \%$ probability. What is the probability that they answer at least 19 questions correctly?

HW 4.10 (3 points) A class of 6 women and 4 men wrote a test. Let's assume that there are no ties in their test scores, and order them from best to worst, with each of the 10 ! orderings having equal probability. Let X denote the placing of the highest ranking woman (eg. $X=1$ means that the best test was written by a woman). Determine the distribution and the expected value of X.
4.11 Show that for a non-negative, integer valued random variable N, where $\mathbb{E}(N)<\infty$

$$
\mathbb{E}(N)=\sum_{i=1}^{\infty} P(N \geq i)
$$

4.12 There are 5 players; A,B,C,D,E and we give each of them a number between 1 and 5, without repetition (they can't have the same number). First, A and B fight, and whoever has the higher number goes onto the next round. Then, the person who won the previous round fights with C, and the person with the higher number wins. Similarly with D and E . Let X be the number of rounds A wins. What is the distribution and expected value of X ?
4.13 On 4 buses 148 students are travelling all together. The number of students on each bus is 40, 33, 25 and 50 , respectively. Choose a student uniformly at random, and let X denote the number of students on their bus. Also choose a bus driver uniformly at random, and let Y denote the number of students on their bus.
(a) Which is larger, $\mathbb{E}(X)$ or $\mathbb{E}(Y)$?
(b) Calculate $\mathbb{E}(X)$ and $\mathbb{E}(Y)$.
(c) Calculate $\mathbb{D}^{2}(X)$ and $\mathbb{D}^{2}(Y)$.

HW 4.14 (3 points) We have two dice, and we're only focusing on the sum. We keep throwing until the sum of the two dice is either 6 or 10 .
(a) What is the probability that we stop on 6 ?
(b) Prove that the number of throws and the sum when we stop are independent. In other words, show that if

$$
A_{k}=\{\text { We throw k times }\} \quad \text { and } \quad B=\{\text { We stop on } 6\}
$$

then for every $k \geq 1, A_{k}$ and B are independent events.
4.15 There are $m+1$ urns with m balls in each. In the i-th urn, there are $i-1$ red and $m-i+1$ blue balls $(i=1, \ldots, m+1)$. First, we choose an urn uniformly randomly, then we draw n balls from the chosen urn with replacement.
(a) What is the probability that we only draw red balls?
(b) Assuming that the first n draws were red, what is the probability that the $n+1$-th draw will be red as well?
(c) Calculate the limit of the probability obtained in part (b) for fixed n as $m \rightarrow \infty$.

