Markov processes and martingales 2nd midterm test

31st May 2023

1. Let X_1, X_2, \ldots be iid. random variables with a continuous distribution function. Let

$$E_n = \{X_n > \max(X_1, \dots, X_{n-1})\}$$

be the event that a record occurs at time n with the convention that $E_1 = \Omega$. Let $Y_n = \mathbb{1}_{E_n}$ and $N_n = Y_1 + \cdots + Y_n$ be the number of records until time n.

- (a) (3 points) Prove that E_1, E_2, \ldots are independent and $\mathbf{P}(E_n) = 1/n$. *Hint:* For the independence show that for $i_1 < \cdots < i_n$ one has $\mathbf{P}(E_{i_1}|E_{i_2}\ldots E_{i_n}) = 1/i_1$ and write $\mathbf{P}(E_{i_1}\ldots E_{i_n}) = \prod_{j=1}^n \mathbf{P}(E_{i_j}|E_{i_{j+1}}\ldots E_{i_n})$.
- (b) (3 points) Prove that $\sum_{n=2}^{\infty} \frac{Y_n 1/n}{\log n}$ converges almost surely.
- (c) (3 points) Using Kronecker's lemma conclude that $\lim_{n\to\infty} \frac{N_n}{\log n} = 1$ almost surely. *Hint:* Kronecker's lemma states that if b_n is a positive increasing function with $\lim_{n\to\infty} b_n = \infty$ and x_n is any real sequence then the convergence of $\sum_{n=1}^{\infty} x_n/b_n$ implies that $(x_1 + \cdots + x_n)/b_n \to 0$ as $n \to \infty$.
- 2. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability space where $\Omega = [0, 1]$, \mathcal{F} is the Borel σ -algebra and \mathbf{P} is the Lebesgue measure. The random variable $U(\omega) = \omega$ has uniform distribution on [0, 1]. Define the sequence of random variables

$$X_n = \frac{1}{U^{1-1/n}}$$

for all n = 1, 2, ...

- (a) (3 points) Compute the expectation of X_n . Is the sequence X_n uniformly integrable?
- (b) (3 points) Show that X_n converges almost surely as $n \to \infty$, that is,

$$\mathbf{P}(\{\omega : \lim_{n \to \infty} X_n(\omega) \text{ exists}\}) = 1.$$

What is the almost sure limit of X_n ?

(c) (2 points) Does X_n also converge in L^1 ?